
Memory	Hierarchy	

2/18/2016	
CS	152	Sec6on	5	
Colin	Schmidt	

Agenda	

•  Review	Memory	Hierarchy	
•  Lab	2	Ques6ons	
•  Return	Quiz	1	

Latencies	Comparison	Numbers	

hHps://gist.github.com/jboner/2841832	

L1	Cache	 0.5	ns	

L2	Cache	 7	ns	 14x	L1	cache	

Main	Memory	 100	ns	 20x	L2,	200x	L1	

Read	4K	randomly	from	SSD	 150,000	ns	

Read	1MB	sequen6ally	from	memory	 250,000	ns	

Read	1MB	sequen6ally	from	SSD	 1,000,000	ns	 4x	Memory	

Disk	Seek	 10,000,000	ns	

Read	1	MB	sequen6ally	from	disk	 20,000,000	ns	 80x	memory,	20x	SSD	

assuming	~1GB/sec	SSD	

DRAM	

•  DRAM	is	complex	why	put	up	with	it?	
–  CHEAP!	and	very	fast	compared	to	disk	

•  Many	steps	in	modern	dram	but	at	a	high	level	
just	3	
–  RAS,	CAS,	Precharge	
– Why	do	we	need	precharge	

•  Capacitor	is	very	small	only	has	a	liHle	bit	of	charge		
•  Sense	amps	turn	this	small	change	into	0	or	1	

•  Most	architects	just	care	about	avoiding	using	
the	DRAM	and	using	the	BW	effec6vely	when	
needed	

2/8/2016 CS152, Spring 2016

Processor-DRAM Gap (latency)

20

Time

µProc 60%/year

DRAM
7%/year

1

10

100

1000

1
9

8
0

1
9

8
1

1
9

8
3

1
9

8
4

1
9

8
5

1
9

8
6

1
9

8
7

1
9

8
8

1
9

8
9

1
9

9
0

1
9

9
1

1
9

9
2

1
9

9
3

1
9

9
4

1
9

9
5

1
9

9
6

1
9

9
7

1
9

9
8

1
9

9
9

2
0

0
0

DRAM

CPU

1
9

8
2

Processor-Memory

Performance Gap:

(growing 50%/yr)

P
e

rf
o

rm
a

n
ce

Four-issue 3GHz superscalar accessing 100ns DRAM could execute 1,200

instructions during time for one memory access!

2/8/2016 CS152, Spring 2016

Memory Bandwidth Growth

22

How to take advantage of all this bandwidth?

• Simple in-order cores

• Complex out of order cores

• ?

2/8/2016	 CS152,	Spring	2016	

Memory	Hierarchy	

6	

Small,	
Fast	Memory	
(RF,	SRAM)	

•  capacity:		Register	<<	SRAM	<<	DRAM	
• 	latency:			Register	<<	SRAM	<<	DRAM	
• 	bandwidth:	on-chip	>>	off-chip	

On	a	data	access:	
if	data	∈ fast	memory	⇒ low	latency	access	(SRAM)	
if	data	∉ fast	memory	⇒ high	latency	access	(DRAM)	

CPU	 Big,	Slow	Memory	
(DRAM)	

A	 B	

holds	frequently	used	data	

SRAM	Cell	

2/8/2016 CS152, Spring 2016

SRAM Cell

24

Caches	

•  Who	manages?	
– Hardware	
– How	do	we	know	what	to	cache?	

•  Locality?	
–  Temporal,	Spa6al	

•  Basic	parts	of	a	cache?	
–  Tags,	lines	
– How	does	a	Hit	work	vs	a	Miss?	

•  Why	do	we	miss?	
–  Compulsory,	Capacity,	Conflict	

Big	Modern	Chip	

2/8/2016 CS152, Spring 2016

Area

35

2/8/2016	 CS152,	Spring	2016	

Direct-Mapped	Cache	

		Tag	 Data	Block			V	

	=	

Block	
Offset	

		Tag	 Index	

	t	 	k	 	b	

	t	

HIT	 Data	Word	or	Byte	

		2k	
lines	

2/8/2016	 CS152,	Spring	2016	

2-Way	Set-Associa9ve	Cache	

 Tag Data Block V

 =

Block
Offset

 Tag Index

 t k

 b

HIT

 Tag Data Block V

Data
Word
or Byte

 =

 t

2/8/2016	 CS152,	Spring	2016	

Fully	Associa9ve	Cache	
		Tag	 Data	Block			V	

	=	

Bl
oc
k	

O
ffs
et
	

		T
ag
	

	t	

	b	

HIT	

Data	
Word	
or	Byte	

	=	

	=	

	t	

Replacement	Policies	

•  Random	
•  LRU	

– Pseudo-LRU	
•  FIFO	
•  Can	explore	in	lab	2	

2/10/2016	 CS152,	Spring	2016	

AMAT	

14	

Average	memory	access	6me	(AMAT)	=	
	 	Hit	6me	+	Miss	rate	x	Miss	penalty	

	

Average	memory	access	6me	(AMAT)	=	
	Hit	6me	+	Miss	rate1	x	Miss	penalty1	+	
		Miss	rate2	x	Miss	penalty2		

2/10/2016	 CS152,	Spring	2016	

CPU-Cache	Interac9on	
Caches	instead	of	memory	blocks	

(5-stage	pipeline)	

15	

PC	 addr	 inst	

Primary	
Instruc6on	
Cache	

0x4	
Add	

IR	

D	

bubble	

hit?	
PCen	

Decode,	
Register	
Fetch	

wdata	
R	

addr	

wdata	

rdata	
Primary	
Data		
Cache	

we	
A	

B	

Y	Y	ALU	

MD1	 MD2	

Cache	Refill	Data	from	Outer	Levels	of	
Memory	Hierarchy	

hit?	

Stall	en6re	
CPU	on	data	
cache	miss	

To	Memory	Control	

M	
E	

2/10/2016	 CS152,	Spring	2016	

Write	Policy	Choices		
§ Cache	hit:	

–  write	through:	write	both	cache	&	memory	
•  Generally	higher	traffic	but	simpler	pipeline	&	cache	design	

–  write	back:	write	cache	only,	memory	is	wriHen	only	when	the	
entry	is	evicted	

•  A	dirty	bit	per	line	further	reduces	write-back	traffic	
•  Must	handle	0,	1,	or	2	accesses	to	memory	for	each	load/
store	

§ Cache	miss:	
–  no	write	allocate:		only	write	to	main	memory	
–  write	allocate	(aka	fetch	on	write):		fetch	into	cache	
	

§ Common	combina6ons:	
–  write	through	and	no	write	allocate	
–  write	back	with	write	allocate	

16	

2/10/2016	 CS152,	Spring	2016	

Pipelining	Cache	Writes	

17	

Tags	 Data	

Tag	 Index	 Store	Data	

Address and Store Data From CPU

Delayed	Write	Data	Delayed	Write	Addr.	

=?	

=?	

Load	Data	to	CPU	

Load/Store	

L	
S	

1	 0	

Hit?	

Data	from	a	store	hit	wriEen	into	data	porFon	of	cache	
during	tag	access	of	subsequent	store	

2/10/2016	 CS152,	Spring	2016	

Inclusion	Policy	

§  Inclusive	mul6level	cache:		
–  Inner	cache	can	only	hold	lines	also	present	in	outer	
cache	

–  External	coherence	snoop	access	need	only	check	
outer	cache	

§  Exclusive	mul6level	caches:	
–  Inner	cache	may	hold	lines	not	in	outer	cache	
–  Swap	lines	between	inner/outer	caches	on	miss	
–  Used	in	AMD	Athlon	with	64KB	primary	and	256KB	
secondary	cache	

Why	choose	one	type	or	the	other?	
	

18	

2/10/2016	 CS152,	Spring	2016	

Prefetching	

§ Speculate	on	future	instruc6on	and	data	accesses	
and	fetch	them	into	cache(s)	
–  Instruc6on	accesses	easier	to	predict	than	data	accesses	

§ Varie6es	of	prefetching	
–  Hardware	prefetching	
–  Sosware	prefetching	
–  Mixed	schemes	

§ What	types	of	misses	does	prefetching	affect?	
§ Explore	in	Lab	2	

19	

Ques6ons	

Lab	2	

•  Has	anyone	looked	at	it?	
•  Ques6ons?	
•  Lab	1	Report	graded	by	next	discussion	

Graded	Quiz	

