
PS1	Review,	Lab	2	Overview	

2/11/2016	
Sec5on	4	

Colin	Schmidt	



Agenda	

•  Quiz	1	Prep	
•  Problem	Set	1	Review	
–  ISAs	
– Microcode	
– Pipelines	
– Branch	Predic5on	
– CISC	v	RISC	
–  Iron	Law	

•  Lab	2	Overview	



Quiz	1	Prep	

•  Next	Wednesday	(2/18)	
•  Completely	closed	books	(no	cheat	sheets,	
only	pencils)	

•  Similar	to	the	problem	set	



Quiz	1	Prep	
•  Possible	Topics	

–  ISA	design		
–  Microcoding		
–  Pipelining	

•  Bypassing/interlocking	
•  Precise	excep5ons	
•  Control	hazards	
•  Branch	specula5on	(BTB,BHT,return	stacks)		

–  Iron	Law	
•  How	to	study?	

–  Fully	understand	PS1	
–  Go	over	past	tests	
–  Read	book!	
–  Go	over	lecture	slides	
–  Argue	with	a	friend		



PS1:	ISA	Ques5on	

•  It	depends	
– Different	machines	are	good	at	different	things	
and	can	be	used	in	different	circumstances	

– Can	construct	programs	that	make	most	machines	
look	good	
•  Benchmarks	are	important	

– For	C	code		by	a	modern	compiler	almost	always	
RISC	

•  Op5mizing	code	by	hand	is	important	
– Understand	peak	efficiency	of	your	machine	



Microcode	

•  For	microcode	problems,	key	is	to	get	the	
pseudocode	right		
– Control	signals	follow	readily	from	pseudocode		

•  Sanity	checks:	
– Only	one	device	may	drive	the	bus	
– The	bus	probably	should	be	driven	every	cycle		
– Don’t	read	from	a	register	whose	write-enable	
was	a	don’t-care		



Microcode	

•  don’t	cares		
–  If	you	won’t	read	A/B/MA	registers	again,	their	
write-enables	should	be	don’t-cares		

–  If	enMem	is	off,	Mem	Wr	is	a	don’t-care		
–  If	enReg	is	off,	Reg	Wr	is	a	don’t-care		
–  If	you	*will*	read	rd,rs1,rs2	in	the	future,	keep	
ldIR	==	0		



ADDm	

•  M[rd]	<~~	M[rs1]	+	M[rs2]	
– MA	<-	R[rs1]	
– A	<-	Mem	
– MA	<-	R[rs2]		
– B	<-	Mem	
– MA	<-	R[rd]	
– Mem	<-	ALU	(A+B);	
– uBR=J	to	Fetch		

•  Note	efficiency:	10	cycles	vs.	30	for	ld,ld,add,st		



Strcpy	

•  STRCPY	
– MA	<-	Rs;	A	<-	Rs	
–  B	<-	Mem	
– MA	<-	Rd	
– Mem	<-	B	
–  If	(B	==	0)	uBr	to	FETCH0	
–  Rs	<-	A	+	4	
–  A	<-	Rd	
–  Rd	<-	A+4,	J	to	STRCPY		

strcpy:	
lw	x2,	0(x3)	
sw	x2,	0(x4)	
beq	x2,	x0,	exit	
addi	x3,	x3,	4	
addi	x4,	x4,	4	
jal	x0,	strcpy	
exit:	



Pipeline	

•  Think	about	hazards	when	pipeline	ques5ons	
come	up	

•  Understand	why	5	stage	is	well-balanced	
– What	modifica5ons	affect	that?	

•  Precise	excep5on	are	important	interface	to	
programmer	

•  Tradeoffs	
– stalling	vs	bypassing	vs	specula5ng	



Branch	Predic5on	

•  Where	does	control	flow	resolve	
•  Pipeline	diagram	for	control	flow	
•  BHT	predicts	taken/not	taken	
– Resolves	1	cycle	earlier	than	no	BHT	on	correct	

•  BTB	predicts	target	
– Resolves	1	cycle	earlier	than	BHT	

•  Think	about	how	these	interact	with	different	
pipeline	depths	



Pipeline	Diagram	
•  0x2000:	LW	x7,	0(x6)		
•  0x2004:	ADDI	x2,	x2,	1		
•  0x2008:	BEQ	x2,	x3,	0x2000		
•  0x200c:	SW	x7,0(x6)	
•  0x2010:	ORI	x5,	x5,	4		
•  0x2014:	ORI	x7,	x7,	5		

Assume:	BTB	has	0x2008	valid	with	target=0x2000	
x2	=	0	and	x3	=	2	



 

13 

 
Problem 4.D Adding a BTB 
 

BTB mispredicts the exit, and it takes two cycles for branch logic in Exe to catch the mistake. 

The first circle is drawn to show when the BTB had a hit and predicted “taken”.  The second 
circle in t3 shows when the branch comparison catches a mispredict and kills two cycles. 

 



CISC	vs	RISC	

•  Bad/No	compiler	->	CISC	
•  Good	Compiler	->	RISC	
•  Hardware	limita5ons	affect	choice	
– Fast	logic,	slow	memory	->	CISC	

•  High	performance	implementa5ons	->	RISC	
– Hard	to	deeply	pipeline	complexi5es	
– Dynamically	scheduling	around	CISC	is	hard	
– CISCs	are	now	internally	RISC	



Iron	Law	

•  Think	about	whole	system	
– Compiler/Programmer,	Pipeline,	Hazards,	
Memory,	Cri5cal	Paths,	etc.	

– Although	some5mes	no	effect	on	parts	

•  Any	ques5ons	on	what	affects	
–  Instruc5on/Program	
– Cycles/Instrucion	
– Time/Cycle	



 

16 

Problem 6: Iron Law of Processor Performance 
 
 
 
  Instructions / 

Program 
Cycles / 

Instruction 
Seconds / Cycle Overall 

Performance 

a) 

 
 
Adding a branch 
delay slot 
 
 

Increase: Nops  
must be inserted  
when the branch  
delay slot cannot 
be usefully 
filled. 

Decrease: Some  
control hazards 
are eliminated; 
also additional 
NOPs execute 
quickly 
because they have 
no data hazards. 

No effect: doesn’t  
change pipeline 
 
Decrease:  
branch_kill signal 
is no longer 
needed 

Ambiguous:  
Depends on the  
program and how  
often the delay 
slot can be filled 
with useful work 

b) 
 

 
 
Adding a complex 
instruction 
 
 

Decrease: if the  
added instruction  
can replace a  
sequence of  
instructions. 
 
No effect: if it is  
unusable. 

Increase: if  
implementing the  
instruction means  
adding or re-using  
stages. 
 
No effect: if the  
number of cycles 
is kept constant 
but it just 
lengthens the 
logic in one stage. 

Increase: since 
more logic and 
thus longer 
critical path. 
 
No effect: if it is  
implemented by 
more or re-used 
stages but each 
stage gets no  
longer. 

Ambiguous: if the  
program can take  
advantage of the 
new instruction, it 
can mitigate the 
costs of 
implementing it. 
This is a hard 
decision for an 
ISA designer to  
make! 

c) 

 
 
Reduce number of 
registers in the ISA 
 
 

Increase: values  
Will more 
frequently be 
spilled to the  
stack, increasing  
number of loads 
and stores 

Increase: more 
loads followed by  
dependent 
instructions, will  
cause stalls, and  
likely be difficult 
to schedule 
around 

Decrease: fewer  
registers means  
shorter register 
file access time 

Ambiguous: if the  
program uses few  
registers and thus  
spills rarely to  
memory, the faster 
reg. access times may  
win out. Also, your 
instructions may be 
able to be shorter, 
improving amongst 
other things code  
density and I$ hit- 
rates. 



 

17 

d) 

 
 
Improving memory 
access speed 
 

No effect: since  
instructions 
make no 
assumption 
about memory 
speed. 

Decrease: if 
access to  
Memory is 
pipelined (>1 
cycle) since it  
will now take less  
cycles. 
 
No effect: if  
memory  
access is done in 
a single cycle. 

Decrease: if 
memory access is 
on the  
critical path or  
memory was 1 
cycle. 
 
No effect: if 
memory is 
pipelined and just  
takes less cycles. 

Improve: improving  
memory access time, 
at least by these Iron  
Law metrics, will  
increase erformance  
of the whole system 
(unless you chose “no  
effect” for  
everything). 
Of course, there  
could be other  
secondary costs of 
improving mem. 
access speeds, like 
having to use smaller 
caches, but I’m  
getting carried away 
here. 

e) 

Adding 16-bit 
versions of the most 
common instructions 
in MIPS (normally 
32-bits in length) to 
the ISA (i.e., make 
MIPS a variable 
length ISA) 
 

No effect: 
because  
you are replacing  
32b instructions  
with equivalent 
16b versions, it 
saves on code 
space, but it  
leaves the Inst/ 
Program count  
unchanged 

No effect: you are  
simple executing  
equivalent 16b  
versions of regular  
32b instructions.  
Both appear identical  
to the pipeline. 
decrease: since code 
size has shrunk, I$ 
hits will increase and  
thus less cycles will 
be spent fetching 
instructions 

Increase: decode  
may increase this  
since the instruction  
format is more  
complex (and you  
have to deal with  
figuring out where 
the instruction  
boundaries are) 
No effect: if this fits 
within the cycle time,  
since this makes no 
change to the pipeline  
and only increases the 
decode stage (or  
perhaps adds another 
stage to the front-
end). 

Ambiguous: the  
main advantage is  
smaller code size,  
whichcan improve I$  
hit rates and save on 
fetch energy (get  
more instructions per 
fetch). This can 
improve performance  
(or at least energy),  
however the more  
complex decode  
could also counteract 
these gains. 

f) 

For a given CISC 
ISA, changing the 
implementation of 
the micro-
architecture from a 
microcoded engine 
to a RISC pipeline 
(with a CISC-to-
RISC decoder on the 
front-end) 

No effect: 
because  
the ISA is not  
changing, the 
binary does not 
change,  
and thus there is 
no change to 
Inst/ 
Program. 

Decrease:  
Microcoded 
machines take 
several clock  
cycles to execute 
an instruction, 
while the RISC 
pipeline should  
have a CPI near 1  
(thanks to 
pipelining). 

No effect: the 
amount  
of work done in one 
pipeline stage and  
one microcode 
cycle are about the 
same. 
Increase: the RISC 
pipeline introduces 
longer control paths 
and adds bypasses,  
which are likely to 
be on the critical 
path. 

Increase: it should 
be far easier to 
pipeline RISC 
uops once the 
CISC instructions  
Have been 
decoded/translate
d, leading to a 
higher 
performance  
machine (see 
modern x86 
machines). 

 



Lab	2	

•  Released	this	morning	
•  Can	use	git	now	(to	manage	bug	fixes	I	make)	
– Op5onal	(cp	s5ll	works	just	fine)	

•  Due	3	weeks	from	yesterday	(3/2)	



Lab	2	Content	

•  Caches!	
•  Use	cache	simulator	and	a	set	of	benchmarks	
to	understand		
– How	well	caches	work	and		
– How	parameters	affect	performance	
– Size/access	5me	tradeoffs	
– AMAT	



Directed	Por5on	

•  How	to	collect	stats?	
•  Determine	working-set	size	
•  Find	best	L1	Instruc5on	Cache	
•  Find	best	L1	Data	Cache	
•  Find	best	L1	Data	Cache	with	an	L2	



Open	Ended	

•  Design	best	L1s+L2	given	an	limited	area	
budget	

•  Design	a	vic5m	cache	
– Place	to	put	recently	evicted	lines	

•  Design	a	prefetcher	
•  Design	a	replacement	policy	



Time	to	Complete	

•  If	you	don’t	listen	to	me	you	will	complain	at	
the	end	

•  Simula5ons	take	a	long	5me	
•  Asking	you	to	do	a	lot!!!	
•  Don’t	manually	run	them	all!	
•  There	is	already	a	script	to	do	it	
–  Just	need	to	modify	it	



But	what	about	my	internet?	
•  Several	ways	to	keep	tasks	running	aser	you	
logout	(or	get	dropped)	

•  Most	popular	–	screen,	tmux	
•  I	use	screen	so	I’ll	demo	that	
$ssh cs152-ta@derby.cs.berkeley.edu 
$screen –S lab2 
$./explore.py 
$^Ad #Ctrl-A+d Disconnect 
$screen –r lab2 
$...explore.py still running... 
	



Ques5ons	


