Pipelining Review

2/4/2016
Section 3
Colin Schmidt

Agenda

lron Law
Pipelining

Branch Prediction
Exceptions

Processor Performance

* |[ron Law

Time = Instructions Cycles Time
Program Program * Instruction * Cycle

Instructions/Program

e Affected by
— ISA
— Compiler
— Algorithm
— Programmer

Relative Code Size

Static Code size by ISA SPEC CPU2006

180%
160% + T
140% = — T -
120% 1 T —FF T
100% T : —
80%
60%
40%
20%
0%
g & & 5 9 72 7 Q 3T T 2 T I
| N)) | N 99!
C Z « 2 § 5 S S 2 g 2 & £
~ < 2 = = <= < 5 =
- 2 o
= kS
=

http://www.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-1.pdf

CPI

* |deal?

* Non-ideal
— Structural Hazards
— Data Hazards
— Control Hazards

* Resolving
— Stall/Interlock
— Speculate
— Bypass
— Add hardware

Cycle Time

* Microarchitecture
— Logic vs Memories
— Control complexity

— Datapath critical paths
* FPU

* Technology 28nm, 45nm, etc.

RV32l 5-stage

s s RISC-V v2.0
Branch & Jump i
|—| |—| TergGen Privileged ISA v1.7
by Christopher Celio
A A +
<<1
+4
PC
pc+4
. pc+4
br ‘:rr :mp 4 Y ” =
alr —»br_eq? 5] =
!] Branch e 2 =
= g —>|CondGen| " g 5
F‘) 'E‘ R z —br_ltu? g g
4 , T OP1 1 3 <
g % Instruction g >] B ALU g g
B3] - | = k)
Mem > € ouT g 2 | wBData wa en
t veszol | e A <Reg
— e .
: bubble ions) | & Fio § [oP2 N B File
Op2Sel — »
‘ \L < Q_T N
w
in31:25], _|SType Sign > > 2
T ‘_‘ 5 -
l Extend a\ AluFun 2
i21:10] _[IType Sign ‘ RS2 4 RS2
Extend g dd
i31:12] [UType Sign] > Q & DataMem rdata-
: UType Sign | o wdata
- Extend N N T cpr_en
31:12] [UJType g ol RSt &S
Sign Extend — M — £e tohost
Decoder } — ge onos hif_tohost
—» >
oo A
- Control A
bubble Signals

(I,) 096: ADD

(I,) 100: BEQ +20
(I,) 104: ADD

(I,) 108:

(I.) 300: ADD

<— Fetch Stage —» 4————— Decode Stage ————— > «¢——— Execute Stage ———————»<4¢——— Memory Stage —————» <« Writeback Stag

time

Branch Delay Slot

* Why not have it

— Expose microarchitecture in ISA
* How many delay slots for 5 stage?
 How about 10 stage? Or 3 stage?
 What about an out of order superscalar machine?

— Not filled often in practice
* NOPs increase |-cache pressure

— Branch predictors are really good

Branch/Jump Predicition

e Why?

— Eliminate/mitigate control hazards
* How?

— Spatial locality

— Temporal locality

Bimodal(BHT) Predictor

e 2 bit saturating counter

00 -> strongly not taken
01 -> weakly not taken
10 -> weakly taken

11 -> strongly taken

Branch History Table

Fetch PC |0|0
\ J
4 I
: ¥ k L1t 2k-entry
I-Cache BHT Index [BHT,
: | 2 bits/entry
Instruction :
Opcode offset
7 L
+
) }
Branch? Target PC Taken/-Taken?

4K-entry BHT, 2 bits/entry, ~80-90% correct predictions

12

Spatial(Global) vs Temporal(Local)

1f(x < 7) for (1=0;1<4;1++)

{..}
1f(x > 7)

Spatial(Global) vs Temporal(Local)

Counts History Counts

Y
Y

Taken —= — predictTaken Taken — predictTaken

P
Taken — GR C

Fi 4: Local History Predictor Struct
Figure 6: Global History Predictor Structure 1HIe Otal TUSIOLy TICEEtOT Striichte

98
97
96
95
94
93
92
91
90

Conditional Branch Prediction Accuracy (%)

89
88

Tradeoff

O global
+ + local
A A bimodal

32 64 128 256 512 1K 2K 4K 8K 16K 32K 64K

Predictor Size (bytes)

Figure 7: Global History Predictor Performance

http://www.hpl.hp.com/techreports/Compaq-DEC/WRL-TN-36.pdf

Two-Level Branch Predictor

Pentium Pro uses the result from the last two branches
to select one of the four sets of BHT bits (~¥95% correct)

|O 10

Fetch PC F k l | I I

2-bit global branch history
shift register

Shift in Taken/-Taken

H
results of each branch T l l l

/

Taken/-Taken?

A e—

16

What about Targets

* Taken/Not taken only part of the problem

Branch Target Buffer (BTB)

2k-entry direct-mapped BTB

I-Cache o
PC (can also be associative)

Entry PC \/alid predicted
— | > , target PC

. k : : .

® ° ° ®

® ° ° °

e match valid target

e Keep both the branch PC and target PC in the BTB

e PC+4 is fetched if match fails

e Only taken branches and jumps held in BTB

e Next PC determined before branch fetched and decoded

18

Combining BTB and BHT

BTB entries are considerably more expensive than BHT, but can redirect
fetches at earlier stage in pipeline and can accelerate indirect branches

(JR)

BHT can hold many more entries and is more accurate

A
BTB||P

F
BHT in later BHT!| | B
pipeline stage |
corrects when
BTB misses a J
predicted taken R
branch

E

/

PC Generation/Mux

Instruction Fetch Stage 1

Instruction Fetch Stage 2

Branch Address Calc/Begin Decode
Complete Decode

Steer Instructions to Functional units
Register File Read

Integer Execute

BTB/BHT only updated after branch resolves in E stage

19

Exceptions and Interrupts

* |Interrupt
— External asynchronous event (e.g. 1/0)
— Control transfer to supervisor
* Exception
— Internal synchronous event (e.g. page fault)
— May or may not transfer control
* Trap
— Exception that forces control transfer

Precise vs Imprecise

* Precise exception/interrupts means that the
processor looks as if it stopped exactly after
one instruction and everything has been
happening in program order
— Pipelining not visible
— Out of order execution not visible
— Etc.

* Imprecise does not give this guarantee

Restartable Exceptions

Subclass of imprecise

Machine can save state and restart but the
machine may be in an intermediate state

Requires more state saving

Support from OS to have large space to save
state

Easier/higher performance if state is
complicated and long running

Exception Handling s-stage pipetine

Commit
Point

Kill
Writeback

23

Inst. \ DataE
Mern Decode > + MemE
C_/ .
PC address IIIega:j Overflow Data address =
Exception Opcode Exceptions = o
m ()
- @)
[il
Select > > > 7 I W
Handler Kill Kill D Kill E Asynchronous :
pC Stage Stage Stage Interrupts | =

Questions

