
Pipelining	Review	

2/4/2016	
Sec4on	3	

Colin	Schmidt	

Agenda	

•  Iron	Law	
•  Pipelining	
•  Branch	Predic4on	
•  Excep4ons	

Processor	Performance	

•  Iron	Law	

1/28/2016 CS152, Spring 2016

� Instructions per program depends on source code,
compiler technology, and ISA

� Cycles per instructions (CPI) depends on ISA and
µarchitecture

� Time per cycle depends upon the µarchitecture and base
technology

9

Time = Instructions Cycles Time
Program Program * Instruction * Cycle

“Iron Law” of Processor Performance

Microarchitecture CPI cycle time
Microcoded >1 short
Single-cycle unpipelined 1 long
Pipelined 1 short

Lecture 2
Lecture 3
Lecture 4

Instruc4ons/Program	

•  Affected	by	
–  ISA	
– Compiler	
– Algorithm	
– Programmer	

Sta4c	Code	size	by	ISA	SPEC	CPU2006	
CHAPTER 5. THE RISC-V COMPRESSED ISA EXTENSION 62

R
e
la

ti
v

e
 C

o
d

e
 S

iz
e

 20%

 40%

 60%

 80%

 100%

 120%

 140%

 160%

 180%

R
V

3
2

C

R
V

3
2

IA
−

3
2

A
R

M
v

7

T
h

u
m

b
−

2

M
IP

S

m
ic

ro
M

IP
S

R
V

6
4

C

R
V

6
4

x
8

6
−

6
4

A
R

M
v

8

M
IP

S
6

4

m
ic

ro
M

IP
S

6
4

 0%

Figure 5.8: SPEC CPU2006 code size for several ISAs, normalized to RV32C for the 32-
bit ISAs and RV64C for the 64-bit ones. Error bars represent ±1 standard deviation in
normalized code size across the 29 benchmarks.

owing in large part to its load-pair and store-pair instructions—it cannot compete in code
size with a variable-length encoding. Accordingly, ARM’s first high-performance ARMv8
implementation, the Cortex-A57 [14], has a 50% larger instruction cache than its ARMv7
predecessor, the Cortex-A15 [13].

Dynamic Code Compression

The average savings in dynamic instruction fetch tra�c closely reflects the static code size
savings. RVC CoreMark and Dhrystone fetch 29.2% and 29.3% fewer instruction bytes than
their RISC-V counterparts. In booting the Linux kernel there is a 26.1% reduction. On
the SPEC reference inputs, SPECint sees a 26.9% savings and SPECfp saves 22.4%. From
benchmark to benchmark, however, there is considerably more variation in dynamic code
compression than in static code compression, as Figure 5.9 shows. This e↵ect is due primarily
to the dynamic dominance of a small sample of static code in several of the programs, but it
is often an artifact of arbitrary compiler behavior. A single unlucky code generation decision
might render a hot loop entirely incompressible. The di↵erence in overall static code size
might barely register, while the instruction fetch tra�c would increase dramatically.

A representative example of this phenomenon appeared in libquantum, an implemen-
tation of Shor’s algorithm, which spends about half of the execution time in a short loop
evaluating a To↵oli quantum gate. An arbitrary register allocation decision, shown in Fig-
ure 5.10, resulted in 1

3 of the instructions needlessly being incompressible, dragging the

hLp://www.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-1.pdf	

CPI	

•  Ideal?	
•  Non-ideal	
– Structural	Hazards	
– Data	Hazards	
– Control	Hazards	

•  Resolving	
– Stall/Interlock	
– Speculate	
– Bypass	
– Add	hardware	

Cycle	Time	

•  Microarchitecture	
– Logic	vs	Memories	
– Control	complexity	
– Datapath	cri4cal	paths	

•  FPU	

•  Technology	28nm,	45nm,	etc.	

+4

Instruction
Mem

Reg
File

IType Sign
Extend

ir[24:20]

br or jmp
pc+4

pc
_s

el

ir[21:10]

Decoder

va
l

PC

tohost
htif_tohost

cpr_en

Data Mem

m
em

_r
w

m
em

_v
al

addr
wdata rdata

bubble

if_
ki
ll

IR

ir[31:25],
ir[11:7]

jalr

rf_rs2

ir[31:12]

Decode Stage

Branch
CondGen

br_eq?
br_lt?
br_ltu?

PC

addr

SType Sign
Extend

ir[31:12]

Op2Sel
ALU

AluFun

da
ta Reg

File

rf_
we

n

wa

w
d

en

addr da
ta

PC

RS2

OP2

OP1
ALU
OUT WBData

RS2

RS1

rf_rs1

Execute Stage Memory Stage Writeback StageFetch Stage

pc+4

Ctrl

ir[19:15]

Control
Signalsbubble

de
c_
ki
ll

}

+

Branch & Jump
TargGen

<< 1

UJType
Sign Extend

UType Sign
Extend

<< 12

adder

wb
_s

el

wb
_s

el

co
-p

ro
ce

ss
or

 re
gi

st
er

s

+4

by
pa

ss
es

by Christopher Celio

RV32I 5-stage
RISC-V v2.0

Privileged ISA v1.7

co
-p

ro
ce

ss
or

 re
gi

st
er

s

ir[
11

:7
]

2/3/2016 CS152, Spring 2016

Branch Pipeline Diagrams
(resolved in execute stage)

5

time
t0 t1 t2 t3 t4 t5 t6 t7

IF I1 I2 I3 I4 I5
ID I1 I2 I3 - I5
EX I1 I2 - - I5
MA I1 I2 - - I5
WB I1 I2 - - I5

time
t0 t1 t2 t3 t4 t5 t6 t7

(I1) 096: ADD IF1 ID1 EX1 MA1 WB1
(I2) 100: BEQ +200 IF2 ID2 EX2 MA2 WB2
(I3) 104: ADD IF3 ID3 - - -
(I4) 108: IF4 - - - -
(I5) 300: ADD IF5 ID5 EX5 MA5 WB5

Resource
Usage

- � pipeline bubble

Branch	Delay	Slot	

•  Why	not	have	it	
– Expose	microarchitecture	in	ISA	

•  How	many	delay	slots	for	5	stage?	
•  How	about	10	stage?	Or	3	stage?	
• What	about	an	out	of	order	superscalar	machine?	

– Not	filled	o^en	in	prac4ce	
•  NOPs	increase	I-cache	pressure	

– Branch	predictors	are	really	good	

Branch/Jump	Predici4on		

•  Why?	
– Eliminate/mi4gate	control	hazards	

•  How?	
– Spa4al	locality	
– Temporal	locality	

Bimodal(BHT)	Predictor	

•  2	bit	satura4ng	counter	
	
00	->	strongly	not	taken	
01	->	weakly	not	taken	
10	->	weakly	taken	
11	->	strongly	taken	

Branch	History	Table	

12	

4K-entry	BHT,	2	bits/entry,	~80-90%	correct	predic4ons	

0	0	Fetch	PC	

Branch?	 Target	PC	

+	

I-Cache	

Opcode	 offset	
Instruc.on	

k	
BHT	Index	

2k-entry	
BHT,	
2	bits/entry	

Taken/¬Taken?	

Spa4al(Global)			vs	Temporal(Local)	

if(x < 7)
 …

if(x > 7)

 …

for(i=0;i<4;i++)
{…}

Spa4al(Global)			vs	Temporal(Local)	

PC

CountsHistory

Taken predictTaken

Figure 4: Local History Predictor Structure

Figure 5 shows the performance of local branch prediction as a function of the predictor
size. For simplicity, we assume that the number of history and count array entries are the
same. See Appendix A for a discussion of some alternatives. For very small predictors, the
local scheme is actually worse than the bimodal scheme. If there is excessive contention
for history entries, then storing this history is of no value. However, above about 128
bytes, the local predictor has significantly better performance. For large predictors, the
accuracy approaches 97.1% correct, with less than half as many misspredictions as the
bimodal scheme.

5 Global Branch Prediction
In the local branch prediction scheme, the only patterns considered are those of the current
branch. Another scheme proposed by Yeh and Patt[YP92] is able to take advantage of other
recent branches to make a prediction. One implementation of such an approach is shown
in Figure 6. A single shift register GR, records the direction taken by the most recent
conditional branches. Since the branch history is global to all branches, this strategy is
called global branch prediction in this paper.

Global branch prediction is able to take advantage of two types of patterns. First,
the direction take by the current branch may depend strongly on other recent branches.
Consider the example below:

if (x<1)
if (x>1)

Using global history prediction, we are able to base the prediction for the second if
on the direction taken by the first if. If (x<1), we know that the second if will not be

6

 local
 bimodal

|
32

|
64

|
128

|
256

|
512

|
1K

|
2K

|
4K

|
8K

|
16K

|
32K

|
64K

|88

|89

|90

|91

|92

|93

|94

|95

|96

|97

|98

 Predictor Size (bytes)
 C

on
di

tio
na

l B
ra

nc
h

Pr
ed

ic
tio

n
Ac

cu
ra

cy
 (%

)

Figure 5: Local History Predictor Performance

Taken

Taken GR

Counts

predictTaken

Figure 6: Global History Predictor Structure

7

Tradeoff	

 global
 local
 bimodal

|
32

|
64

|
128

|
256

|
512

|
1K

|
2K

|
4K

|
8K

|
16K

|
32K

|
64K

|88

|89

|90

|91

|92

|93

|94

|95

|96

|97

|98

 Predictor Size (bytes)

 C
on

di
tio

na
l B

ra
nc

h
Pr

ed
ic

tio
n

Ac
cu

ra
cy

 (%
)

Figure 7: Global History Predictor Performance

address. On the other hand, the global history register can capture more information than
just identifying which branch is current, and thus for sufficiently large predictors it does
better than bimodal prediction.

6 Global Predictor with Index Selection
Asdiscussed in the previous section, global history information is less efficient at identifying
the current branch than simply using the branch address. This suggests that a more efficient
prediction might be made using both the branch address and the global history. Such
a scheme was proposed by Pan, So, and Rahmeh[PSR92]. Their approach is shown in
Figure 8. Here the counter table is indexed with a concatenation of global history and
branch address bits.

The performance of global prediction with selected address bits (gselect) is shown in
Figure 9. With the bit selection approach, there is a tradeoff between using more history
bits or more address bits. For a predictor table with 2 counters, we could use anywhere
from 1 to (K-1) address bits. Rather than show all these possibilities, Figure 9 only shows
the performance of the predictor of the given size with with the best accuracy across the
benchmarks (gselect-best).

As we would expect, gselect-best performs better than either bimodal or global pre-
diction since both are essentially degenerate cases. For small sizes, gselect-best parallels
the performance of bimodal prediction. However, once there are enough address bits to
identify most branches, more global history bits are used, resulting in significantly better

9

hLp://www.hpl.hp.com/techreports/Compaq-DEC/WRL-TN-36.pdf	

Two-Level	Branch	Predictor	

16	

Pen.um	Pro	uses	the	result	from	the	last	two	branches	
to	select	one	of	the	four	sets	of	BHT	bits	(~95%	correct)	

0	 0	

k	Fetch	PC	

Shi^	in	Taken/¬Taken	
results	of	each	branch	

2-bit	global	branch	history	
shi^	register	

Taken/¬Taken?	

What	about	Targets	

•  Taken/Not	taken	only	part	of	the	problem	

Branch	Target	Buffer	(BTB)	

18	

• 	Keep	both	the	branch	PC	and	target	PC	in	the	BTB		
• 	PC+4	is	fetched	if	match	fails	
• 	Only	taken	branches	and	jumps	held	in	BTB	
• 	Next	PC	determined	before	branch	fetched	and	decoded	

2k-entry direct-mapped BTB
(can also be associative) I-Cache	 PC	

k	

Valid	

valid	

Entry	PC	

=	

match	

predicted	

target	

target	PC	

Combining	BTB	and	BHT	
•  BTB	entries	are	considerably	more	expensive	than	BHT,	but	can	redirect	

fetches	at	earlier	stage	in	pipeline	and	can	accelerate	indirect	branches	
(JR)	

•  BHT	can	hold	many	more	entries	and	is	more	accurate	

19	

A	 	PC	Genera4on/Mux	
P	 	Instruc4on	Fetch	Stage	1	
F	 	Instruc4on	Fetch	Stage	2	
B	 	Branch	Address	Calc/Begin	Decode	
I	 	Complete	Decode	
J	 	Steer	Instruc4ons	to	Func4onal	units	
R	 	Register	File	Read	
E	 	Integer	Execute	

BTB	

BHT	BHT	in	later	
pipeline	stage	
corrects	when	
BTB	misses	a	
predicted	taken	
branch	

BTB/BHT	only	updated	aJer	branch	resolves	in	E	stage	

Excep4ons	and	Interrupts	

•  Interrupt	
– External	asynchronous	event	(e.g.	I/O)	
– Control	transfer	to	supervisor	

•  Excep4on	
–  Internal	synchronous	event	(e.g.	page	fault)	
– May	or	may	not	transfer	control	

•  Trap	
– Excep4on	that	forces	control	transfer	

Precise	vs	Imprecise	

•  Precise	excep4on/interrupts	means	that	the	
processor	looks	as	if	it	stopped	exactly	a^er	
one	instruc4on	and	everything	has	been	
happening	in	program	order	
– Pipelining	not	visible	
– Out	of	order	execu4on	not	visible	
– Etc.	

•  Imprecise	does	not	give	this	guarantee	

Restartable	Excep4ons	

•  Subclass	of	imprecise	
•  Machine	can	save	state	and	restart	but	the	
machine	may	be	in	an	intermediate	state	

•  Requires	more	state	saving	
•  Support	from	OS	to	have	large	space	to	save	
state	

•  Easier/higher	performance	if	state	is	
complicated	and	long	running	

Excep4on	Handling	5-Stage	Pipeline	

23	

PC	
Inst.	
Mem	 D	 Decode	 E	 M	

Data	
Mem	 W	+	

Illegal	
Opcode	

Overflow	 Data	address	
Excep4ons	

PC	address	
Excep4on	

Asynchronous
Interrupts

Exc	
D	

PC	
D	

Exc	
E	

PC	
E	

Exc	
M	

PC	
M	

Ca
us
e	

EP
C	

Kill	D	
Stage	

Kill	F	
Stage	

Kill	E	
Stage	

Select	
Handler	
PC	

Kill	
Writeback	

Commit	
Point	

Ques4ons	

