
Lab	1	Overview	and	Microcode	
Review	

Sec3on	2	
2/1/2016	

Agenda	

•  Lab	1	
– Why	we’re	asking	you?	
– What	we’ve	given	you?	
– What	you’re	asked	to	do?	

•  Microcode	Review	
•  Miscellaneous	(RISC-V,	Chisel,	etc.)	Ques3ons	

Computer	Architect’s	Job	
•  Find	the	common	case(s),	and	make	sure	you	can	
support	them	efficiently	
–  Some3mes	at	the	cost	of	support	the	uncommon	case	
inefficiently	

•  Examples	
–  Found	20%	of	VAX	instruc3ons	responsible	for	60%	of	
microcode,	but	only	account	for	0.2%	of	execu3on	
3me!	

–  Register	immediate	instruc3ons	
•  How	do	we	know	what	to	do?	
–  Intui3on,	Simula3on,	Building,	Experiments,	…	

Experiments	aren’t	easy	

•  Although	there	are	proper3es	that	you	can	
prove	mathema3cally,	computer	architecture	
is	o[en	based	on	empirical	studies	

•  This	means	that	your	data	will	be	applica3on	
specific	
– Pick	your	applica3ons	carefully!	(benchmarks)	

•  “It	depends”:	Always	think	about	both	sides	of	
the	argument	
– Keep	asking	ques3ons	to	yourself	to	understand	

Lab	1	

•  Understand	how	in-order	pipelined	
microarchitecture	affects	processor	

•  Guided	
–  CPI	
–  Instruc3on	Mix	

•  Open-ended	
–  Bypassing	
–  CISC	microcode	
– General	Design	
–  Your	fun	idea!	

Lab	1	Given	
•  Provided	RISC-V	32I	processors	
–  1-stage	
–  2-stage	
–  3-stage	
–  5-stage	

•  Fully	bypassed	
•  Interlocked	(stall	to	resolve	all	hazards)	

– Micro-coded	
•  Only	1-stage	and	5-stage	are	used	in	the	directed	
por3on	
–  2-stage	3-stage	and	micro-code	are	there	for	you	to	
inves3gate	or	use	in	the	open-ended	por3on	

Lab	1	Given	other	Misc.	

•  Chisel	->	C++	simulator	(emulator)	
•  Benchmarks	and	test	programs	
•  Instruc3on	Tracer	to	gather	stats	
– CPI,	instruc3on	mix	

•  Ques3ons	and	analysis	
– Make	recommenda3ons	
– Propose	new	designs	

Lab	1	Chisel	Processor	

Tile
Core

CPath DPath

RAM

Lab	1	Processor	Emulator	

Emulator.cpp

Target System: Top-0.h Top-0.cc

Tile
Core

CPath DPath

RAMFESVR	

DEMO!	

•  Add	tools	to	your	path	
$ source ~cs152/sp13/cs152.bashrc

•  Copy	Lab	Files	
$ cp –R ~cs152/sp13/lab1 .

•  Build	a	Chisel	processor,	Compile	simulator,	
run	all	tests	&	benchmarks		
$ make run-emulator

How	is	Chisel	used	in	Lab	Chisel(

Lab	1	Ques3ons	

Microcode/Lecture	2	Review	

•  Endianness	
•  Combina3onal	Path	
•  Cri3cal	Path	
•  Benefits	of	Microcode	
•  Horizontal	vs	Veritcal	
•  Nanocoding	

Data	Formats	and	Memory	Addresses	

14	

Data	formats:							
8-b	Bytes,	16-b	Half	words,	32-b	words	and	64-b	double	words	

Some	issues	
• 	Byte	addressing	
	
	
	

• 	Word	alignment		
Suppose	the	memory	is	organized	in	32-bit	words.	
Can	a	word	address	begin	only	at	0,	4,	8,	?	

 0 1 2 3 4 5 6 7

Most	Significant	
Byte	

Least	Significant	
Byte	

Byte	Addresses	

3	 2	 1	 0	

0	 1	 2	 3	Big	Endian	

Li8le	Endian	
(RISC-V)	

Performance	Issues	

15	

Microprogrammed	control		
	=>		mul3ple	cycles	per	instruc3on	

	

Cycle	3me	?		
tC	>	max(treg-reg,	tALU,	tμROM)	

	
	

Suppose		10	*	tμROM	<	tRAM	
	

Good	performance,	relaDve	to	a	single-cycle	
hardwired	implementaDon,	can	be	achieved	
even	with	a	CPI	of	10		

Cycle	Time,	Combina3onal	Path,	
Cri3cal	Path	

 1

IR A B

RegWr
enReg

MemWr
enMem

MA

addr addr

data data

rs
rs1
1
rd
32(PC)

RegSel

busy? zero?

ALUOp

Opcode

ldIR ldA ldB ldMA

IntRq

Memory
32 GPRs +

PC +
IRA + ...

(32-bit regs)
ALU

enALU

Immed
Select

enImm

ImmSel

Bus

Horizontal	vs	Ver3cal	µCode	

•  Horizontal	µcode	has	wider	µinstruc3ons	
–  Mul3ple	parallel	opera3ons	per	µinstruc3on	
–  Fewer	microcode	steps	per	macroinstruc3on	
–  Sparser	encoding	⇒	more	bits	

•  Ver3cal	µcode	has	narrower	µinstruc3ons	
–  Typically	a	single	datapath	opera3on	per	µinstruc3on	

–  separate	µinstruc3on	for	branches	
–  More	microcode	steps	per	macroinstruc3on	
–  More	compact		⇒	less	bits	

•  Nanocoding	
–  Tries	to	combine	best	of	horizontal	and	ver3cal	µcode	

17	

#	µInstruc3ons	

Bits	per	µInstruc3on	

Nanocoding	

18	

•  MC68000	had	17-bit	µcode	containing	either	10-
bit	µjump	or	9-bit	nanoinstruc3on	pointer	
–  Nanoinstruc3ons	were	68	bits	wide,	decoded	to	give	196	
control	signals	

µcode	ROM	

nanoaddress	

µcode		
next-state	

µaddress	

μPC	(state)	

nanoinstruc3on	ROM	
data	

Exploits	recurring	control	
signal	pa}erns	in	µcode,	
e.g.,		
	
ALU0 	A	<=	Reg[rs1]		
...	
ALUi0 	A	<=	Reg[rs1]	
...	

Ques3ons	

