Lab 1 Overview and Microcode
Review

Agenda

* Lab1
— Why we’re asking you?
— What we’ve given you?

— What you’re asked to do?
* Microcode Review
* Miscellaneous (RISC-V, Chisel, etc.) Questions

Computer Architect’s Job

* Find the common case(s), and make sure you can
support them efficiently

— Sometimes at the cost of support the uncommon case
inefficiently

 Examples

— Found 20% of VAX instructions responsible for 60% of
microcode, but only account for 0.2% of execution
time!

— Register immediate instructions

* How do we know what to do?
— Intuition, Simulation, Building, Experiments, ...

Experiments aren’t easy

* Although there are properties that you can
prove mathematically, computer architecture
is often based on empirical studies

* This means that your data will be application
specific
— Pick your applications carefully! (benchmarks)

* “It depends”: Always think about both sides of
the argument

— Keep asking questions to yourself to understand

Lab 1

 Understand how in-order pipelined
microarchitecture affects processor
e Guided
— CPI
— Instruction Mix
* Open-ended
— Bypassing
— CISC microcode

— General Design
— Your fun idea!

Lab 1 Given

* Provided RISC-V 32| processors
— 1-stage
— 2-stage
— 3-stage
— 5-stage
* Fully bypassed
* Interlocked (stall to resolve all hazards)

— Micro-coded
* Only 1-stage and 5-stage are used in the directed
portion

— 2-stage 3-stage and micro-code are there for you to
investigate or use in the open-ended portion

Lab 1 Given other Misc.

Chisel -> C++ simulator (emulator)
Benchmarks and test programs

Instruction Tracer to gather stats
— CPI, instruction mix

Questions and analysis
— Make recommendations

— Propose new designs

Lab 1 Chisel Processor

Tile

Core

CPath DPath

RAM

Lab 1 Processor Emulator

Target System: Top-0.h Top-0.cc

Tile

Core

CPath DPath

FESVR | RAM

Emulator.cpp

DEMO!

* Add tools to your path

S source ~cslb2/spl3/csl52.bashrc
* Copy Lab Files

S cp -R ~csl52/spl3/labl

e Build a Chisel processor, Compile simulator,
run all tests & benchmarks

S make run-emulator

How is Chisel used in Lab

Chisel Design
Descgiption

* scala files

Run our Scala “program”
using SBT

Heavily FPG A
templated C++ Verllog
code
g++
@+ mpiler
FPGA Tools > < ASIC Tools
binary called 5 G\A l
Fmieer L Simulator J Emulation GDS
ONLY going to use C++ _Layout |

simulation for Lab 1

Lab 1 Questions

Microcode/Lecture 2 Review

Endianness
Combinational Path
Critical Path

Benefits of Microcode
Horizontal vs Veritcal
Nanocoding

Data Formats and Memory Addresses

Data formats:
8-b Bytes, 16-b Half words, 32-b words and 64-b double words

Some issues
) Most Significant Least Significant
* Byte addressing Bfteﬁ Bfteﬁ
Little Endian
(RISC-V) = 2 ! 2
Big Endian 0 1, 2 / 3
e Word alignment Byte Addresses

Suppose the memory is organized in 32-bit words.
Can a word address beginonly at 0, 4, 8, ?

14

Performance Issues

Microprogrammed control
=> multiple cycles per instruction

Cycle time ?

tC e max(treg—reg' tALU' 1:uROM)

Suppose 10 * t zonm < tram

Good performance, relative to a single-cycle
hardwired implementation, can be achieved
even with a CPl of 10

15

Cycle Time, Combinational Path,
Critical Path

Opcode zero?
A
32(PC)
IdIR ALUOp IdA IdB d
rsi
rs
* 1 ‘ * RegSel
> IR > A B addr
* 32 GPRs +
ImmSel PC +
Immed IRA + ...
Select ALU RegWr
enReg
(32-bit regs]
data

enlmmY

enALU Y

i

busy? IntRq
A
IdMA
MA <
|
addr
Memory
MemWr
enMem
data

Bus

Horlzontal vs Vertical uCode

o, Bits per uinstruction

pInstructions

* Horizontal ucode has wider uinstructions

— Multiple parallel operations per uinstruction
— Fewer microcode steps per macroinstruction
— Sparser encoding = more bits

* Vertical ucode has narrower uinstructions

— Typically a single datapath operation per uinstruction
— separate pinstruction for branches

— More microcode steps per macroinstruction
— More compact => less bits

* Nanocoding

— Tries to combine best of horizontal and vertical ucode

Nanocoding

Exploits recurring control 1PC (state) ucode
signal patterns in pcode, I next-state
e.g., Haddress

ncode ROM
ALU, A <=Reg][rsl

nanoaddress

ALUi, A <=Reg[rsi]
nanoinstruction ROM

data

NREREREN

* MC68000 had 17-bit pcode containing either 10-
bit pjump or 9-bit nanoinstruction pointer

— Nanoinstructions were 68 bits wide, decoded to give 196
control signals

18

Questions

