
Consistency	&	Coherence	

4/14/2016	
Sec5on	12	

Colin	Schmidt	



Agenda	

•  Brief	mo5va5on	
•  Consistency	vs	Coherence	
•  Synchroniza5on	

–  Fences	
– Mutexs,	locks,	semaphores	
– Hardware	

•  Coherence	
•  Snoopy	

– MSI,	MESI	



4/6/2016	 CS152,	Spring	2016	

Power,	Frequency,	ILP	

3	



4/6/2016	 CS152,	Spring	2016	

Symmetric	Mul7processors	

4	

symmetric	
• 	All	memory	is	equally	far		
		away	from	all	processors	
• 	Any	processor	can	do	any	I/O	
		(set	up	a	DMA	transfer)	

Memory	

I/O	controller	

Graphics	
output	

CPU-Memory	bus	

bridge	

Processor	

I/O	controller	 I/O	controller	

I/O	bus	

Networks	

Processor			 		 		



4/6/2016	 CS152,	Spring	2016	

Why	Would	We	Want	Asymmetry?	

5	



4/13/2016	 CS152,	Spring	2016	

Cache	Coherence	vs.	Memory	Consistency	

§ A	cache	coherence	protocol	ensures	that	all	writes	by	one	
processor	are	eventually	visible	to	other	processors,	for	
one	memory	address	
–  i.e.,	updates	are	not	lost	

§ No	guarantee	of	when	an	update	should	be	seen	
§ No	guarantee	of	what	order	of	updates	(of	different	
addresses)	should	be	seen	

§ A	cache	coherence	protocol	is	not	enough	to	ensure	
sequen5al	consistency	
–  But	if	sequen5ally	consistent,	then	caches	must	be	coherent	

6	



4/13/2016	 CS152,	Spring	2016	

Cache	Coherence	vs.	Memory	Consistency	

§ A	memory	consistency	model	gives	the	rules	on	when	a	
write	by	one	processor	can	be	observed	by	a	read	on	
another,	across	different	addresses	
–  As	previously	seen	with	examples	

§ Combina5on	of	cache	coherence	protocol	plus	processor	
memory	reorder	buffer	used	to	implement	a	given	
architecture’s	memory	consistency	model	

7	



4/6/2016	 CS152,	Spring	2016	

Synchroniza7on	

8	

The	need	for	synchroniza5on	arises	whenever	
there	are	concurrent	processes	in	a	system	

	(even	in	a	uniprocessor	system)	
	
Two	classes	of	synchroniza5on:	
	
Producer-Consumer:	A	consumer	process	must	
wait	un5l	the	producer	process	has	produced	
data	
	
Mutual	Exclusion:	Ensure	that	only	one	
process	uses	a	resource	at	a	given	5me	

producer	

consumer	

Shared	
Resource	

P1	 P2	



4/6/2016	 CS152,	Spring	2016	

A	Producer-Consumer	Example	con5nued	

9	

Producer posting Item x: 
 Load Rtail, (tail) 
 Store (Rtail), x 
 Rtail=Rtail+1 
 Store (tail), Rtail 

Consumer: 
 Load Rhead, (head) 

spin:  Load Rtail, (tail) 
 if Rhead==Rtail goto spin 
 Load R, (Rhead) 
 Rhead=Rhead+1 
 Store (head), Rhead 
 process(R) 

Can the tail pointer get updated 
before the item x is stored? 

Programmer assumes that if 3 happens after 2, then 4 
happens after 1. 
 
Problem sequences are: 

  2, 3, 4, 1 
  4, 1, 2, 3 

1 

2 

3 

4 



4/6/2016	 CS152,	Spring	2016	

Sequen7al	Consistency	
A	Memory	Model	

10	

“	A	system	is	sequen5ally	consistent	if	the	result	of	any	
execu5on	is	the	same	as	if	the	opera5ons	of	all	the	
processors	were	executed	in	some	sequen5al	order,	and	
the	opera5ons	of	each	individual	processor	appear	in	the	
order	specified	by	the	program”	

	 	 	 	 		Leslie	Lamport	
	
Sequen5al	Consistency	=		

	arbitrary	order-preserving	interleaving	
	of	memory	references	of	sequen5al	programs	

M 

P P P P P P 



4/6/2016	 CS152,	Spring	2016	

Sequen7al	Consistency	

11	

Sequential concurrent tasks:  T1, T2 
Shared variables:  X, Y  (initially X = 0, Y = 10) 
 
 
T1:     T2: 

Store (X), 1   (X =  1)        Load R1, (Y)   
Store (Y), 11 (Y = 11)        Store (Y’), R1 (Y’= Y) 

          Load R2, (X)  
          Store (X’), R2 (X’= X) 

 
 

what are the legitimate answers for X’ and Y’ ? 
 

 (X’,Y’) ε {(1,11), (0,10), (1,10), (0,11)}  ? 
 

If y is 11 then x cannot be 0 



4/6/2016	 CS152,	Spring	2016	

Sequen7al	Consistency	

12	

Sequential consistency imposes more memory ordering 
constraints than those imposed by uniprocessor 
program dependencies (     ) 
 
      What are these in our example ? 
 
T1:     T2: 

Store (X), 1   (X =  1)        Load R1, (Y)   
Store (Y), 11 (Y = 11)        Store (Y’), R1 (Y’= Y) 

          Load R2, (X)  
          Store (X’), R2 (X’= X) additional SC requirements 

Does (can) a system with caches or out-of-order  
execution capability provide a sequentially consistent  
view of the memory ? 

     more on this later 



4/6/2016	 CS152,	Spring	2016	

Issues	in	Implemen7ng	Sequen7al	Consistency	

13	

Implementation of SC is complicated by two issues 
 

•  Out-of-order execution capability 
Load(a); Load(b)  yes 
Load(a); Store(b)  yes if a ≠ b 
Store(a); Load(b)  yes if a ≠ b 
Store(a); Store(b)  yes if a ≠ b 

 
•  Caches 

Caches can prevent the effect of a store from  
being seen by other processors 

M 

P P P P P P 

No common commercial architecture has a 
sequentially consistent memory model! 



4/6/2016	 CS152,	Spring	2016	

Memory	Fences	
Instruc5ons	to	sequen5alize	memory	accesses	

14	

Processors with relaxed or weak memory models (i.e., 
permit Loads and Stores to different  addresses to be  
reordered) need to provide memory fence instructions  
to force the serialization of memory accesses 

       
Examples of processors with relaxed memory models: 

Sparc V8 (TSO,PSO): Membar  
Sparc V9 (RMO):  

 Membar #LoadLoad, Membar #LoadStore 
 Membar #StoreLoad, Membar #StoreStore 

 
PowerPC (WO):  Sync, EIEIO 
ARM: DMB (Data Memory Barrier) 
X86/64: mfence (Global Memory Barrier) 
 

Memory fences are expensive operations, however, one  
pays the cost of serialization only when it is required 



4/6/2016	 CS152,	Spring	2016	

N-process	Mutual	Exclusion	
Lamport’s	Bakery	Algorithm	

15	

Process i 
 
 

choosing[i] = 1; 
num[i] = max(num[0], …, num[N-1]) + 1; 
choosing[i] = 0; 
 

for(j = 0; j < N; j++)  { 
while( choosing[j] ); 
while( num[j] && 
            ( ( num[j] < num[i] ) || 
               ( num[j] == num[i] &&  j < i ) ) ); 

} 
 
 
num[i] = 0; 

Initially num[j] = 0, for all j 
Entry Code 

Exit Code 



4/6/2016	 CS152,	Spring	2016	

Locks	or	Semaphores	
E.	W.	Dijkstra,	1965	

16	

A semaphore is a non-negative integer, with the 
following operations: 
 

P(s): if s>0, decrement s by 1, otherwise wait 
 
V(s): increment s by 1 and wake up one of  

    the waiting processes 
 
P’s and V’s must be executed atomically, i.e., without 

•  interruptions or 
•  interleaved accesses to s by other processors   

initial value of s determines  
the maximum no. of processes 
in the critical section 

Process i   
P(s) 
    <critical section> 
V(s) 



4/6/2016	 CS152,	Spring	2016	

Implementa7on	of	Semaphores	

17	

Semaphores	(mutual	exclusion)	can	be	implemented		
using	ordinary	Load	and	Store	instruc5ons	in	the		
Sequen5al	Consistency	memory	model.	However,		
protocols	for	mutual	exclusion	are	difficult	to	design...	
	
Simpler	solu5on:	

	 	atomic	read-modify-write	instruc5ons	

Test&Set (m), R:  
R ←  M[m]; 
if  R==0 then   

 M[m] ← 1; 

Swap (m), R:  
Rt ←  M[m]; 
M[m] ← R; 
R ←  Rt; 

Fetch&Add (m), RV, R: 
R ←  M[m]; 
M[m] ← R + RV; 

Examples:	m	is	a	memory	loca5on,	R	is	a	register	



4/6/2016	 CS152,	Spring	2016	

Mul7ple	Consumers	Example	
using	the	Test&Set	Instruc5on	

18	

Critical 
Section 

P:   Test&Set (mutex),Rtemp 
 if (Rtemp!=0) goto P 
 Load Rhead, (head) 

spin:  Load Rtail, (tail) 
 if Rhead==Rtail goto spin 
 Load R, (Rhead) 
 Rhead=Rhead+1 
 Store (head), Rhead  

V:  Store (mutex),0 
 process(R) 

Other atomic read-modify-write instructions (Swap,  
Fetch&Add, etc.) can also implement P’s and V’s 

What if the process stops or is swapped out while 
in the critical section? 



4/6/2016	 CS152,	Spring	2016	

Nonblocking	Synchroniza7on	

19	

Compare&Swap(m), Rt, Rs: 
 if (Rt==M[m]) 
     then  M[m]=Rs; 
   Rs=Rt ; 
   status ← success; 
     else  status ← fail; 

try:   Load Rhead, (head) 
spin:  Load Rtail, (tail) 

 if Rhead==Rtail goto spin 
 Load R, (Rhead) 
 Rnewhead = Rhead+1 
 Compare&Swap(head), Rhead, Rnewhead 
 if (status==fail) goto try 
 process(R) 

status is an 
implicit 
argument  



4/6/2016	 CS152,	Spring	2016	

Load-reserve	&	Store-condi7onal	

20	

Special register(s) to hold reservation flag and address,  
and the outcome of store-conditional 

try:   Load-reserve Rhead, (head) 
spin:  Load Rtail, (tail) 

 if Rhead==Rtail goto spin 
 Load R, (Rhead) 
 Rhead = Rhead + 1 
 Store-conditional (head), Rhead 
 if (status==fail) goto try 
 process(R) 

Load-reserve R, (m): 
<flag, adr> ← <1, m>;  
R ← M[m]; 

Store-conditional (m), R: 
if <flag, adr> == <1, m>  
then  cancel other procs’  

    reservation on m; 
   M[m] ← R;   
   status ← succeed; 

else  status ← fail; 



4/6/2016	 CS152,	Spring	2016	

Load-reserve	&	Store-condi7onal	

21	

Special register(s) to hold reservation flag and address,  
and the outcome of store-conditional 

try:   Load-reserve Rhead, (head) 
spin:  Load Rtail, (tail) 

 if Rhead==Rtail goto spin 
 Load R, (Rhead) 
 Rhead = Rhead + 1 
 Store-conditional (head), Rhead 
 if (status==fail) goto try 
 process(R) 

Load-reserve R, (m): 
<flag, adr> ← <1, m>;  
R ← M[m]; 

Store-conditional (m), R: 
if <flag, adr> == <1, m>  
then  cancel other procs’  

    reservation on m; 
   M[m] ← R;   
   status ← succeed; 

else  status ← fail; 



4/6/2016	 CS152,	Spring	2016	

Performance	of	Locks	

22	

Blocking atomic read-modify-write instructions 
 e.g., Test&Set, Fetch&Add, Swap  
   vs 

Non-blocking atomic read-modify-write instructions 
 e.g., Compare&Swap,  
         Load-reserve/Store-conditional 
   vs 

Protocols based on ordinary Loads and Stores 
 
 
Performance depends on several interacting factors: 

 degree of contention,  
 caches,  
 out-of-order execution of Loads and Stores 

 
   later ... 



4/13/2016	 CS152,	Spring	2016	

Amdahl’s	Law	

23	

Begins with Simple Software Assumption (Limit Arg.) 

Fraction F of execution time perfectly parallelizable 

No Overhead for Scheduling Communication, Synchronization, etc. 

 

 F is the Parallel Part 

       Fraction 1 – F Completely Serial 

 

 Time on 1 core = (1 – F) / 1 + F / 1  =  1 

 

 Time on N cores = (1 – F) / 1 +  F / N 



4/13/2016	 CS152,	Spring	2016	

Memory	Coherence	in	SMPs	

24	

Suppose CPU-1 updates A to 200.   
  write-back:  memory and cache-2 have stale values 
  write-through:  cache-2 has a stale value 
  
Do these stale values matter? 
What is the view of shared memory for programming? 

cache-1 A  100 

CPU-Memory bus 

CPU-1 CPU-2 

cache-2 A  100 

memory A  100 



4/13/2016	 CS152,	Spring	2016	

Maintaining	Cache	Coherence	

§ Hardware	support	is	required	such	that	
–  	only	one	processor	at	a	5me	has	write	permission	for	
a	loca5on	

–  	no	processor	can	load	a	stale	copy	of	the	loca5on	
afer	a	write	

->		cache	coherence	protocols	

25	



4/13/2016	 CS152,	Spring	2016	

Shared	Memory	Mul7processor	

26	

   Use snoopy mechanism to keep all processors’ 
view of memory coherent 

M1 

M2 

M3 

Snoopy 
 Cache 

DMA 

Physical 
 Memory 

Memory 
   Bus 

Snoopy 
 Cache 

Snoopy 
 Cache 

 DISKS 



4/13/2016	 CS152,	Spring	2016	

Cache	State	Transi7on	Diagram	
The	MSI	protocol	

27	

M 

S I 

M: Modified 
S: Shared  
 I: Invalid 

Each cache line has state bits 

Address tag 
state 
 bits Write miss 

(P1 gets line from memory) 
 

Other processor 
intents to write 
(P1 writes back) 

 Read miss 
(P1 gets line from memory) 

Other processor 
intents to write 

Read by any 
 processor 

P1 reads 
or writes 

Cache state in 
processor P1 

Other processor reads 
(P1 writes back) 



4/13/2016	 CS152,	Spring	2016	

MESI:	An	Enhanced	MSI	protocol	
	increased	performance	for	private	data	

28	

M E 

S I 

M: Modified Exclusive 
E: Exclusive but unmodified 
S: Shared  
 I: Invalid 

Each cache line has a tag 

Address tag 
state 
 bits 

Write miss 

Other processor 
intent to write 

Read miss, 
shared 

Other processor 
intent to write 

P1 write 

Read by any 
 processor 

Other processor reads 
P1 writes back 

P1 read 
P1 write 
or read 

Cache state in 
processor P1 

P1 intent 
to write 

Read miss, 
not shared Other 

processor 
reads 

Other processor 
intent to write, P1 
writes back 



4/13/2016	 CS152,	Spring	2016	

Op7mized	Snoop	with	Level-2	Caches	

29	

Snooper	 Snooper	 Snooper	 Snooper	

• 	Processors	ofen	have	two-level	caches	
• 	small	L1,	large	L2	(on	chip)	

• 	Inclusion	property:	entries	in	L1	must	be	in	L2	
						invalida5on	in	L2	=>		invalida5on	in	L1	
• 	Snooping	on	L2	does	not	affect	CPU-L1	bandwidth	
		

	 	 	 	What	problem	could	occur?	

CPU	

L1	$	

L2	$	

CPU	

L1	$	

L2	$	

CPU	

L1	$	

L2	$	

CPU	

L1	$	

L2	$	



4/13/2016	 CS152,	Spring	2016	

False	Sharing	

30	

state   line addr  data0 data1        ...     dataN 

A cache line contains more than one word 
 
Cache-coherence is done at the line-level and not 
word-level 
 
Suppose M1 writes wordi and M2 writes wordk and 
both words have the same line address. 
 
What can happen? 



4/13/2016	 CS152,	Spring	2016	

Out-of-Order	Loads/Stores	&	CC	

31	

Blocking caches 
One request at a time + CC ⇒  SC 

Non-blocking caches  
Multiple requests (different addresses) concurrently + CC 
                                ⇒  Relaxed memory models 

CC ensures that all processors observe the same 
order of loads and stores to an address  

Cache 
Memory pushout (Wb-rep) 

load/store 
buffers 

CPU 

(S-req, E-req) 

(S-rep, E-rep) 

Wb-req, Inv-req, Inv-rep 
snooper 

(I/S/E) 

CPU/Memory 
Interface 



Ques5ons?	


