
Quiz	4	Review	

4/7/2016	
Sec3on	11	

Colin	Schmidt	

Agenda	

•  Quiz	Review	
– VLIW	
– Mul3threading	
– Vectors(?)	

•  Problem	Set	Review	

Parallelism	

•  Several	families	3-4	
–  Instruc3on	Level	Parallelism	
– Data	Level	Parallelism	
– TLP	

•  Thread	Level	Parallelism	
•  Task	Level	Parallelism	

•  How	to	exploit?	

ILP	

•  Out-of-order	
•  Super-scalar	
•  Both?	
•  Costs	

– Scheduling	

3/14/2016	 CS152,	Spring	2016	

Sequen&al	ISA	Bo.leneck	

5	

Check	instruc-on	
dependencies	

Superscalar	processor	

a = foo(b);

for (i=0, i<

Sequen-al	
source	code	

Superscalar	compiler	

Find	independent	
opera-ons	

Schedule	
opera-ons	

Sequen-al	
machine	code	

Schedule	
execu-on	

3/14/2016	 CS152,	Spring	2016	

Superscalar	Control	Logic	Scaling	

§  Each	issued	instruc3on	must	somehow	check	against	W*L	instruc3ons,	i.e.,	
growth	in	hardware	∝	W*(W*L)	

§  For	in-order	machines,	L	is	related	to	pipeline	latencies	and	check	is	done	
during	issue	(interlocks	or	scoreboard)	

§  For	out-of-order	machines,	L	also	includes	3me	spent	in	instruc3on	buffers	
(instruc3on	window	or	ROB),	and	check	is	done	by	broadcas3ng	tags	to	
wai3ng	instruc3ons	at	write	back	(comple3on)	

§  As	W	increases,	larger	instruc3on	window	is	needed	to	find	enough	
parallelism	to	keep	machine	busy	=>	greater	L	

=>	Out-of-order	control	logic	grows	faster	than	W2	(~W3)	

6	

Life3me	L	

Issue	Group	

Previously	
Issued	

Instruc3ons	

Issue	Width	W	

3/14/2016	 CS152,	Spring	2016	

VLIW:	Very	Long	Instruc&on	Word	

§ Mul3ple	opera3ons	packed	into	one	instruc3on	
§ Each	opera3on	slot	is	for	a	fixed	func3on	
§ Constant	opera3on	latencies	are	specified	
§ Architecture	requires	guarantee	of:	

–  Parallelism	within	an	instruc3on	=>	no	cross-opera3on	RAW	check	
–  No	data	use	before	data	ready	=>	no	data	interlocks	

7	

Two	Integer	Units,	
Single	Cycle	Latency	

Two	Load/Store	Units,	
Three	Cycle	Latency	 Two	Floa-ng-Point	Units,	

Four	Cycle	Latency	

Int	Op	2	 Mem	Op	1	 Mem	Op	2	 FP	Op	1	 FP	Op	2	Int	Op	1	

3/14/2016	 CS152,	Spring	2016	

VLIW	Compiler	Responsibili&es	

§ Schedule	opera3ons	to	maximize	parallel	
execu3on	
	

§ Guarantees	intra-instruc3on	parallelism	

§ Schedule	to	avoid	data	hazards	(no	
interlocks)	
– Typically	separates	opera3ons	with	explicit	NOPs	

8	

3/14/2016	 CS152,	Spring	2016	

Scheduling	Loop	Unrolled	Code	

9	

loop: fld f1, 0(x1)
 fld f2, 8(x1)
 fld f3, 16(x1)
 fld f4, 24(x1)
 add x1, 32
 fadd f5, f0, f1
 fadd f6, f0, f2
 fadd f7, f0, f3
 fadd f8, f0, f4
 fsd f5, 0(x2)
 fsd f6, 8(x2)
 fsd f7, 16(x2)
 fsd f8, 24(x2)

add x2, 32
 bne x1, x3, loop

Schedule

Int1 Int 2 M1 M2 FP+ FPx

loop:

Unroll 4 ways

fld f1
fld f2
fld f3
fld f4 add x1 fadd f5

fadd f6
fadd f7
fadd f8

fsd f5
fsd f6
fsd f7
fsd f8 add x2 bne

How many FLOPS/cycle?
4 fadds / 11 cycles = 0.36

3/14/2016	 CS152,	Spring	2016	

SoHware	Pipelining	

How	many	FLOPS/cycle?	

10	

loop: fld f1, 0(x1)
 fld f2, 8(x1)
 fld f3, 16(x1)
 fld f4, 24(x1)
 add x1, 32
 fadd f5, f0, f1
 fadd f6, f0, f2
 fadd f7, f0, f3
 fadd f8, f0, f4
 fsd f5, 0(x2)
 fsd f6, 8(x2)
 fsd f7, 16(x2)
 add x2, 32
 fsd f8, -8(x2)
 bne x1, x3, loop

Int1 Int 2 M1 M2 FP+ FPx Unroll 4 ways first
fld f1
fld f2
fld f3
fld f4

fadd f5
fadd f6
fadd f7
fadd f8

fsd f5
fsd f6
fsd f7
fsd f8

add x1

add x2
bne

fld f1
fld f2
fld f3
fld f4

fadd f5
fadd f6
fadd f7
fadd f8

fsd f5
fsd f6
fsd f7
fsd f8

add x1

add x2
bne

fld f1
fld f2
fld f3
fld f4

fadd f5
fadd f6
fadd f7
fadd f8

fsd f5

add x1

loop:
iterate

prolog

epilog

4 fadds / 4 cycles = 1

3/14/2016	 CS152,	Spring	2016	

SoHware	Pipelining	vs.	Loop	
Unrolling	

11	

time

performance

time

performance

Loop Unrolled

Software Pipelined

Startup overhead

Wind-down overhead

Loop Iteration

Loop Iteration

Software pipelining pays startup/wind-down
costs only once per loop, not once per iteration

3/14/2016	 CS152,	Spring	2016	

Problems	with	“Classic”	VLIW	

§ Object-code	compa3bility	
–  have	to	recompile	all	code	for	every	machine	even	if	differences	are	slight	(e.g.,	
latency	of	one	func3onal	unit)	

§  	Object	code	size	
–  instruc3on	padding	wastes	instruc3on	memory/cache	
–  loop	unrolling/sogware	pipelining	replicates	code	

§  Scheduling	variable	latency	memory	opera3ons	
–  caches	and/or	memory	bank	conflicts	impose	sta3cally	unpredictable	variability	

§  Knowing	branch	probabili3es	
–  Profiling	requires	an	significant	extra	step	in	build	process	

§  Scheduling	for	sta3cally	unpredictable	branches	
–  op3mal	schedule	varies	with	branch	path	
–  i.e.,	the	result	of	a	branch	can	affect	how	to	schedule	instruc3ons	before	the	
branch	

12	

3/14/2016	 CS152,	Spring	2016	

Limits	of	Sta&c	Scheduling	

§ Unpredictable	branches	
§ Variable	memory	latency	(unpredictable	cache	misses)	
§ Code	size	explosion	
§ Compiler	complexity	
Despite	several	akempts,	VLIW	has	failed	in	general-
purpose	compu3ng	arena	(so	far).	
– More	complex	VLIW	architectures	close	to	in-order	superscalar	in	
complexity,	no	real	advantage	on	large	complex	apps	

Successful	in	embedded	DSP	market	
–  Simpler	VLIWs	with	more	constrained	environment,	friendlier	
code.	

13	

3/14/2016	 CS152,	Spring	2016	

Mul&threading	

How	can	we	guarantee	no	dependencies	between	
instruc3ons	in	a	pipeline?	

--	One	way	is	to	interleave	execu3on	of	instruc3ons	from	
different	program	threads	on	same	pipeline	

14	

F D X M W
t0 t1 t2 t3 t4 t5 t6 t7 t8

T1: LW r1, 0(r2)
T2: ADD r7, r1, r4
T3: XORI r5, r4, #12
T4: SW 0(r7), r5
T1: LW r5, 12(r1)

t9

F D X M W
F D X M W

F D X M W
F D X M W

Interleave 4 threads, T1-T4, on non-bypassed 5-stage pipe

Prior instruction in
a thread always
completes write-
back before next
instruction in
same thread reads
register file

3/14/2016	 CS152,	Spring	2016	

Simple	Mul&threaded	Pipeline	

§ Have	to	carry	thread	select	down	pipeline	to	ensure	correct	state	bits	read/
wriken	at	each	pipe	stage	

§ Appears	to	sogware	(including	OS)	as	mul3ple,	albeit	slower,	CPUs	

15	

+1

2 Thread
select

PC
1 PC

1 PC
1 PC

1
I$ IR GPR1 GPR1 GPR1 GPR1

X

Y

2

D$

3/14/2016	 CS152,	Spring	2016	

Mul&threading	Costs	

§ Each	thread	requires	its	own	user	state	
–  	PC	
–  	GPRs	

§ Also,	needs	its	own	system	state	
–  Virtual-memory	page-table-base	register	
–  Excep3on-handling	registers	

§ Other	overheads:	
–  Addi3onal	cache/TLB	conflicts	from	compe3ng	threads	
–  (or	add	larger	cache/TLB	capacity)	
–  More	OS	overhead	to	schedule	more	threads	(where	do	all	these	
threads	come	from?)	

16	

3/14/2016	 CS152,	Spring	2016	

Simultaneous	Mul&threading	(SMT)	for	
OoO	Superscalars	

§  Techniques	presented	so	far	have	all	been	“ver3cal”	
mul3threading	where	each	pipeline	stage	works	on	one	
thread	at	a	3me	

§  SMT	uses	fine-grain	control	already	present	inside	an	OoO	
superscalar	to	allow	instruc3ons	from	mul3ple	threads	to	
enter	execu3on	on	same	clock	cycle.		Gives	beker	
u3liza3on	of	machine	resources.	

17	

3/16/2016	 CS152,	Spring	2016	

Summary:	Mul&threaded	Categories	

18	

Tim
e (

pr
oc

es
so

r c
yc

le)
 Superscalar Fine-Grained Coarse-Grained Multiprocessing

Simultaneous
Multithreading

Thread 1
Thread 2

Thread 3
Thread 4

Thread 5
Idle slot

3/16/2016	 CS152,	Spring	2016	

O-o-O	Simultaneous	Mul&threading	
[Tullsen,	Eggers,	Emer,	Levy,	Stamm,	Lo,	DEC/UW,	1996]	

	

§ Add	mul3ple	contexts	and	fetch	engines	and	allow	
instruc3ons	fetched	from	different	threads	to	issue	
simultaneously	

§ U3lize	wide	out-of-order	superscalar	processor	issue	queue	
to	find	instruc3ons	to	issue	from	mul3ple	threads	

§ OOO	instruc3on	window	already	has	most	of	the	circuitry	
required	to	schedule	from	mul3ple	threads	

§ Any	single	thread	can	u3lize	whole	machine	

19	

3/16/2016	 CS152,	Spring	2016	

Ini&al	Performance	of	SMT	
§  Pen3um	4	Extreme	SMT	yields	1.01	speedup	for	SPECint_rate	
benchmark	and	1.07	for	SPECfp_rate	
–  Pen3um	4	is	dual	threaded	SMT	
–  SPECRate	requires	that	each	SPEC	benchmark	be	run	against	a	vendor-
selected	number	of	copies	of	the	same	benchmark	

§ Running	on	Pen3um	4	each	of	26	SPEC	benchmarks	paired	
with	every	other	(262	runs)	speed-ups	from	0.90	to	1.58;	
average	was	1.20	

§  Power	5,	8-processor	server	1.23	faster	for	SPECint_rate	with	
SMT,	1.16	faster	for	SPECfp_rate	

§  Power	5	running	2	copies	of	each	app	speedup	between	0.89	
and	1.41	
–  Most	gained	some	
–  Fl.Pt.	apps	had	most	cache	conflicts	and	least	gains	

20	

