
CS152	Computer	Architecture	

Sec2on	1	
1/21/2016	

Colin	Schmidt	

Introduc2ons	

•  3rd	year	PhD	student	in	Computer	Architecture	
– Focus	on	Data	Parallel	Architectures,	Specializers	
and	Compilers	

– Also	spend	some	2me	working	on	RISC-V	
infrastructure	

•  colins@eecs	
– Please	put	[CS152]	in	the	subject	
– Ques2ons	about	lecture,	problem	sets,	labs,	and	
quizzes	should	be	posted	on	piazza	

Logisi2cs	

•  Class	website		
–  hRp://www-inst.eecs.berkeley.edu/~cs152/sp16/	

•  Piazza	
–  Sign	up	here:	
hRp://piazza.com/berkeley/spring2016/cs152	

•  Sec2ons	
–  Thursday	2-4	105	La2mer	
–  Thursday	4-6	210	Wheeler	

•  Office	Hours	
–  Tuesday	2-4	651	Soda	

What	are	Sec2ons	for?	

•  Answer	any	ques2ons	you	have	about	the	
material	

•  Review	Labs	before	they	are	due	
•  Review	Problem	Sets	and	Quizzes	a^er	they	
are	due	

•  Anything	else	that	seems	appropriate	

Labs	

•  Hands	on	assignments	
– Play	with	real	processors	wriRen	in	Chisel	

•  Need	class	account	
– hRp://inst.eecs.berkeley.edu/webacct	

•  No	specific	mee2ng	2me	
– Work	done	on	your	own	2me	on	inst	machines	
– hRp://inst.eecs.berkeley.edu/cgi-bin/clients.cgi?
choice=servers	

Tools	

•  RISC-V	ISA	
–  En2re	course	uses	this	(lecture,	lab,	ps,	quizs)	
–  Spec	and	more	available	on	riscv.org	

•  Chisel	
–  Tutorial	and	Gefng	started	guide	at	
chisel.eecs.berkeley.edu	

–  Processors	in	labs	will	be	wriRen	in	this	
– Only	need	to	read	
–  If	you	want	open-ended	por2ons	allow	you	to	write	

7	

Abstrac2on	Layers	in	Modern	Systems	

Algorithm	

Gates/Register-Transfer	Level	(RTL)	

Applica2on	

Instruc2on	Set	Architecture	(ISA)	

Opera2ng	System/Virtual	Machines	

Microarchitecture	

Devices	

Programming	Language	

Circuits	

Physics	

EE141	
CS150	

CS162	

CS170	
CS164	

EE143	

CS152	

UCB	EECS	
Courses	

Brief	introduc2on	of	what’s	below	the	
Microarchitecture	abstrac2on	layer	

•		Transistors	
•		INVERTER,	NAND,	AND,	NOR,	OR	gates		
•		Tri-state	gates	
•		2:1,	4:1	Muxes	(Mul2plexers)	
•		Latches,	Flipflops	(Registers)	
•		Register	files	
•		Adders	(Half	adders,	Full	adders)	
•		RAMs	(SRAM,	DRAM)	

CS152,	Spring	2016	 9	

Harvard	Mark	I	

• Built	in	1944	in	IBM	Endico6	laboratories	
– Howard	Aiken	–	Professor	of	Physics	at	Harvard	
– EssenAally	mechanical	but	had	some	electro-magneAcally	
controlled	relays	and	gears	

– Weighed	5	tons	and	had	750,000	components	
– A	synchronizing	clock	that	beat	every	0.015	seconds	(66Hz)	
–  Inspired	by	Charles	Babbage’s	analyAc	engine	

Performance:
 0.3 seconds for addition
 6 seconds for multiplication
 1 minute for a sine calculation
Decimal arithmetic
No Conditional Branch!

Broke down once a week!

CS152,	Spring	2016	 10	

Electronic	Numerical	Integrator	
and	Computer	(ENIAC)	
•  Inspired	by	Atanasoff	and	Berry,	Eckert	and	Mauchly	designed	and	

built	ENIAC	(1943-45)	at	the	University	of	Pennsylvania	
•  The	first,	completely	electronic,	opera2onal,	general-purpose	

analy2cal	calculator!	
–  30	tons,	72	square	meters,	200KW	

•  Performance	
–  Read	in	120	cards	per	minute	
–  Addi2on	took	200	µs,	Division	6	ms	
–  1000	2mes	faster	than	Mark	I	

•  Not	very	reliable!	

Application: Ballistic calculations

angle = f (location, tail wind, cross wind,
 air density, temperature, weight of shell,
 propellant charge, ...)

WW-2 Effort

©	Krste	Asanovic,	2014	CS252,	Spring	2014,	Lecture	2	

[Piero71,	Crea-ve	
Commons	BY-SA	3.0]	

Williams-Kilburn	
Tube	Store	

Manchester	SSEM	“Baby”	(1948)	
§  Manchester	University	group	build	small-scale	experimental	
machine	to	demonstrate	idea	of	using	cathode-ray	tubes	
(CRTs)	for	computer	memory	instead	of	mercury	delay	lines	

§  Williams-Kilburn	Tubes	were	first	random	access	electronic	
storage	devices	

§  32	words	of	32-bits,	accumulator,	and	program	counter	
§  Machine	ran	world’s	first	stored-program	in	June	1948	
§  Led	to	later	Manchester	Mark-1	full-scale	machine	

- Mark-1	introduced	index	registers	
- Mark-1	commercialized	by	Ferran2	

11

©	Krste	Asanovic,	2014	CS252,	Spring	2014,	Lecture	2	 12

Computers	in	mid	50’s	

§  Hardware	was	expensive	
§  Store	instruc2ons	were	small	(1000	words)	

⇒	No	resident	system	so^ware!			

§  Memory	access	2me	was	10	to	50	2mes	slower	than	
the	processor	cycle	
⇒	Instruc2on	execu2on	2me	was	totally	dominated	by	the	memory	

reference	-me.	

§  The	ability	to	design	complex	control	circuits	to	
execute	an	instruc2on	was	the	central	design	
concern	as	opposed	to	the	speed	of	decoding	or	an	
ALU	opera2on		

§  Programmer’s	view	of	the	machine	was	inseparable	
from	the	actual	hardware	implementa2on	

§  MTBF	20	minutes	was	state	of	the	art	

©	Krste	Asanovic,	2014	CS252,	Spring	2014,	Lecture	2	 13

IBM	360:	A	General-Purpose	Register	
(GPR)	Machine	

§ Processor	State	
-  16	General-Purpose	32-bit	Registers	

- may	be	used	as	index	and	base	register	
- Register	0	has	some	special	proper-es		

-  4	Floa2ng	Point	64-bit	Registers	
- A	Program	Status	Word	(PSW)		

- PC,	Condi-on	codes,	Control	flags	
§  	A	32-bit	machine	with	24-bit	addresses	
- But	no	instruc2on	contains	a	24-bit	address!	

§  	Data	Formats	
-  8-bit	bytes,	16-bit	half-words,	32-bit	words,	64-bit	double-words	

The IBM 360 is why bytes are 8-bits long today!

CS152,	Spring	2016	 14	

CS152	ExecuAve	Summary	

The	processor	you	
built	in	CS61C	

Plus,	the	technology	
behind	chip-scale	
mul2processors	(CMPs)	
and	graphics	processing	
units	(GPUs)	

What	you’ll	understand	and	
experiment	with	in	CS152	

RISCCV*Ecosystem*
www.riscv.org

! Documenta1on%
- User4Level(ISA(Spec(v2(
- Privileged(ISA(draK(
- Compressed(ISA(draK(

!  So3ware%Tools%
- GCC/glibc/GDB(
- LLVM/Clang(

- Linux(
- Yocto(
- Verifica/on(Suite(

! Hardware%Tools%
- Zynq(FPGA(Infrastructure(
- Chisel(

!  So3ware%Implementa1ons%
- ANGEL,(JavaScript(ISA(Sim.(

- Spike,(In4house(ISA(Sim.(

- QEMU(

! Hardware%Implementa1ons%
- Rocket(Chip(Generator(
- RV64G(single4issue(in4order(pipe(

- Sodor(Processor(Collec/on(
- External(implementa/ons(

RISCCV*Ecosystem*
www.riscv.org

! Documenta1on%
- User4Level(ISA(Spec(v2(
- Privileged(ISA(draK(
- Compressed(ISA(draK(

!  So3ware%Tools%
- GCC/glibc/GDB(
- LLVM/Clang(

- Linux(
- Yocto(
- Verifica/on(Suite(

! Hardware%Tools%
- Zynq(FPGA(Infrastructure(
- Chisel(

!  So3ware%Implementa1ons%
- ANGEL,(JavaScript(ISA(Sim.(

- Spike,(In4house(ISA(Sim.(

- QEMU(

! Hardware%Implementa1ons%
- Rocket(Chip(Generator(
- RV64G(single4issue(in4order(pipe(

- Sodor(Processor(Collec/on(
- External(implementa/ons(

Berkeley Architecture Research Infrastructure!

Chisel Compiler!

VerilogC++ Emulator!

P!
F! D X! M C

Rocket Core
Chisel RTL

F! D X! M W
Sodor5

Synopsis Xilinx

Netlist

P&R (ASIC)! FPGA!

riscv-gcc!

C/C++ Code

RISCV binary!

fesvr! Spike (ISA sim)!x86 Host!

Chisel	Overview	

•  Scala-embedded	
hardware	
construction
language	
–  Build	HW	generators	
–  Rapid	design-space	
explora-on	

•  Used	in	real chips
•  Can	create	arbitrary	
DSLs	on	top	

GCD	Example	

•  Input/Output	in	a	
Bundle	

•  Registers	declared	with	
Reg	and	init	values	

•  Condi2onal	assignment	
via	when	and	otherwise	

•  Standard	set	of	
operators	

•  See	tutorial	for	more	

Example 23

class GCD extends Module {
val io = new Bundle {
val a = UInt(INPUT, 16)
val b = UInt(INPUT, 16)
val z = UInt(OUTPUT, 16)
val valid = Bool(OUTPUT) }

val x = Reg(init = io.a)
val y = Reg(init = io.b)
when (x > y) {
x := x - y

} .otherwise {
y := y - x

}
io.z := x
io.valid := y === UInt(0)

}

GCD

Bool

UFix

valid

z

UFix

UFix

b

a

Sodor	Snippet	

Ques2ons	

