CS152 Computer Architecture

Section 1
1/21/2016
Colin Schmidt

Introductions

* 3" year PhD student in Computer Architecture

— Focus on Data Parallel Architectures, Specializers
and Compilers

— Also spend some time working on RISC-V
infrastructure

* colins@eecs
— Please put [CS152] in the subject

— Questions about lecture, problem sets, labs, and
quizzes should be posted on piazza

Logisitics

Class website
— http://www-inst.eecs.berkeley.edu/~cs152/sp16/

Piazza

— Sign up here:
http://piazza.com/berkeley/spring2016/cs152

Sections

— Thursday 2-4 105 Latimer

— Thursday 4-6 210 Wheeler

Office Hours

— Tuesday 2-4 651 Soda

What are Sections for?

Answer any guestions you have about the
material

Review Labs before they are due

Review Problem Sets and Quizzes after they
are due

Anything else that seems appropriate

Labs

 Hands on assignments
— Play with real processors written in Chisel

* Need class account
— http://inst.eecs.berkeley.edu/webacct

* No specific meeting time
— Work done on your own time on inst machines

— http://inst.eecs.berkeley.edu/cgi-bin/clients.cgi?
choice=servers

Tools

* RISC-V ISA

— Entire course uses this (lecture, lab, ps, quizs)
— Spec and more available on riscv.org

e Chisel

— Tutorial and Getting started guide at
chisel.eecs.berkeley.edu

— Processors in labs will be written in this
— Only need to read
— If you want open-ended portions allow you to write

Abstraction Layers in Modern Systems

UCB EECS

Application Courses
Algorithm CS170
Programming Language CS164
Operating System/Virtual Machines CS162

Instruction Set Architecture (ISA)
+cs1s2
Microarchitecture

——— — Gates/Register-Transfer Level (RTL) CS150
Circuits FE141
Devices EE143

t Physics

Brief introduction of what’s below the
Microarchitecture abstraction layer

Transistors

INVERTER, NAND, AND, NOR, OR gates
Tri-state gates

2:1, 4:1 Muxes (Multiplexers)

Latches, Flipflops (Registers)

Register files

Adders (Half adders, Full adders)
RAMs (SRAM, DRAM)

Harvard Mark |

; i i iR B "\: 2(,:5 .1 Ii —“._-;
‘IK.N-I‘“ AUT O MA

8 *Built in 1944 in IBM Endicott laboratories

— Howard Aiken — Professor of Physics at Harvard

— Essentially mechanical but had some electro-magnetically
controlled relays and gears

— Weighed 5 tons and had 750,000 components

— A synchronizing clock that beat every 0.015 seconds (66Hz)

— Insplred by Charles Babbage’s analytlc engme

.
i

o D033 Performance'

A ooooooooooooo
i 0.3 seconds for addition
6 seconds for multiplication
| ooor 1 minute for a sine calculation
: Decimal arithmetic
RN 1 No Conditional BranchI

Electronic Numerical Integrator
and Computer (ENIAC)

Application: Ballistic calculations ®

angle = f (location, tail wind, cross wind,

Inspired by Atanasoff and Berry, Eckert and Mauchly designed and
built ENIAC (1943-45) at the University of Pennsylvania

The first, completely electronic, operational, general-purpose
analytical calculator!

— 30 tons, 72 square meters, 200KW
Performance

— Read in 120 cards per minute

— Addition took 200 us, Division 6 ms

— 1000 times faster than Mark |

Not very reliable!

WW-2 Effort

air density, temperature, weight of shell,
propellant charge, ...)

CS152, Spring 2016 10

Manchester SSEM “Baby” (1948)

= Manchester University group build small-scale experimental
machine to demonstrate idea of using cathode-ray tubes
(CRTs) for computer memory instead of mercury delay lines
Williams-Kilburn Tubes were first random access electronic
storage devices

32 words of 32-bits, accumulator, and program counter
Machine ran world’s first stored-program in June 1948

Led to later Manchester Mark-1 full-scale machine
— Mark-1 introduced index registers
— Mark-1 commercialized by Ferranti

[Piero71, Creative
Commons BY-SA 3.0]

Williams-Kilburn
Tube Store

CS252, Spring 2014, Lecture 2 © Krste Asanovic

Computers in mid 50’s

Hardware was expensive

Store instructions were small (1000 words)
=> No resident system software!

Memory access time was 10 to 50 times slower than

the processor cycle
=> |nstruction execution time was totally dominated by the memory
reference time.

The ability to design complex control circuits to
execute an instruction was the central design
concern as opposed to the speed of decoding or an
ALU operation

Programmer’s view of the machine was inseparable
from the actual hardware implementation

o o o MTBF 20 minutes was state of the art 1

rste Asanovic, 2014

IBM 360: A General-Purpose Register
(GPR) Machine

» Processor State

— 16 General-Purpose 32-bit Registers
—may be used as index and base register

—Register 0 has some special properties
— 4 Floating Point 64-bit Registers
— A Program Status Word (PSW)

—PC, Condition codes, Control flags

= A 32-bit machine with 24-bit addresses

— But no instruction contains a 24-bit address!

= Data Formats
— 8-bit bytes, 16-bit half-words, 32-bit words, 64-bit double-words

The IBM 360 is why bytes are 8-bits long today!

CS252, Spring 2014, Lecture 2 © Krste Asanovic, 2014 13

CS152 Executive Summary

. A EEEEEENEEENER

What you’ll understand and S EEEEmEmEEm®

Th? processor you experiment with in CS152 S EEEEEmEmEEE®
built in CS61C EEEEEEEEEEEN

/

Plus, the technology
behind chip-scale
multiprocessors (CMPs)
and graphics processing
units (GPUs)

CS152, Spring 2016 14

: 4 RISC-V Ecosystem R/ RISC
RISC WWW.riscv.org
= Documentation = Hardware Tools
— User-Level ISA Spec v2 — Zynq FPGA Infrastructure
— Privileged ISA draft — Chisel
— Compressed ISA draft = Software Implementations
= Software Tools — ANGEL, JavaScript ISA Sim.
— GCC/glibc/GDB — Spike, In-house ISA Sim.
- LLVM/Clang - QEMU
— Linux = Hardware Implementations
- Yocto — Rocket Chip Generator
— Verification Suite — RV64G single-issue in-order pipe
— Sodor Processor Collection

— External implementations

: / RISC-V Ecosystem R/ RISC

RISC WWW.riscv.org

= Documentation

— User-Level ISA Spec v2

— Privileged ISA draft
— Compressed ISA draft

= Software Tools
— GCC/glibc/GDB
- LLVM/Clang

— Linux

- Yocto

— Verification Suite

= Hardware Tools
— Zvna FPGA Infrastructure
— Chisel

u Software Implementations

— ANGEL, JavaScript ISA Sim.
—Spike, In-house ISA Sim.
- QEMU

» Hardware Implementations

—Rocket Chip Generator
— RV64G single-issue in-order pipe
— Sodor Processor Collection

— External implementations

Chisel RTL

1 Bbcket Core 1 :' Sodor5

C/C++ Code

Chisel Overview

e Scala-embedded
hardware

construction
language
— Build HW generators
— Rapid design-space
exploration
* Used in real chips

e Can create arbitrary
DSLs on top

import Chisel._ // importing the Ci

/// Creating a Module that computes
/7

// This generator shows how it 1s)
// of circuits.

class MaxN(n: Int, w: Int /* paramef

private def Max2(x: UInt, y: UInt)

val io = new Bundle {
val in = Vec.fill(n){ UInt(INPU"
val out = UInt(OUTPUT, w)

}

ioc.out := jo.in.reducelLeft(Max2)

}

object MaxNExample {
// Main Entry Point of the circuit
def main(args: Array[String]): Unif
// instantiate with 4 ports. Eaci
chiselMain(args, () => Module(ney

GCD Example

Input/Output in a
Bundle

Registers declared with
Reg and init values

Conditional assignment
via when and otherwise

Standard set of
operators

See tutorial for more

class GCD extends Module {
val 10 = new Bundle {

val a = UInt (INPUT, 16)
val b = UInt(INPUT, 16)
val z = UInt(OUTPUT, 16)
val valid = Bool(OUTPUT) }

val x = Reg(init = io0.a)
val y = Reg(init = 10.b)
when (x > vy)
X 1= X - Y
} .otherwise {
y 1=y - X
}
io.z = X
io.valid := y === UInt(0)

Sodor Snippet

Questions

