CS 152 Computer Architecture
and Engineering

Lecture 20: Datacenters

Dr. George Michelogiannakis
EECS, University of California at Berkeley
CRD, Lawrence Berkeley National Laboratory

http://inst.eecs.berkeley.edu/~csl1l52

Thanks to Christina Delimitrou, Christos
Kozyrakis

4/20/2016 CS152, Spring 2016

Administrivia

= PS5 due NOW

" Quiz 5 on Wednesday next week

= Please show up on Monday April 215t (last lecture)

— Neuromorphic, quantum
— Parting thoughts that have nothing to do with architecture
— Class evaluation

4/20/2016 CS152, Spring 2016

What Is A Datacenter?

" The compute infrastructure for internet-scale
services & cloud computing

— x10k of servers, x100k hard disks

— Examples: Google, Facebook, Microsoft, Amazon (+
Amazon Web Services), Twitter, Yahoo, ...

" Both consumer and enterprise services

— Windows Live, Gmail, Hotmail, Dropbox, bing, Google,
Adcenter, GoogleApps, Web apps, Exchange online,
salesforce.com, Azure, ...

4/20/2016 CS152, Spring 2016

Other Definitions

" Centralized repository for the storage, management, and
dissemination of data and information, pertaining to a
particular business or service

= Datacenters involve large quantities of data and their
processing

" Largely made up of commodity components

4/20/2016 CS152, Spring 2016

Components

Coolin g Towers &

'
»
¥
- o » "'
.
v

Chiller Infrastructure

om ——
= 7’
T ' = ,/
50 MVA Substation

-

= Apart from computers & network switches, you need:
— Power infrastructure: voltage converters and regulators, generators and UPSs, ...
— Cooling infrastructure: A/C, cooling towers, heat exchangers, air impellers,...

= Everything is co-designed!

4/20/2016 CS152, Spring 2016

Example: MS Quincy Datacenter

‘. A 433

-~

,-. = e s
+ ez

s.(‘:j'. "Z ",_’ ..";f.. 3

Fo
(“;, ‘l

. -

/ ~ o
- ‘;I !.% - S

= 470k sqg feet (10 football fields)

= Next to a hydro-electric generation plant
— At up to 40 MegaWatts, $0.02/kWh is better than $0.15/kWh ©
— That’s equal to the power consumption of 30,000 homes
4/20/2016 CS152, Spring 2016

Example: MS Chicago Datacenter

[K. Vaid, Microsoft Global Foundation Services, 2010]

400 tons of steel

190 miles of conduit

2400 tonﬁ:opger

| Critical Power

—

7.5 miles of chilled water piping

26,000 cubic yards of concre:

4/20/2016 CS152, Spring 2016

Google’s Datacenter Locations

4/20/2016 CS152, Spring 2016 8

Applications That Use Datacenters

= Storage
— Large and small files (e.g., phone contacts)

= Search engines

= Compute time rental & web hosting
— Amazon EC2 — virtual server hosting

" Cloud gaming
— File or video streaming

4/20/2016 CS152, Spring 2016

Why Is Cloud Gaming Possible?

L1l cache reference 0:5 s
Branch mispredict 5 ns
L2 cache reference 7 ns
Mutex lock/unlock 25 1
Main memory reference 100 ns
Compress 1K bytes with Zippy 3,000 ns
Send 2K bytes over 1 Gbps network 20,000 ns
Read 1 MB sequentially from memory 290,000 =ns
Round trip within same datacenter 500,000 ns
Disk seek 10..000. 000 ns
Read 1 MB sequentially from disk 20.,000;: 000 ns
Send packet CA->Netherlands->CA 150,000,000 ns

4/20/2016 CS152, Spring 2016

Servers
 CPUs
 DRAM
* Disks

4/20/2016

The Inside

Racks
» 40-80 servers
» Ethernet switch

CS152, Spring 2016

cluster
switc

Clusters

11

. <...hr

FB Datacenter Racks

Example

__....,..%i%%:f

.ﬁ
_ ;..

CS152, Spring 2016

4/20/2016

Storage Hierarchy

One server

DRAM: 16GB, 100ns, 20GB/s
Disk: 2TB, 10ms, 200MB/s

Local rack (80 servers)
'@“’.L_ DRAM: 1TB, 300us, 100MB/s

LC®» Disk: 160TB, 11ms, 100MB/s

Cluster (30+ racks)
=
S== DRAM: 30TB, 500us, 10MB/s
=
= Disk: 4.80PB, 12ms, 10MBIs

= Google

4/20/2016 CS152, Spring 2016 13

Storage Hierarchy

=+=Latency (us) -#-Bandwith (MB/sec) =+Capacity (GB)
10000000
1000000 /
100000 '\/
10000 = /
1000 \ /

100 %\-‘
/ / \- a

10 /

1 /
0.1 ' ' T T T

Local DRAM Local Disk Rack DRAM Rack Disk Datacenter Datacenter
DRAM Disk

4/20/2016 CS152, Spring 2016 14

Commodity Hardware

2-socket server 10GbE NIC

4 Memory Channels 4 Memory Channels i F I h S
Up to DDR3 Intel® Xeon® 2intel* Intel® Xeon® Up to DDR3 ' as To ra g e
1866 MHz each Processor QPILinks Processor 1866 MHz each
€5-2600 V2 €5-2600 V2
Series Series _—
PCle*3.0 (Up to 10 cores) (Up to 10 cores)
Up to 40 ports Up to 40 ports

DMI

Intel® QuickAssist Technology

4 PCl Express Gen 1.0 Ports
Intel®

4 Integrated Coml&n#nicattions 2 SATA Ports; Port Disable
10/100/1000 GbE MACs IpsC:
89xx Series

6 Hi-Speed USB 2.0 Ports

Intel°Management |
Engine Ignition Firmware
and BIOS Support |

Low-latency TOGbE Switch

4/20/2016 CS152, Spring 2016

Basic Unit: 2-socket Server

= 1-2 multi-core chips
= 8-16 DRAM DIMMS

= 1-2 ethernet ports
— 10Gbps or higher

= Storage

— Internal SATA/SAS disks (2-6)
— External storage expansion

DIMMs CPU1 DIMMs

DIMMs DIMMs

SATA/SAS

rcesies | @ Configuration/size vary

— Depending on tier role
— 1U - 2U (1U = 1.67 inches)

x4 PCI-E

.

Serial Port

POST display

4/20/2016 CS152, Spring 2016

Example: FB 2-socket Server

» Characteristics

— Upgradable CPUs & memory, boot on LAN, external
PCle link, feature reduced

— Similar design for AMD servers (why?)

4/20/2016 CS152, Spring 2016

Application Mapping
(FB Example)

Front-End Cluster

Service Cluster Back-End Cluster

4/20/2016 CS152, Spring 2016

Servers Used for a FB Request

Request
starts

Time

Request
completes

4/20/2016

Front-End

CS152, Spring 2016

Back-End

What Server Should We
Use in a Datacenter?

= Many options
— 1-socket server
— 2-socket server
— 4-socket server

— 64-socket server

= \What are the issues to consider?

4/20/2016 CS152, Spring 2016

2 vs 4 vs 8 Sockets per Server

e CPU = CPU

ggil| Intel IOH IOH FCle* x4
|C|'“q ME {Legacy IOH) Gen1
[] [e]| |[ee] [5t e

= What is great about 2 vs 1 socket?
= Why not 4 or 8 sockets then?

4/20/2016 CS152, Spring 2016

Performance Scaling
of Internet Scale Applications

[IEEE Micro’11]

1.60 2.0

1.8
1.5
13
1.0
0.8
0.5
0.3
0.0

4 cores 8 cores 4 cores 8 cores

1.40

1.20

1.00 -
0.80 -
0.60

Relative Performance

0.40 -
0.20 -
0.00

Relative Performance

2.40GHz
2.30GHz
3.00GHz
3.13GHz

Search Cosmos

Search Cosmos

Figure 0. Performance scaling as a function of processor frequency and number of cores for Bing and Cosmos.

= Scaling analysis for Search & MapReduce at Microsoft
" Any observations?

4/20/2016 CS152, Spring 2016

Performance Metrics

= Completion time (e.g., how fast)
— Of a certain operations

= Availability

= Power/energy

» Total cost of ownership (TCO)

4/20/2016 CS152, Spring 2016

23

Power Usage Effectiveness

» PUE = Total datacenter power / IT equipment power

4/20/2016

PUE

Continuous PUE Improvement
Average PUE for all data centers

1.261
1.221
1.184
\ > 4 \
1-10 A 4 L 4 1 4 T T L 4 T L 4
2008 2009 2010 2011 2012 2013 2014 2015 2016

w— Quarterly PUE

w— Trailing twelve-month (TTM) PUE

CS152, Spring 2016

24

Total Cost of Ownership (TCO)

= Capital expenses

— Land, building, generators, air conditioning, computing
equipment

= Operating expenses
— Electricity repairs

= Cost of unavailability

4/20/2016 CS152, Spring 2016

25

TCO Breakdown

i Servers

“ Energy

. Cooling
i Networking

.. Other

m Observations
= >50% of cost in buying the hardware
= ~30% costs related to power
= Networking ~10% of overall costs (including cost for servers)

4/20/2016 CS152, Spring 2016

4/20/2016

TCO Breakdown (2)

Indirect Costs (~20%) Direct one-time costs
(" 30 C’./,‘/__.)

Security
App Dev.

Software

Support

Changes

\ Facilities

N

Direct ongoing costs (~50%)

CS152, Spring 2016

27

Cost Analysis

= Cost model powerful tool for design tradeoffs
— Evaluate “what-if” scenarios

= E.g., can we reduce power cost with different disk?

= A 1TB disk uses 10W of power, costs $90. An alternate
disk consumes only 5W, but costs $150. If you were the
data center architect, what would you do?

4/20/2016 CS152, Spring 2016

Answer

= A 1TB disk uses 10W of power, costs $90. An alternate
disk consumes only 5W, but costs $150. If you were the
data center architect, what would you do?

= @ $S2/Watt — even if we saved the entire 10W of power
for disk, we would save $20 per year. We are paying S60
more for the disk — probably not worth it.

— What is this analysis missing?

4/20/2016 CS152, Spring 2016

Reliability & Availability

= Common goal for services: 99.99% availability
— 1 hour of down-time per year

" But with thousands of nodes, things will crash

— Example: with 10K servers rated at 30 years of MTBF, you should expect
to have 1 failure per day

4/20/2016 CS152, Spring 2016

Reliability Challenges

Typical first year for a new cluster:

~0.5 overheating (power down most machines in <5 mins, ~1-2 days to recover)
~1 PDU failure (~500-1000 machines suddenly disappear, ~6 hours to come back)
~1 rack-move (plenty of warning, ~500-1000 machines powered down, ~6 hours)
~1 network rewiring (rolling ~56% of machines down over 2-day span)

~20 rack failures (40-80 machines instantly disappear, 1-6 hours to get back)

~5 racks go wonky (40-80 machines see 50% packetloss)

~8 network maintenances (4 might cause ~30-minute random connectivity losses)
~12 router reloads (takes out DNS and external vips for a couple minutes)

~3 router failures (have to immediately pull traffic for an hour)

~dozens of minor 30-second blips for dns

~1000 individual machine failures

~thousands of hard drive failures

slow disks, bad memory, misconfigured machines, flaky machines, etc.

Long distance links: wild dogs, sharks, dead horses, drunken hunters, etc.
4/20/2016 CS152, Spring 2016 31

Downtime Density

cumulative

% restart events
(@)
o

density

0_1 I I T rrriy 1 L VL A O I P | 1 | PR PR PR P B | I | PR R P R | I | BRI R R P R)

1 10 100 1000 10000 100000

minutes of downtime (log)

4/20/2016 CS152, Spring 2016 32

Sources of Outages

Computed from 41 benchmarked data centers

= UPS system failure

m Accidental/human error

= Weather related

= Generator failure

» |T equipment failure
= Other

» Water, heat or CRAC failure

Calculating the Cost of Data Center Outages,
Emerson Network Power, http://bit ly/JCWINE, Feb 1, 2011

4/20/2016 CS152, Spring 2016

33

Robustness to Failures

= Failover to other replicas/datacenters

" Bad backend detection
— Stop using for live requests until behavior gets better

" More aggressive load balancing when imbalance
IS more severe

=" Make your apps do something reasonable even if
not all is right

— Better to give users limited functionality than an error
page

4/20/2016 CS152, Spring 2016

Consistency

=" Multiple data centers implies dealing with
consistency issues

— Disconnected/partitioned operation relatively
common, e.g., datacenter down for maintenance

— Insisting on strong consistency likely undesirable

— "We have your data but can't show it to you because
one of the replicas is unavailable"

— Most products with mutable state gravitating towards
"eventual consistency” model

— A bit harder to think about, but better from an
availability standpoint

4/20/2016 CS152, Spring 2016

Performance/Availability Techniques in DCs

Replication v v
Partitioning (sharding) v v
Load-balancing v

Watchdog timers v
Integrity checks v
App-specific compression v

Eventual consistency v v

4/20/2016 CS152, Spring 2016

Characteristics of Internet-scale Services
» Huge datasets, user sets, ...

" High request level parallelism
— Without much read-write sharing

= High workload churn
— New releases of code on a weekly basis

= Require fault-free operation

4/20/2016 CS152, Spring 2016

Performance Metrics

" Throughput
— User requests per second (RPS)

— Scale-out address this (more servers)

= Quality of Service (QoS)
— Latency of individual requests (90, 95th, or 95t percentile)

— Scale-out does not necessarily help

" |nteresting notes
— The distribution matters, not just the averages
— Optimizing throughput often hurts latency
* And optimizing latency often hurts power consumption

— At the end, it is RPS/S within some QoS constraints

4/20/2016 CS152, Spring 2016

Tail At Scale

=== 1in100 === 1in1000 === 1in10,000

P (service latency > 1s)

|
1 500 1,000 1,500 2,000

Numbers of Servers

= Larger clusters > more prone to high tail latency

'The Tail at Scale. Jeffrey Dean, Luiz André Barroso. CACM, Vol. 56 No. 2, Pages 74-80, 2013
4/20/2016 CS152, Spring 2016

Resource Assignment Options

\

———

cassandra
emcached

g‘

* How do we assign resources to apps”?

" Two major options: private vs shared assignment

CS152, Spring 2016

4/20/2016

Private Resource Assighment

memcache

Rails/nginx hadoop

cassandra

mysql

" Each app receives a private, static set of resources

= Also known as static partitioning

CS152, Spring 2016

4/20/2016

Shared Resource Assighment

3% u
17% — Y
o%

Rails/nginx

100%

33% L
hadoop ;70 — 50%
v .

0% | N B N

33%

memcache 17%
0% \\\\\\\\\

= Shared resources: flexibility = high utilization

— Common case: user-facing services + analytics on same
servers

— Also helps with failures, maintenance, and provisioning
4/20/2016 CS152, Spring 2016

Shared Cluster Management

AN ANA AN ANN S
p— I M O O O
T AN ANN AN AN A
masters I M O S O
e e AN ANN AN ANN A
e m I M O S O
AN ANA ANA ANN A
_ I M O O O
application/human
AR
|

*" The manager schedules apps on shared resources
— Apps request resource reservations (cores, DRAM, ...)

— Manager allocates and assigns specific resources
* Considering performance, utilization, fault tolerance, priorities, ...
e Potentially, multiple apps on each server

— Multiple manager architectures (see Borg paper for example)

4/20/2016 CS152, Spring 2016

Autoscaling

Load balancer

=" Monitor app performance or server load
— [Chase’01, AWS AutoScale, Lim’10, Shen’11, Gandhi’12, ...]

= Adjust resources given to app
— Add or remove to meet performance goal
— Feedback-based control loop

4/20/2016 CS152, Spring 2016

Map+Reduce

e — R

| _ L — = Partitioning | | Result
big . Function D
data P U
C
E

" Map: " Reduce :
— Accepts input key/value — Accepts intermediate
pair key/value* pair

— Emits intermediate key/
value pair

— Emits output key/value

pair

4/20/2016 CS152, Spring 2016

Analytics Example: MapReduce

forks
sign
_F
\
Map Worker
r
-
\
Map Worker
.
}
.
Sop Sromme M work items
Input Intermediate
. Map
files files

= Single-tier architecture

< Output

& file 1
Reduce Worker

= Output

& file 2
Reduce Worker

R work items

Shuffle Output
(sort) Reduce files

[Figure credit: Paul Krzyzanowski]

— Distributed FS, worker servers, coordinator

— Disk based or in-memory

= Metric: throughput

4/20/2016 CS152, Spring 2016

Example 3-tier App: WebMail

= May include thousands of machines,
PetaBytes of data, and billions of users

= 1st tier: protocol processing

— Typically stateless

— Use a load balancer
= 2nd Her: application logic

— Often caches state from 3™ tier
= 3rd tier: data storage

— Heavily stateful

— Often includes bulk of machines

4/20/2016 CS152, Spring 2016

Load
Balancer

Front-end tier
(HTTP, POP, IMAP....)

Middle tier

(Mail delivery, user info,
stats, ...)

Back-end tier
(Mail metadata & files)

Example: Social Networking

= 3 tier system

B \Web server, fast user data storage, persistent
storage

M 2" tier: latency critical, large number of servers

BUser data storage

B Using memcached for distributed caching
B 10s of Tbytes in memory (Facebook 150TB)
B Sharded and replicated across many servers

B Read/write (unlike search), bulk is read-dominated

BFrom in-memory caching to in-memory FS

B RAMcloud @Stanford, Sinfonia @HP, ...
4/20/2016 CS152, Spring 2016

Front-end tier
(HTTP, presentation, ...)

Middle tier

(memcached or in-
memory FS)

Back-end tier
(persistent DB)

Acknowledgements

= Christos Kozyrakis, Christina Delimitrou
— Based on EE282 @ Stanford

= “Designs, Lessons, and Advice from Building Large
Distributed Systems” by Jeff Dean, Google Fellow

= “A thousand chickens or two oxen? Part 1: TCO” by Isabel
Martin

= “UPS as a service could be an economic breakthrough” by
Mark Monroe

= “Take a close look at MapReduce” by Xuanhua Shi

4/20/2016 CS152, Spring 2016

49

Reducing Tail Latency

* Reduce queuing (reduce head of line blocking)
= Separate different types of requests

= Coordinate background activities

*" Hedged requests to replicas

" Tied requests to replicas

=" Micro-sharding & selective replication

" Latency induced probation, canary requests

= See The Tail @ Scale paper for details

4/20/2016 CS152, Spring 2016

