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Administrivia	

§  PS	5	due	NOW	

§ Quiz	5	on	Wednesday	next	week	

§  Please	show	up	on	Monday	April	21st	(last	lecture)	
–  Neuromorphic,	quantum	
–  ParLng	thoughts	that	have	nothing	to	do	with	architecture	
–  Class	evaluaLon	
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What	Is	A	Datacenter?	

§ The	compute	infrastructure	for	internet-scale	
services	&	cloud	compuLng	
– x10k	of	servers,	x100k	hard	disks	
– Examples:	Google,	Facebook,	MicrosoW,	Amazon	(+	
Amazon	Web	Services),	TwiYer,	Yahoo,	…		

§ Both	consumer	and	enterprise	services	
– Windows	Live,	Gmail,	Hotmail,	Dropbox,	bing,	Google,	
Adcenter,	GoogleApps,	Web	apps,	Exchange	online,	
salesforce.com,	Azure,	…	
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Other	DefiniCons	

§ Centralized	repository	for	the	storage,	management,	and	
disseminaLon	of	data	and	informaLon,	pertaining	to	a	
parLcular	business	or	service	

§ Datacenters	involve	large	quanLLes	of	data	and	their	
processing	

§  Largely	made	up	of	commodity	components	
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Components	

5	

§ Apart	from	computers	&	network	switches,	you	need:	
–  Power	infrastructure:	voltage	converters	and	regulators,	generators	and	UPSs,	…	
–  Cooling	infrastructure:	A/C,	cooling	towers,	heat	exchangers,	air	impellers,…	

§  Everything	is	co-designed!	
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Example:	MS	Quincy	Datacenter	

§  470k	sq	feet	(10	football	fields)	
§  Next	to	a	hydro-electric	generaLon	plant	

–  At	up	to	40	MegaWaYs,	$0.02/kWh	is	beYer	than	$0.15/kWh	J	

–  That’s	equal	to	the	power	consumpLon	of	30,000	homes	
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Example:	MS	Chicago	Datacenter	

Microsoft’s Chicago Data Center 

Kushagra$Vaid,$HotPower'10$ 10$Oct$3,$2010$

[K. Vaid, Microsoft Global Foundation Services, 2010]  
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Google’s	Datacenter	LocaCons	
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ApplicaCons	That	Use	Datacenters	

§  Storage	
–  Large	and	small	files	(e.g.,	phone	contacts)	

§  Search	engines	

§ Compute	Lme	rental	&	web	hosLng	
–  Amazon	EC2	–	virtual	server	hosLng	

§ Cloud	gaming	
–  File	or	video	streaming	

9	



4/20/2016	 CS152,	Spring	2016	

Why	Is	Cloud	Gaming	Possible?	

10	



4/20/2016	 CS152,	Spring	2016	

The	Inside	
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Example:	FB	Datacenter	Racks	

Tuesday, August 16, 11
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Storage	Hierarchy	
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Storage	Hierarchy	
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Commodity	Hardware	

2-socket server 

Low-latency 10GbE Switch 

10GbE NIC 
Flash Storage 

JBOD disk array 
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Basic	Unit:	2-socket	Server	

§  1-2	mulL-core	chips	
§  8-16	DRAM	DIMMS	
§  1-2	ethernet	ports	

–  10Gbps	or	higher	
§  Storage	

–  Internal	SATA/SAS	disks	(2-6)	
–  External	storage	expansion	

§ ConfiguraLon/size	vary	
–  Depending	on	Ler	role	
–  1U	-	2U	(1U	=	1.67	inches)	

5 Efficient Performance Motherboard Features 
 

5.1 Block Diagram 
 
Figure 5 illustrates the functional block diagram of the efficient performance motherboard. 
 
Figure 5 が⽰すのは、このマザーボード全体の機能ブロックダイアグラムである。 
 

 

Figure 5 Efficient Performance Motherboard Functional Block Diagram 

 

5.2 Placement and Form Factor 
 
The motherboard's form factor is 6.5x20 inches. Figure 6 illustrates board placement. The 
placement shows the relative positions of key components, while exact dimension and position 
information is available in the mechanical DXF file. Form factor, PCIe slot position, front IO port 
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Example:	FB	2-socket	Server	

§ CharacterisLcs	
–  Upgradable	CPUs	&	memory,	boot	on	LAN,	external	
PCIe	link,	feature	reduced	

–  Similar	design	for	AMD	servers	(why?)	 

Figure 6 Efficient Performance Board Placement 

 
 

Figure 25 Open Compute Project Server Chassis for Intel Motherboards 
 
 

11.1 Fixed Locations 
 
Refer to the mechanical DXF file for fixed locations of the mounting hole, PCIe x16 slot, and 
power connector.  
 
マウント･ホールや、PCIe x16 スロット、電源コネクターの固定位置については、mechanical DXF フ
ァイルを参照して欲しい。 
 

11.2 PCB Thickness 
 
To ensure proper alignment of the FCI power connector and mounting within the mechanical 
enclosure, the boards should follow the PCB stackups described in sections 4.5 and 5.5 
respectively and have 85mil (2.16mm) thickness. The mid-plane PCB thickness is also 85mil 
(2.16mm). The mezzanine card PCB thickness is 62mil (≈1.6mm). 
 
FCI 電源コネクターの位置および、機械的なエンクロジャー内への適切な配置を保証するために、
Section 4.5 と 5.5 に記載されるで記述されるPCB stackup に従い、このボードは 85mil（2.16 mm）
の厚さを持つべきである。そして、 mid-plane PCB の厚さも 85mil（2.16ｍｍ）である。 さらに、
mezzanine card PCB の厚さは、62mil（≈1.6mm）となる。 
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ApplicaCon	Mapping		
(FB	Example)	
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Architecture 
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Servers	Used	for	a	FB	Request	
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What	Server	Should	We		
Use	in	a	Datacenter?	

§ Many	opLons	
–  1-socket	server	
–  2-socket	server	
–  4-socket	server	
–  …	
–  64-socket	server	
–  …		

§ What	are	the	issues	to	consider?		
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2	vs	4	vs	8	Sockets	per	Server	

§ What	is	great	about	2	vs	1	socket?	
§ Why	not	4	or	8	sockets	then?	



4/20/2016	 CS152,	Spring	2016	

Performance	Scaling		
of	Internet	Scale	ApplicaCons	

§  Scaling	analysis	for	Search	&	MapReduce	at	MicrosoW	
§ Any	observaLons?	

[IEEE Micro’11] 
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Performance	Metrics	

§ CompleLon	Lme	(e.g.,	how	fast)	
–  Of	a	certain	operaLons	

§ Availability	

§  Power/energy	

§  Total	cost	of	ownership	(TCO)	

23	
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Power	Usage	EffecCveness	

§  PUE	=	Total	datacenter	power	/	IT	equipment	power	

24	
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Total	Cost	of	Ownership	(TCO)	

§ Capital	expenses	
–  Land,	building,	generators,	air	condiLoning,	compuLng	
equipment	

§ OperaLng	expenses	
–  Electricity	repairs	

§ Cost	of	unavailability	

25	
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TCO	Breakdown	

n  ObservaLons	
n  >50%	of	cost	in	buying	the	hardware	
n  ~30%	costs	related	to	power		
n  Networking	~10%	of	overall	costs	(including	cost	for	servers)	

	

61%	16%	

14%	

6%	
3%	

Servers	

Energy	

Cooling	

Networking	

Other	
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TCO	Breakdown	(2)	

27	
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Cost	Analysis	

§ Cost	model	powerful	tool	for	design	tradeoffs	
–  Evaluate	“what-if”	scenarios	

§  E.g.,	can	we	reduce	power	cost	with	different	disk?	

§ A	1TB	disk	uses	10W	of	power,	costs	$90.	An	alternate	
disk	consumes	only	5W,	but	costs	$150.	If	you	were	the	
data	center	architect,	what	would	you	do?	
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Answer	

§ A	1TB	disk	uses	10W	of	power,	costs	$90.	An	alternate	
disk	consumes	only	5W,	but	costs	$150.	If	you	were	the	
data	center	architect,	what	would	you	do?	

§ @	$2/WaY	–	even	if	we	saved	the	enLre	10W	of	power	
for	disk,	we	would	save	$20	per	year.	We	are	paying	$60	
more	for	the	disk	–	probably	not	worth	it.	
– What	is	this	analysis	missing?	
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Reliability	&	Availability	

§ Common	goal	for	services:	99.99%	availability	
–  1	hour	of	down-Lme	per	year	

§ But	with	thousands	of	nodes,	things	will	crash		
–  Example:	with	10K	servers	rated	at	30	years	of	MTBF,	you	should	expect	
to	have	1	failure	per	day	
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Reliability	Challenges	

31	
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DownCme	Density	

32	
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Sources	of	Outages	

33	
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Robustness	to	Failures	

§ Failover	to	other	replicas/datacenters	
§ Bad	backend	detecLon	

– Stop	using	for	live	requests	unLl	behavior	gets	beYer	
§ More	aggressive	load	balancing	when	imbalance	
is	more	severe	

§ Make	your	apps	do	something	reasonable	even	if	
not	all	is	right	
– BeYer	to	give	users	limited	funcLonality	than	an	error	
page	
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Consistency	

§ MulLple	data	centers	implies	dealing	with	
consistency	issues	
– Disconnected/parLLoned	operaLon	relaLvely	
common,	e.g.,	datacenter	down	for	maintenance	

–  InsisLng	on	strong	consistency	likely	undesirable	
– "We	have	your	data	but	can't	show	it	to	you	because	
one	of	the	replicas	is	unavailable"	

– Most	products	with	mutable	state	gravitaLng	towards	
"eventual	consistency"	model	

– A	bit	harder	to	think	about,	but	beYer	from	an	
availability	standpoint	
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Performance/Availability	Techniques	in	DCs	

Technique Performance Availability 

Replication ✔ ✔ 
Partitioning (sharding) ✔ ✔ 
Load-balancing ✔ 
Watchdog timers ✔ 
Integrity checks ✔ 
App-specific compression ✔ 
Eventual consistency ✔ ✔ 
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CharacterisCcs	of	Internet-scale	Services	
§ Huge	datasets,	user	sets,	…	

§ High	request	level	parallelism	
– Without	much	read-write	sharing	

§ High	workload	churn	
– New	releases	of	code	on	a	weekly	basis	

§ Require	fault-free	operaLon	
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Performance	Metrics	

§  Throughput	
–  User	requests	per	second	(RPS)	
–  Scale-out	address	this	(more	servers)	

§ Quality	of	Service	(QoS)	
–  Latency	of	individual	requests	(90th,	95th,	or	95th	percenLle)	
–  Scale-out	does	not	necessarily	help	

§  InteresLng	notes	
–  The	distribuLon	maYers,	not	just	the	averages	

–  OpLmizing	throughput	oWen	hurts	latency	

•  And	opLmizing	latency	oWen	hurts	power	consumpLon	

–  At	the	end,	it	is	RPS/$	within	some	QoS	constraints	
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Tail	At	Scale	

§ Larger	clusters	à	more	prone	to	high	tail	latency	

1The Tail at Scale. Jeffrey Dean, Luiz André Barroso. CACM, Vol. 56 No. 2, Pages 74-80, 2013 
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Resource	Assignment	OpCons	

§ How	do	we	assign	resources	to	apps?	
§ Two	major	opLons:	private	vs	shared	assignment	
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Private	Resource	Assignment	

§ Each	app	receives	a	private,	staLc	set	of	resources	
§ Also	known	as	staLc	parLLoning	

mysql- cassandra- Rails/nginx- hadoop- memcache-
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Shared	Resource	Assignment	

§ Shared	resources:	flexibility	à	high	uLlizaLon	
– Common	case:	user-facing	services	+	analyLcs	on	same	
servers	

– Also	helps	with	failures,	maintenance,	and	provisioning	

Rails/nginx-

hadoop-

memcache-

utilization-

Rails/nginx-

hadoop-

memcache-

utilization-
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Shared	Cluster	Management	

§ The	manager	schedules	apps	on	shared	resources	
–  Apps	request	resource	reservaLons	(cores,	DRAM,	…)	
– Manager	allocates	and	assigns	specific	resources	

•  Considering	performance,	uLlizaLon,	fault	tolerance,	prioriLes,	…		
•  PotenLally,	mulLple	apps	on	each	server	

– MulLple	manager	architectures	(see	Borg	paper	for	example)	

Mesos-implements-weighted-DRF-

masters-

masters(can(be(configured(with(
weights(per'role'

resource(allocation(decisions(
incorporate(the(weights(to(
determine(dominant(fair(shares(

cluster-manager-status-quo-

cluster-manager-

application/human-

specification-

the(specification(includes(as(much(
information(as(possible(to(assist(
the(cluster(manager(in(scheduling(
and(execution(

cluster-manager-architectures-

master-

slaves-

cluster-manager-status-quo-

cluster-manager-

application/human-

result-
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Autoscaling	

§ Monitor	app	performance	or	server	load	
–  [Chase’01,	AWS	AutoScale,	Lim’10,	Shen’11,	Gandhi’12,	…]		

§ Adjust	resources	given	to	app	
– Add	or	remove	to	meet	performance	goal	
– Feedback-based	control	loop	

workers-

distributed-system*-anatomy-

coordinator-

* overlooking peer-to-peer distributed systems 

Load balancer 

workers-

distributed-system*-anatomy-

coordinator-

* overlooking peer-to-peer distributed systems 

workers-

distributed-system*-anatomy-

coordinator-

* overlooking peer-to-peer distributed systems 

workers-

distributed-system*-anatomy-

coordinator-

* overlooking peer-to-peer distributed systems 

workers-

distributed-system*-anatomy-

coordinator-

* overlooking peer-to-peer distributed systems 

workers-

distributed-system*-anatomy-

coordinator-

* overlooking peer-to-peer distributed systems 

workers-

distributed-system*-anatomy-

coordinator-

* overlooking peer-to-peer distributed systems 

workers-

distributed-system*-anatomy-

coordinator-

* overlooking peer-to-peer distributed systems 

workers-

distributed-system*-anatomy-

coordinator-

* overlooking peer-to-peer distributed systems 

workers-

distributed-system*-anatomy-

coordinator-

* overlooking peer-to-peer distributed systems 

workers-

distributed-system*-anatomy-

coordinator-

* overlooking peer-to-peer distributed systems 

workers-

distributed-system*-anatomy-

coordinator-

* overlooking peer-to-peer distributed systems 

workers-

distributed-system*-anatomy-

coordinator-

* overlooking peer-to-peer distributed systems 

workers-

distributed-system*-anatomy-

coordinator-

* overlooking peer-to-peer distributed systems 

workers-

distributed-system*-anatomy-

coordinator-

* overlooking peer-to-peer distributed systems 

workers-

distributed-system*-anatomy-

coordinator-

* overlooking peer-to-peer distributed systems 

workers-

distributed-system*-anatomy-

coordinator-

* overlooking peer-to-peer distributed systems 



4/20/2016	 CS152,	Spring	2016	

Map+Reduce	

 

§ Map:	
– Accepts	input	key/value	
pair	

– Emits	intermediate	key/
value	pair	

 

§ Reduce	:	
– Accepts	intermediate	
key/value*	pair	

– Emits	output	key/value	
pair	
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AnalyCcs	Example:	MapReduce	

§  Single-Ler	architecture	
– Distributed	FS,	worker	servers,	coordinator	
– Disk	based	or	in-memory	

§ Metric:	throughput	

[Figure credit: Paul Krzyzanowski]   
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Example	3-Cer	App:	WebMail	

§ May	include	thousands	of	machines,	
PetaBytes	of	data,	and	billions	of	users	

§  1st	Ler:	protocol	processing	
–  Typically	stateless	
–  Use	a	load	balancer	

§  2nd	Ler:	applicaLon	logic	
–  OWen	caches	state	from	3rd	Ler	

§  3rd	Ler:	data	storage	
–  Heavily	stateful	
–  OWen	includes	bulk	of	machines	

	

Load 
Balancer 

Front-end tier 
(HTTP, POP, IMAP…) 

Middle tier 
(Mail delivery, user info, 

stats, …) 

Back-end tier 
(Mail metadata & files) 
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Example:	Social	Networking	

§ 3	Ler	system	
n Web	server,	fast	user	data	storage,	persistent	
storage	

n 2rd	Ler:	latency	criLcal,	large	number	of	servers	

n User	data	storage	
n  Using	memcached	for	distributed	caching	
n  10s	of	Tbytes	in	memory	(Facebook	150TB)	

n  Sharded	and	replicated	across	many	servers	
n  Read/write	(unlike	search),	bulk	is	read-dominated	

n From	in-memory	caching	to	in-memory	FS	
n RAMcloud	@Stanford,	Sinfonia	@HP,	…	

	

Front-end tier 
(HTTP, presentation, …) 

Middle tier 
(memcached or in-

memory FS) 

Back-end tier 
(persistent DB) 
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Reducing	Tail	Latency		

§ Reduce	queuing	(reduce	head	of	line	blocking)	
§ Separate	different	types	of	requests	
§ Coordinate	background	acLviLes	
§ Hedged	requests	to	replicas	
§ Tied	requests	to	replicas		
§ Micro-sharding	&	selecLve	replicaLon	
§ Latency	induced	probaLon	,	canary	requests	

§ See	The	Tail	@	Scale	paper	for	details	


