
4/18/2016 CS152, Spring 2016

CS 152 Computer Architecture

and Engineering

Lecture 19: Directory-Based Cache

Protocols

Dr. George Michelogiannakis

EECS, University of California at Berkeley

CRD, Lawrence Berkeley National Laboratory

http://inst.eecs.berkeley.edu/~cs152

4/18/2016 CS152, Spring 2016

Administrivia

 PS 5 due on Wednesday

 Wednesday lecture on data centers

 Quiz 5 on Wednesday next week

 Please show up on Monday April 21st (last lecture)
– Neuromorphic, quantum

– Parting thoughts that have nothing to do with architecture

– Class evaluation

2

4/18/2016 CS152, Spring 2016

Recap: Snoopy Cache Protocols

3

Use snoopy mechanism to keep all processors’
view of memory coherent

M1

M2

M3

Snoopy
Cache

DMA

Physical
Memory

Memory
Bus

Snoopy
Cache

Snoopy
Cache

DISKS

4/18/2016 CS152, Spring 2016

Recap: MESI: An Enhanced MSI protocol
increased performance for private data

4

M E

S I

M: Modified Exclusive
E: Exclusive but unmodified
S: Shared
I: Invalid

Each cache line has a tag

Address tag

state
bits

Write miss

Other processor
intent to write

Read miss,
shared

Other processor
intent to write

P1 write

Read by any
processor

Other processor reads

P1 writes back

P1 read
P1 write
or read

Cache state in
processor P1

P1 intent
to write

Read miss,
not sharedOther

processor
reads

Other processor
intent to write, P1
writes back

4/18/2016 CS152, Spring 2016

Performance of Symmetric Shared-Memory
Multiprocessors

Cache performance is combination of:

1. Uniprocessor cache miss traffic

2. Miss traffic caused by communication
– Results in invalidations and subsequent cache misses

 Coherence misses
– Sometimes called a Communication miss

– A cache miss which is a result of a remote core

• Read miss: remote core wrote

• Write miss: remote core wrote or read

– 4th C of cache misses along with Compulsory, Capacity, &
Conflict.

5

4/18/2016 CS152, Spring 2016

Coherence Misses

1. True sharing misses arise from the communication of
data through the cache coherence mechanism
• Invalidates due to 1st write to shared line

• Reads by another CPU of modified line in different cache

• Miss would still occur if line size were 1 word

2. False sharing misses when a line is invalidated because
some word in the line, other than the one being read, is
written into
• Invalidation does not cause a new value to be communicated, but only

causes an extra cache miss

• Line is shared, but no word in line is actually shared
miss would not occur if line size were 1 word

6

state line addr data0 data1 ... dataN

4/18/2016 CS152, Spring 2016

Example: True v. False Sharing v. Hit?

7

Time P1 P2 True, False, Hit? Why?

1 Write x1

2 Read x2

3 Write x1

4 Write x2

5 Read x2

• Assume x1 and x2 in same cache line.
P1 and P2 both read x1 and x2 before.

True miss; invalidate x1 in P2

False miss; x1 irrelevant to P2

False miss; x1 irrelevant to P2

True miss; x2 not writeable

True miss; invalidate x2 in P1

4/18/2016 CS152, Spring 2016

MP Performance 4 Processor
Commercial Workload: OLTP, Decision Support

(Database), Search Engine

8

• Uniprocessor cache
misses
improve with
cache size increase
(Instruction,
Capacity/Conflict,
Compulsory)

• True sharing and
false sharing
unchanged going
from 1 MB to 8 MB
(L3 cache)

4/18/2016 CS152, Spring 2016

MP Performance 2MB Cache
Commercial Workload: OLTP, Decision Support

(Database), Search Engine

9

• True sharing,
false sharing
increase going
from 1 to 8 CPUs

4/18/2016 CS152, Spring 2016

What if We Had 128 Cores?

10

M1

M2

M3

Snoopy
Cache

DMA

Physical
Memory

Memory
Bus

Snoopy
Cache

Snoopy
Cache

DISKS

4/18/2016 CS152, Spring 2016

Bus Is a Synchronization Point

 So far, any message that enters the bus reaches all cores
and gets replies before another message can enter the
bus (instantaneous actions)

– Therefore, the bus forces ordering

11

M1

M2

M3

Snoopy
Cache

DMA

Physical
Memory

Memory
Bus

Snoopy
Cache

Snoopy
Cache

DISKS

4/18/2016 CS152, Spring 2016

Scaling Snoopy/Broadcast Coherence

 When any processor gets a miss, must probe every other cache

 Scaling up to more processors limited by:
– Communication bandwidth over bus

– Snoop bandwidth into tags

 Can improve bandwidth by using multiple interleaved buses
with interleaved tag banks

– E.g, two bits of address pick which of four buses and four tag banks to use –
(e.g., bits 7:6 of address pick bus/tag bank, bits 5:0 pick byte in 64-byte line)

 Buses don’t scale to large number of connections

12

4/18/2016 CS152, Spring 2016

This Scales Better

13

4/18/2016 CS152, Spring 2016

What if Bus Does not Synchronize?

 What if a cache broadcasts invalidations to transition to
modified (M), and before that completes it receives an
invalidation from another core’s transition to modified?

14

M E

S I

Write miss

Other processor
intent to write

Read miss,
shared

Other processor
intent to write

P1 write

Read by any
processor

Other processor reads

P1 writes back

P1 read
P1 write
or read

Cache state in
processor P1

P1 intent
to write

Read miss,
not sharedOther

processor
reads

Other processor
intent to write, P1
writes back

4/18/2016 CS152, Spring 2016

What if Bus Does not Synchronize?

 Time view:

P1 P2

15

4/18/2016 CS152, Spring 2016

Scalable Approach: Directories

 Can use point-to-point network for larger number of
nodes, but then limited by tag bandwidth when
broadcasting snoop requests.

 Insight: Most snoops fail to find a match!

 Every memory line has associated directory information
– keeps track of copies of cached lines and their states

– on a miss, find directory entry, look it up, and communicate only with
the nodes that have copies if necessary

– in scalable networks, communication with directory and copies is
through network transactions

 Many alternatives for organizing directory information

16

4/18/2016 CS152, Spring 2016

Directory Cache Protocol
(Lab 5 Handout)

 Assumptions: Reliable network, FIFO message delivery
between any given source-destination pair

17

CPU

Cache

Interconnection Network

Directory

Controller

DRAM Bank

Directory

Controller

DRAM Bank

CPU

Cache

CPU

Cache

CPU

Cache

CPU

Cache

CPU

Cache

Directory

Controller

DRAM Bank

Directory

Controller

DRAM Bank

DataTagStat.

Each line in cache has

state field plus tag

DataStat. Directry

Each line in memory

has state field plus bit

vector directory with

one bit per processor

4/18/2016 CS152, Spring 2016

Vector Directory Bit Mask

 With four cores, means that cores 2 and 3 have that line in
their local cache

 Can also have a list of core IDs

 With MESI, how do we know what state each cache has
the line in?

– Think of the case with one sharer

18

DataStat. Directry

0 1 1 0

4/18/2016 CS152, Spring 2016

Cache States

For each cache line, there are 4 possible states
(based on MSI):

– C-invalid (= Nothing): The accessed data is not resident in the
cache.

– C-shared (= Sh): The accessed data is resident in the cache, and
possibly also cached at other sites. The data in memory is valid.

– C-modified (= Ex): The accessed data is exclusively resident in this
cache, and has been modified. Memory does not have the most
up-to-date data.

– C-transient (= Pending): The accessed data is in a transient state
(for example, the site has just issued a protocol request, but has
not received the corresponding protocol reply).

19

4/18/2016 CS152, Spring 2016

Network Has No Ordering Guarantees

20

CPU

Cache

Interconnection Network

Directory

Controller

DRAM Bank

Directory

Controller

DRAM Bank

CPU

Cache

CPU

Cache

CPU

Cache

CPU

Cache

CPU

Cache

Directory

Controller

DRAM Bank

Directory

Controller

DRAM Bank

DataTagStat.

Each line in cache has

state field plus tag

DataStat. Directry

Each line in memory

has state field plus bit

vector directory with

one bit per processor

4/18/2016 CS152, Spring 2016

Home Directory States

 For each memory line, there are 4 possible states:
– R(dir): The memory line is shared by the sites specified in dir (dir

is a set of sites). The data in memory is valid in this state. If dir is
empty (i.e., dir = ε), the memory line is not cached by any site.

– W(id): The memory line is exclusively cached at site id, and has
been modified at that site. Memory does not have the most up-
to-date data.

– TR(dir): The memory line is in a transient state waiting for the
acknowledgements to the invalidation requests that the home
site has issued.

– TW(id): The memory line is in a transient state waiting for a line
exclusively cached at site id (i.e., in C-modified state) to make the
memory line at the home site up-to-date.

 Different states in directory than caches

21

4/18/2016 CS152, Spring 2016

Read miss, to uncached or shared line

22

Directory

Controller

DRAM Bank

CPU

Cache

1

Load request at head of

CPU->Cache queue.

2Load misses in cache.

3Send ShReq

message to directory.

4
Message received at

directory controller.

5
Access state and directory for line.

Line’s state is R, with zero or more

sharers.

6

Update directory by

setting bit for new

processor sharer.

7
Send ShRep message with

contents of cache line.

8 ShRep arrives at cache.

9

Update cache tag and data and

return load data to CPU.

Interconnection Network

4/18/2016 CS152, Spring 2016

Write miss, to read shared line

23

Directory

Controller

DRAM Bank

CPU

Cache

1

Store request at head of

CPU->Cache queue.

2Store misses in cache.

3Send ExReq message

to directory.

4

ExReq message received

at directory controller.

5
Access state and directory for

line. Line’s state is R, with some

set of sharers.

6 Send one InvReq

message to each sharer.

11

ExRep arrives

at cache

12

Update cache tag and

data, then store data

from CPU

Interconnection Network

CPU

Cache

7

InvReq arrives

at cache.
8

Invalidate

cache line.

Send InvRep

to directory.

9InvRep received.

Clear down sharer bit.

10
When no more sharers,

send ExRep to cache.

Multiple sharers

CPU

Cache

CPU

Cache

4/18/2016 CS152, Spring 2016

Concurrency Management

 Protocol would be easy to design if only one transaction in
flight across entire system

 But, want greater throughput and don’t want to have to
coordinate across entire system

 Great complexity in managing multiple outstanding
concurrent transactions to cache lines

– Can have multiple requests in flight to same cache line!

24

4/18/2016 CS152, Spring 2016

This is The Standard MESI

25

M E

S I

Write miss

Other processor
intent to write

Read miss,
shared

Other processor
intent to write

P1 write

Read by any
processor

Other processor reads

P1 writes back

P1 read
P1 write
or read

Cache state in
processor P1

P1 intent
to write

Read miss,
not sharedOther

processor
reads

Other processor
intent to write, P1
writes back

4/18/2016 CS152, Spring 2016

With Transients (Cache)

Based on MESI

26

4/18/2016 CS152, Spring 2016

With Transient (Directory)

 17 states
with MESI!

– If you are
curious:
http://www.
m5sim.org/
MESI_Two_L
evel

 Figure based
on MSI: 13
states

27

http://www.m5sim.org/MESI_Two_Level

4/18/2016 CS152, Spring 2016

More Complex Coherence Protocols

28

4/18/2016 CS152, Spring 2016

Protocol Messages (MESI)

There are 10 different protocol messages:

29

Category Messages

Cache to Memory
Requests

ShReq, ExReq

Memory to Cache
Requests

WbReq, InvReq, FlushReq

Cache to Memory
Responses

WbRep(v), InvRep, FlushRep(v)

Memory to Cache
Responses

ShRep(v), ExRep(v)

4/18/2016 CS152, Spring 2016

Cache State Transitions
(from invalid state)

30

4/18/2016 CS152, Spring 2016

Cache State Transitions
(from shared state)

31

4/18/2016 CS152, Spring 2016

Cache State Transitions
(from exclusive state)

32

4/18/2016 CS152, Spring 2016

Cache Transitions
(from pending)

33

4/18/2016 CS152, Spring 2016

Home Directory State Transitions

34

Messages sent from site id

4/18/2016 CS152, Spring 2016

Home Directory State Transitions

35

Messages sent from site id

4/18/2016 CS152, Spring 2016

Home Directory State Transitions

36

Messages sent from site id

4/18/2016 CS152, Spring 2016

Home Directory State Transitions

37

Messages sent from site id

4/18/2016 CS152, Spring 2016

Acknowledgements

 These slides contain material developed and copyright by:
– Arvind (MIT)

– Krste Asanovic (MIT/UCB)

– Joel Emer (Intel/MIT)

– James Hoe (CMU)

– John Kubiatowicz (UCB)

– David Patterson (UCB)

– Mark Hill (U. Wisconsin-Madison)

– Dana Vantrase, Mikko Lipasti, Nathan Binkert (U. Wisconsin-Madison &
HP)

 MIT material derived from course 6.823

 UCB material derived from course CS252

38

