
4/13/2016	 CS152,	Spring	2016	

CS	152	Computer	Architecture	
and	Engineering	

	
	Lecture	18:	Snoopy	Caches	

Dr. George Michelogiannakis
EECS, University of California at Berkeley

CRD, Lawrence Berkeley National Laboratory

http://inst.eecs.berkeley.edu/~cs152!

4/13/2016	 CS152,	Spring	2016	

Administrivia	

§  Lab	4	due	now	

§  PS	5	due	next	week	Wednesday	(20th)	

§  Lecture	20	will	be	on	datacenters	

§ Quiz	4	and	PS	3	will	be	returned	tomorrow	

2	

4/13/2016	 CS152,	Spring	2016	

Last	=me	in	Lecture	17	

Two	kinds	of	synchronizaKon	between	processors:	
§  Producer-Consumer	

–  Consumer	must	wait	unKl	producer	has	produced	value	
–  SoPware	version	of	a	read-aPer-write	hazard	

§ Mutual	Exclusion	
–  Only	one	processor	can	be	in	a	criKcal	secKon	at	a	Kme	
–  CriKcal	secKon	guards	shared	data	that	can	be	wriTen	

§  Producer-consumer	synchronizaKon	implementable	with	just	
loads	and	stores,	but	need	to	know	ISA’s	memory	model!	

§ Mutual-exclusion	can	also	be	implemented	with	loads	and	
stores,	but	tricky	and	slow,	so	ISAs	add	atomic	read-modify-
write	instrucKons	to	implement	locks	

3	

4/13/2016	 CS152,	Spring	2016	

Sequen=al	Consistency	

4	

Cost:

Prevents aggressive compiler
reordering optimizations

Constrains hardware utilization (e.g.,
store buffer)

4/13/2016	 CS152,	Spring	2016	

Sequen=al	Consistency	

5	

Sequential consistency imposes more memory ordering
constraints than those imposed by uniprocessor
program dependencies ()

 What are these in our example ?

T1: T2:

Store (X), 1 (X = 1) Load R1, (Y)
Store (Y), 11 (Y = 11) Store (Y’), R1 (Y’= Y)

 Load R2, (X)
 Store (X’), R2 (X’= X)

additional SC requirements

4/13/2016	 CS152,	Spring	2016	

Load-reserve	&	Store-condi=onal	

6	

Special register(s) to hold reservation flag and address,
and the outcome of store-conditional

try: Load-reserve Rhead, (head)
spin: Load Rtail, (tail)

 if Rhead==Rtail goto spin
 Load R, (Rhead)
 Rhead = Rhead + 1
 Store-conditional (head), Rhead
 if (status==fail) goto try
 process(R)

Load-reserve R, (m):
<flag, adr> ← <1, m>;
R ← M[m];

Store-conditional (m), R:
if <flag, adr> == <1, m>
then cancel other procs’

 reservation on m;
 M[m] ← R;
 status ← succeed;

else status ← fail;

4/13/2016	 CS152,	Spring	2016	

Performance	of	Locks	

7	

Blocking atomic read-modify-write instructions
 e.g., Test&Set, Fetch&Add, Swap
 vs

Non-blocking atomic read-modify-write instructions
 e.g., Compare&Swap,
 Load-reserve/Store-conditional
 vs

Protocols based on ordinary Loads and Stores

Performance depends on several interacting factors:

 degree of contention,
 caches,
 out-of-order execution of Loads and Stores

 later ...

4/13/2016	 CS152,	Spring	2016	

Amdahl’s	Law	

8	

Begins with Simple Software Assumption (Limit Arg.)

Fraction F of execution time perfectly parallelizable

No Overhead for Scheduling Communication, Synchronization, etc.

 F is the Parallel Part

 Fraction 1 – F Completely Serial

 Time on 1 core = (1 – F) / 1 + F / 1 = 1

 Time on N cores = (1 – F) / 1 + F / N

4/13/2016	 CS152,	Spring	2016	

Strong	Consistency	

9	

An execution is strongly consistent
(linearizable) if the method calls can
be correctly arranged retaining the

mutual order of calls that do not
overlap in time, regardless of what

thread calls them.

4/13/2016	 CS152,	Spring	2016	

Quiescent	Consistency	

10	

An execution is quiescently consistent
if the method calls can be correctly

arranged retaining the mutual order of
calls separated by quiescence, a
period of time where no method is

being called in any thread.

4/13/2016	 CS152,	Spring	2016	

Relaxed	Memory	Models	Need	Fences	

11	

Producer posting Item x:
 Load Rtail, (tail)
 Store (Rtail), x
 MembarSS
 Rtail=Rtail+1
 Store (tail), Rtail

Consumer:
 Load Rhead, (head)

spin: Load Rtail, (tail)
 if Rhead==Rtail goto spin
 MembarLL
 Load R, (Rhead)
 Rhead=Rhead+1
 Store (head), Rhead
 process(R)

Producer Consumer
tail head

 Rtail Rtail Rhead R

ensures that tail ptr
is not updated before
x has been stored

ensures that R is
not loaded before
x has been stored

4/13/2016	 CS152,	Spring	2016	

Memory	Coherence	in	SMPs	

12	

Suppose CPU-1 updates A to 200.
 write-back: memory and cache-2 have stale values
 write-through: cache-2 has a stale value

Do these stale values matter?
What is the view of shared memory for programming?

cache-1 A 100

CPU-Memory bus

CPU-1 CPU-2

cache-2 A 100

memory A 100

4/13/2016	 CS152,	Spring	2016	

Write-back	Caches	&	SC	

13	

•  T1 is executed

prog T2
LD Y, R1
ST Y’, R1
LD X, R2
ST X’,R2

 prog T1
 ST X, 1
 ST Y,11

cache-2 cache-1 memory
 X = 0
 Y =10
 X’=
 Y’=

 X= 1
 Y=11

 Y =
 Y’=
 X =
 X’=

•  cache-1 writes back Y
 X = 0
 Y =11
 X’=
 Y’=

 X= 1
 Y=11

 Y =
 Y’=
 X =
 X’=

 X = 1
 Y =11
 X’=
 Y’=

 X= 1
 Y=11

 Y = 11
 Y’= 11
 X = 0
 X’= 0

•  cache-1 writes back X

 X = 0
 Y =11
 X’=
 Y’=

 X= 1
 Y=11

 Y = 11
 Y’= 11
 X = 0
 X’= 0

•  T2 executed

 X = 1
 Y =11
 X’= 0
 Y’=11

 X= 1
 Y=11

 Y =11
 Y’=11
 X = 0
 X’= 0

•  cache-2 writes back
 X’ & Y’

4/13/2016	 CS152,	Spring	2016	

Write-through	Caches	&	SC	

14	

cache-2
 Y =
 Y’=
 X = 0
 X’=

memory
 X = 0
 Y =10
 X’=
 Y’=

cache-1
 X= 0
 Y=10

prog T2
LD Y, R1
ST Y’, R1
LD X, R2
ST X’,R2

 prog T1
 ST X, 1
 ST Y,11

Write-through	caches	don’t	preserve	
sequen9al	consistency	either	

•  T1 executed

 Y =
 Y’=
 X = 0
 X’=

 X = 1
 Y =11
 X’=
 Y’=

 X= 1
 Y=11

•  T2 executed

 Y = 11
 Y’= 11
 X = 0
 X’= 0

 X = 1
 Y =11
 X’= 0
 Y’=11

 X= 1
 Y=11

4/13/2016	 CS152,	Spring	2016	

Maintaining	Cache	Coherence	

§ Hardware	support	is	required	such	that	
–  	only	one	processor	at	a	Kme	has	write	permission	for	
a	locaKon	

–  	no	processor	can	load	a	stale	copy	of	the	locaKon	
aPer	a	write	

->		cache	coherence	protocols	

15	

4/13/2016	 CS152,	Spring	2016	

Cache	Coherence	vs.	Memory	Consistency	

§ A	cache	coherence	protocol	ensures	that	all	writes	by	one	
processor	are	eventually	visible	to	other	processors,	for	
one	memory	address	
–  i.e.,	updates	are	not	lost	

§ No	guarantee	of	when	an	update	should	be	seen	
§ No	guarantee	of	what	order	of	updates	(of	different	
addresses)	should	be	seen	

§ A	cache	coherence	protocol	is	not	enough	to	ensure	
sequenKal	consistency	
–  But	if	sequenKally	consistent,	then	caches	must	be	coherent	

16	

4/13/2016	 CS152,	Spring	2016	

Cache	Coherence	vs.	Memory	Consistency	

§ A	memory	consistency	model	gives	the	rules	on	when	a	
write	by	one	processor	can	be	observed	by	a	read	on	
another,	across	different	addresses	
–  As	previously	seen	with	examples	

§ CombinaKon	of	cache	coherence	protocol	plus	processor	
memory	reorder	buffer	used	to	implement	a	given	
architecture’s	memory	consistency	model	

17	

4/13/2016	 CS152,	Spring	2016	

Warmup:	Parallel	I/O	

18	

 (DMA stands for “Direct Memory Access”, means the I/O device
can read/write memory autonomous from the CPU)

Either Cache or DMA can
be the Bus Master and
effect transfers

 DISK
 DMA

Physical
Memory

Proc.

R/W

Data (D) Cache

Address (A)

A
D

R/W

Page transfers
occur while the
Processor is running

Memory
 Bus

4/13/2016	 CS152,	Spring	2016	

Problems	with	Parallel	I/O	

19	

Memory Disk: Physical memory may be
 stale if cache copy is dirty

Disk Memory: Cache may hold stale data and not

 see memory writes

 DISK

 DMA

Physical
Memory

Proc.
Cache

Memory
 Bus

Cached portions
 of page

 DMA transfers

4/13/2016	 CS152,	Spring	2016	

Snoopy	Cache,	Goodman	1983	

§  Idea:	Have	cache	watch	(or	snoop	upon)	DMA	transfers,	
and	then	“do	the	right	thing”	

§  Snoopy	cache	tags	are	dual-ported	

20	

 Proc.

 Cache

Snoopy read port
attached to Memory
Bus Data

(lines)

Tags and
 State

A

D

R/W

Used to drive Memory Bus
when Cache is Bus Master

A

R/W

4/13/2016	 CS152,	Spring	2016	

Snoopy	Cache	Ac=ons	for	DMA	

21	

Observed Bus
 Cycle Cache State Cache Action

 Address not cached

DMA Read Cached, unmodified

Memory Disk Cached, modified
 Address not cached

DMA Write Cached, unmodified
Disk Memory Cached, modified

No action

No action

No action

Cache intervenes

Cache purges its copy

???

4/13/2016	 CS152,	Spring	2016	

Shared	Memory	Mul=processor	

22	

 Use snoopy mechanism to keep all processors’
view of memory coherent

M1

M2

M3

Snoopy
 Cache

DMA

Physical
 Memory

Memory
 Bus

Snoopy
 Cache

Snoopy
 Cache

 DISKS

4/13/2016	 CS152,	Spring	2016	

Snoopy	Cache	Coherence	Protocols	

23	

write miss:
the address is invalidated in all other
caches before the write is performed

read miss:

if a dirty copy is found in some cache, a write-
back is performed before the memory is read

4/13/2016	 CS152,	Spring	2016	

Cache	State	Transi=on	Diagram	
The	MSI	protocol	

24	

M

S I

M: Modified
S: Shared
 I: Invalid

Each cache line has state bits

Address tag
state
 bits Write miss

(P1 gets line from memory)

Other processor
intents to write
(P1 writes back)

 Read miss
(P1 gets line from memory)

Other processor
intents to write

Read by any
 processor

P1 reads
or writes

Cache state in
processor P1

Other processor reads
(P1 writes back)

4/13/2016	 CS152,	Spring	2016	

Two	Processor	Example	
(Reading	and	wri=ng	the	same	cache	line)	

25	

M

S I

Write miss

 Read
 miss

P2 intent to write

P2 reads,
P1 writes back

P1 reads
or writes

P2 intent to write

P1

M

S I

Write miss

 Read
 miss

P1 intent to write

P1 reads,
P2 writes back

P2 reads
or writes

P1 intent to write

P2

P1 reads
P1 writes
P2 reads
P2 writes

P1 writes
P2 writes

P1 reads

P1 writes

4/13/2016	 CS152,	Spring	2016	

Observa=on	

§  If	a	line	is	in	the	M	state	then	no	other	cache	can	have	a	copy	
of	the	line!	

§  	Memory	stays	coherent,	mulKple	differing	copies	cannot	exist	

26	

M

S I

Write miss

Other processor
intent to write

 Read
 miss

Other processor
intent to write

Read by any
 processor

P1 reads
or writes Other processor reads

P1 writes back

4/13/2016	 CS152,	Spring	2016	

MESI:	An	Enhanced	MSI	protocol	
	increased	performance	for	private	data	

27	

M E

S I

M: Modified Exclusive
E: Exclusive but unmodified
S: Shared
 I: Invalid

Each cache line has a tag

Address tag
state
 bits

Write miss

Other processor
intent to write

Read miss,
shared

Other processor
intent to write

P1 write

Read by any
 processor

Other processor reads
P1 writes back

P1 read
P1 write
or read

Cache state in
processor P1

P1 intent
to write

Read miss,
not shared Other

processor
reads

Other processor
intent to write, P1
writes back

4/13/2016	 CS152,	Spring	2016	

Op=mized	Snoop	with	Level-2	Caches	

28	

Snooper	 Snooper	 Snooper	 Snooper	

• 	Processors	oPen	have	two-level	caches	
• 	small	L1,	large	L2	(on	chip)	

• 	Inclusion	property:	entries	in	L1	must	be	in	L2	
						invalidaKon	in	L2	⇒		invalidaKon	in	L1	
• 	Snooping	on	L2	does	not	affect	CPU-L1	bandwidth	
		

	 	 	 	What	problem	could	occur?	

CPU	

L1	$	

L2	$	

CPU	

L1	$	

L2	$	

CPU	

L1	$	

L2	$	

CPU	

L1	$	

L2	$	

4/13/2016	 CS152,	Spring	2016	

Interven=on	

29	

When	a	read-miss	for	A	occurs	in	cache-2,		
a	read	request	for	A	is	placed	on	the	bus	

• 	Cache-1	needs	to	supply	&	change	its	state	to	shared	
• 	The	memory	may	respond	to	the	request	also!	

Does	memory	know	it	has	stale	data?	
Cache-1	needs	to	intervene	through	memory	controller	
to	supply	correct	data	to	cache-2	

cache-1	A 	200	

CPU-Memory	bus	

CPU-1	 CPU-2	

cache-2	

memory	(stale	data)	A 	100	

4/13/2016	 CS152,	Spring	2016	

False	Sharing	

30	

state line addr data0 data1 ... dataN

A cache line contains more than one word

Cache-coherence is done at the line-level and not
word-level

Suppose M1 writes wordi and M2 writes wordk and
both words have the same line address.

What can happen?

4/13/2016	 CS152,	Spring	2016	

Synchroniza=on	and	Caches:	
	Performance	Issues		

31	

Cache-coherence protocols will cause mutex to ping-pong
between P1’s and P2’s caches.

Ping-ponging can be reduced by first reading the mutex
location (non-atomically) and executing a swap only if it is
found to be zero.

cache

Processor 1
 R ← 1
L: swap (mutex), R;
 if <R> then goto L;
 <critical section>
 M[mutex] ← 0;

Processor 2
 R ← 1
L: swap (mutex), R;
 if <R> then goto L;
 <critical section>
 M[mutex] ← 0;

Processor 3
 R ← 1
L: swap (mutex), R;
 if <R> then goto L;
 <critical section>
 M[mutex] ← 0;

 CPU-Memory Bus

mutex=1 cache cache

4/13/2016	 CS152,	Spring	2016	

Load-reserve	&	Store-condi=onal	

32	

If the snooper sees a store transaction to the address
in the reserve register, the reserve bit is set to 0

•  Several processors may reserve ‘a’ simultaneously
•  These instructions are like ordinary loads and stores
 with respect to the bus traffic

Special register(s) to hold reservation flag and
address, and the outcome of store-conditional
Load-reserve R, (a):

<flag, adr> ← <1, a>;
R ← M[a];

Store-conditional (a), R:
if <flag, adr> == <1, a>
then cancel other procs’

 reservation on a;
 M[a] ← <R>;
 status ← succeed;

else status ← fail;

4/13/2016	 CS152,	Spring	2016	

Out-of-Order	Loads/Stores	&	CC	

33	

Blocking caches
One request at a time + CC ⇒ SC

Non-blocking caches
Multiple requests (different addresses) concurrently + CC
 ⇒ Relaxed memory models

CC ensures that all processors observe the same
order of loads and stores to an address

Cache
Memory pushout (Wb-rep)

load/store
buffers

CPU

(S-req, E-req)

(S-rep, E-rep)

Wb-req, Inv-req, Inv-rep
snooper

(I/S/E)

CPU/Memory
Interface

4/13/2016	 CS152,	Spring	2016	

Acknowledgements	

§  These	slides	contain	material	developed	and	copyright	by:	
–  Arvind	(MIT)	
–  Krste	Asanovic	(MIT/UCB)	
–  Joel	Emer	(Intel/MIT)	
–  James	Hoe	(CMU)	
–  John	Kubiatowicz	(UCB)	
–  David	PaTerson	(UCB)	

§ MIT	material	derived	from	course	6.823	
§ UCB	material	derived	from	course	CS252	
§  “New	microprocessor	claims	10x	energy	improvement”,	
from	extremetech	

§  “Exploring	the	diverse	world	of	programming”	by	Pavel	
Shved	

§  “Amdahl’s	Law	in	the	MulKcore	Era”	b	Mark	D.	Hill	and	
Michael	R.	Marty	

34	

