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Administrivia	

§  Lab	4	due	now	

§  PS	5	due	next	week	Wednesday	(20th)	

§  Lecture	20	will	be	on	datacenters	

§ Quiz	4	and	PS	3	will	be	returned	tomorrow	
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Last	=me	in	Lecture	17	

Two	kinds	of	synchronizaKon	between	processors:	
§  Producer-Consumer	

–  Consumer	must	wait	unKl	producer	has	produced	value	
–  SoPware	version	of	a	read-aPer-write	hazard	

§ Mutual	Exclusion	
–  Only	one	processor	can	be	in	a	criKcal	secKon	at	a	Kme	
–  CriKcal	secKon	guards	shared	data	that	can	be	wriTen	

§  Producer-consumer	synchronizaKon	implementable	with	just	
loads	and	stores,	but	need	to	know	ISA’s	memory	model!	

§ Mutual-exclusion	can	also	be	implemented	with	loads	and	
stores,	but	tricky	and	slow,	so	ISAs	add	atomic	read-modify-
write	instrucKons	to	implement	locks	
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Sequen=al	Consistency	
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Cost: 

Prevents aggressive compiler 
reordering optimizations 

Constrains hardware utilization (e.g., 
store buffer) 
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Sequen=al	Consistency	

5	

Sequential consistency imposes more memory ordering 
constraints than those imposed by uniprocessor 
program dependencies (     ) 
 
      What are these in our example ? 
 
T1:     T2: 

Store (X), 1   (X =  1)        Load R1, (Y)   
Store (Y), 11 (Y = 11)        Store (Y’), R1 (Y’= Y) 

          Load R2, (X)  
          Store (X’), R2 (X’= X) 

additional SC requirements 
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Load-reserve	&	Store-condi=onal	
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Special register(s) to hold reservation flag and address,  
and the outcome of store-conditional 

try:   Load-reserve Rhead, (head) 
spin:  Load Rtail, (tail) 

 if Rhead==Rtail goto spin 
 Load R, (Rhead) 
 Rhead = Rhead + 1 
 Store-conditional (head), Rhead 
 if (status==fail) goto try 
 process(R) 

Load-reserve R, (m): 
<flag, adr> ← <1, m>;  
R ← M[m]; 

Store-conditional (m), R: 
if <flag, adr> == <1, m>  
then  cancel other procs’  

    reservation on m; 
   M[m] ← R;   
   status ← succeed; 

else  status ← fail; 
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Performance	of	Locks	
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Blocking atomic read-modify-write instructions 
 e.g., Test&Set, Fetch&Add, Swap  
   vs 

Non-blocking atomic read-modify-write instructions 
 e.g., Compare&Swap,  
         Load-reserve/Store-conditional 
   vs 

Protocols based on ordinary Loads and Stores 
 
 
Performance depends on several interacting factors: 

 degree of contention,  
 caches,  
 out-of-order execution of Loads and Stores 

 
   later ... 
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Amdahl’s	Law	
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Begins with Simple Software Assumption (Limit Arg.) 

Fraction F of execution time perfectly parallelizable 

No Overhead for Scheduling Communication, Synchronization, etc. 

 

 F is the Parallel Part 

       Fraction 1 – F Completely Serial 

 

 Time on 1 core = (1 – F) / 1 + F / 1  =  1 

 

 Time on N cores = (1 – F) / 1 +  F / N 
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Strong	Consistency	
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An execution is strongly consistent 
(linearizable) if the method calls can 
be correctly arranged retaining the 

mutual order of calls that do not 
overlap in time, regardless of what 

thread calls them.  
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Quiescent	Consistency	

10	

An execution is quiescently consistent 
if the method calls can be correctly 

arranged retaining the mutual order of 
calls separated by quiescence, a 
period of time where no method is 

being called in any thread. 
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Relaxed	Memory	Models	Need	Fences	
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Producer posting Item x: 
 Load Rtail, (tail) 
 Store (Rtail), x 
 MembarSS 
 Rtail=Rtail+1 
 Store (tail), Rtail 

Consumer: 
 Load Rhead, (head) 

spin:  Load Rtail, (tail) 
 if Rhead==Rtail goto spin 
 MembarLL 
 Load R, (Rhead) 
 Rhead=Rhead+1 
 Store (head), Rhead 
 process(R) 

Producer Consumer 
tail head 

  Rtail Rtail Rhead R 

ensures that tail ptr 
is not updated before  
x has been stored 

ensures that R is 
not loaded before  
x has been stored 
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Memory	Coherence	in	SMPs	
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Suppose CPU-1 updates A to 200.   
  write-back:  memory and cache-2 have stale values 
  write-through:  cache-2 has a stale value 
  
Do these stale values matter? 
What is the view of shared memory for programming? 

cache-1 A  100 

CPU-Memory bus 

CPU-1 CPU-2 

cache-2 A  100 

memory A  100 
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Write-back	Caches	&	SC	
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•  T1 is executed  

prog T2 
LD Y, R1 
ST Y’, R1 
LD X, R2 
ST X’,R2 

  prog T1 
  ST X, 1 
  ST Y,11 

cache-2 cache-1 memory 
  X = 0 
  Y =10 
  X’= 
  Y’= 

  X= 1 
  Y=11 

  Y = 
  Y’=  
  X =  
  X’=   

•  cache-1 writes back Y 
  X = 0 
  Y =11 
  X’= 
  Y’= 

  X= 1 
  Y=11 

  Y = 
  Y’=  
  X =  
  X’=   

  X = 1 
  Y =11 
  X’= 
  Y’= 

  X= 1 
  Y=11 

  Y = 11 
  Y’= 11 
  X = 0 
  X’= 0 

•  cache-1 writes back X 

  X = 0 
  Y =11 
  X’= 
  Y’= 

  X= 1 
  Y=11 

  Y = 11 
  Y’= 11 
  X = 0 
  X’= 0 

•  T2 executed 

  X = 1 
  Y =11 
  X’= 0 
  Y’=11 

  X= 1 
  Y=11 

  Y =11 
  Y’=11  
  X = 0 
  X’= 0  

•  cache-2 writes back  
   X’ & Y’ 
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Write-through	Caches	&	SC	
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cache-2 
  Y =  
  Y’=  
  X = 0 
  X’=   

memory 
  X = 0 
  Y =10 
  X’= 
  Y’= 

cache-1 
  X= 0 
  Y=10 

prog T2 
LD Y, R1 
ST Y’, R1 
LD X, R2 
ST X’,R2 

  prog T1 
  ST X, 1 
  ST Y,11 

Write-through	caches	don’t	preserve	
sequen9al	consistency	either	

•  T1 executed 

 
  Y =  
  Y’=  
  X = 0 
  X’=   

 
  X = 1 
  Y =11 
  X’= 
  Y’= 

 
  X= 1 
  Y=11 

•  T2 executed 
 
  Y = 11 
  Y’= 11 
  X = 0 
  X’= 0 

 
  X = 1 
  Y =11 
  X’= 0 
  Y’=11 

 
  X= 1 
  Y=11 
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Maintaining	Cache	Coherence	

§ Hardware	support	is	required	such	that	
–  	only	one	processor	at	a	Kme	has	write	permission	for	
a	locaKon	

–  	no	processor	can	load	a	stale	copy	of	the	locaKon	
aPer	a	write	

->		cache	coherence	protocols	

15	
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Cache	Coherence	vs.	Memory	Consistency	

§ A	cache	coherence	protocol	ensures	that	all	writes	by	one	
processor	are	eventually	visible	to	other	processors,	for	
one	memory	address	
–  i.e.,	updates	are	not	lost	

§ No	guarantee	of	when	an	update	should	be	seen	
§ No	guarantee	of	what	order	of	updates	(of	different	
addresses)	should	be	seen	

§ A	cache	coherence	protocol	is	not	enough	to	ensure	
sequenKal	consistency	
–  But	if	sequenKally	consistent,	then	caches	must	be	coherent	

16	
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Cache	Coherence	vs.	Memory	Consistency	

§ A	memory	consistency	model	gives	the	rules	on	when	a	
write	by	one	processor	can	be	observed	by	a	read	on	
another,	across	different	addresses	
–  As	previously	seen	with	examples	

§ CombinaKon	of	cache	coherence	protocol	plus	processor	
memory	reorder	buffer	used	to	implement	a	given	
architecture’s	memory	consistency	model	

17	
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Warmup:	Parallel	I/O	

18	

 (DMA stands for “Direct Memory Access”, means the I/O device 
can read/write memory autonomous from the CPU) 

Either Cache or DMA can 
be the Bus Master and 
effect transfers 

 DISK 
 DMA 

Physical 
Memory 

Proc.  

R/W  

Data (D) Cache 

Address (A) 

A 
D 

R/W  

Page transfers 
occur while the 
Processor is running 

Memory 
   Bus 
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Problems	with	Parallel	I/O	

19	

Memory      Disk: Physical memory may be 
                              stale if cache copy is dirty 
 
Disk     Memory:  Cache may hold stale data and not 

   see memory writes  

 DISK 

 DMA 

Physical 
Memory 

Proc. 
Cache 

Memory 
   Bus 

Cached portions 
       of page 

 DMA transfers 
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Snoopy	Cache,	Goodman	1983	

§  Idea:	Have	cache	watch	(or	snoop	upon)	DMA	transfers,	
and	then	“do	the	right	thing”	

§  Snoopy	cache	tags	are	dual-ported	

20	

 Proc.  

 Cache 

Snoopy read port 
attached to Memory 
Bus  Data 

(lines) 

Tags and 
    State 

A 

D 

R/W  

Used to drive Memory Bus 
when Cache is Bus Master 

A 

R/W  
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Snoopy	Cache	Ac=ons	for	DMA	

21	

Observed Bus        
   Cycle                 Cache State                    Cache Action 

 
                      Address not cached 

DMA Read         Cached, unmodified 

Memory      Disk    Cached, modified 
                      Address not cached 

DMA Write          Cached, unmodified 
Disk     Memory     Cached, modified 

No action 

No action 

No action 

Cache intervenes 

Cache purges its copy 

??? 
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Shared	Memory	Mul=processor	

22	

   Use snoopy mechanism to keep all processors’ 
view of memory coherent 

M1 

M2 

M3 

Snoopy 
 Cache 

DMA 

Physical 
 Memory 

Memory 
   Bus 

Snoopy 
 Cache 

Snoopy 
 Cache 

 DISKS 
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Snoopy	Cache	Coherence	Protocols	

23	

write miss:   
the address is invalidated in all other 
caches before the write is performed 

 
read miss:   

if a dirty copy is found in some cache, a write-
back is performed before the memory is read   
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Cache	State	Transi=on	Diagram	
The	MSI	protocol	

24	

M 

S I 

M: Modified 
S: Shared  
 I: Invalid 

Each cache line has state bits 

Address tag 
state 
 bits Write miss 

(P1 gets line from memory) 
 

Other processor 
intents to write 
(P1 writes back) 

 Read miss 
(P1 gets line from memory) 

Other processor 
intents to write 

Read by any 
 processor 

P1 reads 
or writes 

Cache state in 
processor P1 

Other processor reads 
(P1 writes back) 
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Two	Processor	Example	
(Reading	and	wri=ng	the	same	cache	line)	

25	

M 

S I 

Write miss 

 Read 
 miss 

P2 intent to write 

P2 reads, 
P1 writes back 

P1 reads 
or writes 

P2 intent to write 

P1 

M 

S I 

Write miss 

 Read 
 miss 

P1 intent to write 

P1 reads, 
P2 writes back 

P2 reads 
or writes 

P1 intent to write 

P2 

P1 reads 
P1 writes 
P2 reads 
P2 writes 

P1 writes 
P2 writes 

P1 reads 

P1 writes 
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Observa=on	

§  If	a	line	is	in	the	M	state	then	no	other	cache	can	have	a	copy	
of	the	line!	

§  	Memory	stays	coherent,	mulKple	differing	copies	cannot	exist	

26	

M 

S I 

Write miss 

Other processor 
intent to write 

 Read 
 miss 

Other processor 
intent to write 

Read by any 
 processor 

P1 reads 
or writes Other processor reads 

P1 writes back 



4/13/2016	 CS152,	Spring	2016	

MESI:	An	Enhanced	MSI	protocol	
	increased	performance	for	private	data	

27	

M E 

S I 

M: Modified Exclusive 
E: Exclusive but unmodified 
S: Shared  
 I: Invalid 

Each cache line has a tag 

Address tag 
state 
 bits 

Write miss 

Other processor 
intent to write 

Read miss, 
shared 

Other processor 
intent to write 

P1 write 

Read by any 
 processor 

Other processor reads 
P1 writes back 

P1 read 
P1 write 
or read 

Cache state in 
processor P1 

P1 intent 
to write 

Read miss, 
not shared Other 

processor 
reads 

Other processor 
intent to write, P1 
writes back 
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Op=mized	Snoop	with	Level-2	Caches	

28	

Snooper	 Snooper	 Snooper	 Snooper	

• 	Processors	oPen	have	two-level	caches	
• 	small	L1,	large	L2	(on	chip)	

• 	Inclusion	property:	entries	in	L1	must	be	in	L2	
						invalidaKon	in	L2	⇒		invalidaKon	in	L1	
• 	Snooping	on	L2	does	not	affect	CPU-L1	bandwidth	
		

	 	 	 	What	problem	could	occur?	

CPU	

L1	$	

L2	$	

CPU	

L1	$	

L2	$	

CPU	

L1	$	

L2	$	

CPU	

L1	$	

L2	$	
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Interven=on	
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When	a	read-miss	for	A	occurs	in	cache-2,		
a	read	request	for	A	is	placed	on	the	bus	

• 	Cache-1	needs	to	supply	&	change	its	state	to	shared	
• 	The	memory	may	respond	to	the	request	also!	

Does	memory	know	it	has	stale	data?	
Cache-1	needs	to	intervene	through	memory	controller	
to	supply	correct	data	to	cache-2	

cache-1	A 	200	

CPU-Memory	bus	

CPU-1	 CPU-2	

cache-2	

memory	(stale	data)	A 	100	
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False	Sharing	

30	

state   line addr  data0 data1        ...     dataN 

A cache line contains more than one word 
 
Cache-coherence is done at the line-level and not 
word-level 
 
Suppose M1 writes wordi and M2 writes wordk and 
both words have the same line address. 
 
What can happen? 
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Synchroniza=on	and	Caches:	
	Performance	Issues		
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Cache-coherence protocols will cause mutex to ping-pong 
between P1’s and P2’s caches. 
 
Ping-ponging can be reduced by first reading the mutex 
location (non-atomically) and executing a swap only if it is 
found to be zero.  

cache 

Processor 1 
    R ← 1 
L: swap (mutex), R; 
    if  <R> then goto L;  
      <critical section> 
    M[mutex] ← 0; 

Processor 2 
    R ← 1 
L: swap (mutex), R; 
    if  <R> then goto L;  
      <critical section> 
    M[mutex] ← 0; 

Processor 3 
    R ← 1 
L: swap (mutex), R; 
    if  <R> then goto L;  
      <critical section> 
    M[mutex] ← 0; 

          CPU-Memory Bus 

mutex=1 cache cache 
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Load-reserve	&	Store-condi=onal	
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If the snooper sees a store transaction to the address 
in the reserve register, the reserve bit is set to 0 

•  Several processors may reserve ‘a’ simultaneously 
•  These instructions are like ordinary loads and stores 
  with respect to the bus traffic 

Special register(s) to hold reservation flag and 
address, and the outcome of store-conditional 
Load-reserve R, (a): 

<flag, adr> ← <1, a>;  
R ← M[a]; 

Store-conditional (a), R: 
if <flag, adr> == <1, a>  
then  cancel other procs’  

    reservation on a; 
   M[a] ← <R>;   
   status ← succeed; 

else  status ← fail; 
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Out-of-Order	Loads/Stores	&	CC	
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Blocking caches 
One request at a time + CC ⇒  SC 

Non-blocking caches  
Multiple requests (different addresses) concurrently + CC 
                                ⇒  Relaxed memory models 

CC ensures that all processors observe the same 
order of loads and stores to an address  

Cache 
Memory pushout (Wb-rep) 

load/store 
buffers 

CPU 

(S-req, E-req) 

(S-rep, E-rep) 

Wb-req, Inv-req, Inv-rep 
snooper 

(I/S/E) 

CPU/Memory 
Interface 
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