
4/6/2016 CS152, Spring 2016

CS 152 Computer Architecture

and Engineering

Lecture 17: Synchronization and Sequential

Consistency

Dr. George Michelogiannakis

EECS, University of California at Berkeley

CRD, Lawrence Berkeley National Laboratory

http://inst.eecs.berkeley.edu/~cs152

4/6/2016 CS152, Spring 2016

Administrivia

 PS 4 due NOW

 Quiz 4 Monday April 11th

– Please be on time

 Lab 4 due in a week (Wednesday April 13th)

 PS 5 is out

2

4/6/2016 CS152, Spring 2016

Last Time, Lecture 16: GPUs

 Data-Level Parallelism the least flexible but cheapest form of
machine parallelism, and matches application demands

 Graphics processing units have developed general-purpose
processing capability for use outside of traditional graphics
functionality (GP-GPUs)

 SIMT model presents programmer with illusion of many
independent threads, but executes them in SIMD style on a
vector-like multilane engine.

 Complex control flow handled with hardware to turn branches
into mask vectors and stack to remember µthreads on
alternate path

 No scalar processor, so µthreads do redundant work, unit-
stride loads and stores recovered via hardware memory
coalescing

3

4/6/2016 CS152, Spring 2016

Uniprocessor Performance (SPECint)

4

1

10

100

1000

10000

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

P
e

rf
o

rm
a

n
c
e
 (

v
s
.

V
A

X
-1

1
/7

8
0
)

25%/year

52%/year

??%/year

• VAX : 25%/year 1978 to 1986

• RISC + x86: 52%/year 1986 to 2002

• RISC + x86: ??%/year 2002 to present

From Hennessy and Patterson,

Computer Architecture: A Quantitative

Approach, 4th edition, 2006

3X

4/6/2016 CS152, Spring 2016

Power, Frequency, ILP

5

4/6/2016 CS152, Spring 2016

End of Moore’s Law

A series of one-offs can
never substitute for an
exponential

17

He also said
they would
have to “move
away” from
silicon!

“…we think we can continue Moore’s Law for at least another 10 years…”

“…eventually Moore’s Law will slow down or come to an end…”

“Bohr predicted that Moore’s Law will not come to an abrupt halt, but will
morph and evolve …scaling density by the 3D stacking of components
rather than continuing to reduce transistor size.”

http://www.v3.co.uk/v3-uk/news/2403113/intel-predicts-moores-law-to-last-another-10-years

Atomic scale limit case for 2D Lithography Scaling

End of Moore’s Law

A series of one-offs can
never substitute for an
exponential

17

He also said
they would
have to “move
away” from
silicon!

“…we think we can continue Moore’s Law for at least another 10 years…”

“…eventually Moore’s Law will slow down or come to an end…”

“Bohr predicted that Moore’s Law will not come to an abrupt halt, but will
morph and evolve …scaling density by the 3D stacking of components
rather than continuing to reduce transistor size.”

http://www.v3.co.uk/v3-uk/news/2403113/intel-predicts-moores-law-to-last-another-10-years

2027?

5nm

4/6/2016 CS152, Spring 2016

Intel Adapts To Slowdown

7

4/6/2016 CS152, Spring 2016

Why Power Is No Longer Reducing

 Dennard’s scaling

 Power = activity_factor * C * F * V2

– Capacitance is reduced with area (smaller technology)

 Why can’t we scale down voltage any more?

8

4/6/2016 CS152, Spring 2016

Threshold Voltage

9

4/6/2016 CS152, Spring 2016

Frequency Has Stopped Scaling Too

10

4/6/2016 CS152, Spring 2016

Parallel Processing

 “We are dedicating all of our future product development
to multicore designs. … This is a sea change in computing”

– Paul Otellini, President, Intel (2005)

 All microprocessor companies switch to MP (2+ CPUs/2 yrs)

11

4/6/2016 CS152, Spring 2016

Name MultiCore Systems

12

4/6/2016 CS152, Spring 2016

Symmetric Multiprocessors

13

symmetric
• All memory is equally far
away from all processors

• Any processor can do any I/O
(set up a DMA transfer)

Memory

I/O controller

Graphics
output

CPU-Memory bus

bridge

Processor

I/O controller I/O controller

I/O bus

Networks

Processor

4/6/2016 CS152, Spring 2016

Why Would We Want Asymmetry?

14

4/6/2016 CS152, Spring 2016

Synchronization

15

The need for synchronization arises whenever
there are concurrent processes in a system

(even in a uniprocessor system)

Two classes of synchronization:

Producer-Consumer: A consumer process must
wait until the producer process has produced
data

Mutual Exclusion: Ensure that only one
process uses a resource at a given time

producer

consumer

Shared
Resource

P1 P2

4/6/2016 CS152, Spring 2016

A Producer-Consumer Example

16

The program is written assuming
instructions are executed in order.

Producer posting Item x:
Load Rtail, (tail)
Store (Rtail), x
Rtail=Rtail+1
Store (tail), Rtail

Consumer:
Load Rhead, (head)

spin: Load Rtail, (tail)
if Rhead==Rtail goto spin
Load R, (Rhead)
Rhead=Rhead+1
Store (head), Rhead

process(R)

Producer Consumer
tail head

Rtail
Rtail Rhead R

Problems?

4/6/2016 CS152, Spring 2016

A Producer-Consumer Example continued

17

Producer posting Item x:
Load Rtail, (tail)
Store (Rtail), x
Rtail=Rtail+1
Store (tail), Rtail

Consumer:
Load Rhead, (head)

spin: Load Rtail, (tail)
if Rhead==Rtail goto spin
Load R, (Rhead)
Rhead=Rhead+1
Store (head), Rhead

process(R)
Can the tail pointer get updated
before the item x is stored?

Programmer assumes that if 3 happens after 2, then 4
happens after 1.

Problem sequences are:
2, 3, 4, 1
4, 1, 2, 3

1

2

3

4

4/6/2016 CS152, Spring 2016

Sequential Consistency
A Memory Model

18

“ A system is sequentially consistent if the result of any
execution is the same as if the operations of all the
processors were executed in some sequential order, and the
operations of each individual processor appear in the order
specified by the program”

Leslie Lamport

Sequential Consistency =
arbitrary order-preserving interleaving
of memory references of sequential programs

M

P P P P P P

4/6/2016 CS152, Spring 2016

Illustrated

19

4/6/2016 CS152, Spring 2016

Sequential Consistency

20

Sequential concurrent tasks: T1, T2
Shared variables: X, Y (initially X = 0, Y = 10)

T1: T2:
Store (X), 1 (X = 1) Load R1, (Y)
Store (Y), 11 (Y = 11) Store (Y’), R1 (Y’= Y)

Load R2, (X)
Store (X’), R2 (X’= X)

what are the legitimate answers for X’ and Y’ ?

(X’,Y’) {(1,11), (0,10), (1,10), (0,11)} ?

If y is 11 then x cannot be 0

4/6/2016 CS152, Spring 2016

Sequential Consistency

21

Sequential consistency imposes more memory ordering
constraints than those imposed by uniprocessor
program dependencies ()

What are these in our example ?

T1: T2:
Store (X), 1 (X = 1) Load R1, (Y)
Store (Y), 11 (Y = 11) Store (Y’), R1 (Y’= Y)

Load R2, (X)
Store (X’), R2 (X’= X)additional SC requirements

Does (can) a system with caches or out-of-order
execution capability provide a sequentially consistent
view of the memory ?

more on this later

4/6/2016 CS152, Spring 2016

Issues in Implementing Sequential Consistency

22

Implementation of SC is complicated by two issues

• Out-of-order execution capability
Load(a); Load(b) yes
Load(a); Store(b) yes if a b
Store(a); Load(b) yes if a b
Store(a); Store(b) yes if a b

• Caches
Caches can prevent the effect of a store from
being seen by other processors

M

P P P P P P

No common commercial architecture has a

sequentially consistent memory model!

4/6/2016 CS152, Spring 2016

Memory Fences
Instructions to sequentialize memory accesses

23

Processors with relaxed or weak memory models (i.e.,
permit Loads and Stores to different addresses to be
reordered) need to provide memory fence instructions
to force the serialization of memory accesses

Examples of processors with relaxed memory models:
Sparc V8 (TSO,PSO): Membar
Sparc V9 (RMO):

Membar #LoadLoad, Membar #LoadStore
Membar #StoreLoad, Membar #StoreStore

PowerPC (WO): Sync, EIEIO
ARM: DMB (Data Memory Barrier)
X86/64: mfence (Global Memory Barrier)

Memory fences are expensive operations, however, one
pays the cost of serialization only when it is required

4/6/2016 CS152, Spring 2016

Using Memory Fences

24

Producer posting Item x:
Load Rtail, (tail)
Store (Rtail), x
MembarSS

Rtail=Rtail+1
Store (tail), Rtail

Consumer:
Load Rhead, (head)

spin: Load Rtail, (tail)
if Rhead==Rtail goto spin
MembarLL

Load R, (Rhead)
Rhead=Rhead+1
Store (head), Rhead

process(R)

Producer Consumer
tail head

Rtail
Rtail Rhead R

ensures that tail ptr
is not updated before
x has been stored

ensures that R is
not loaded before
x has been stored

4/6/2016 CS152, Spring 2016

Multiple Consumer Example

25

Producer posting Item x:
Load Rtail, (tail)
Store (Rtail), x
Rtail=Rtail+1
Store (tail), Rtail

Consumer:
Load Rhead, (head)

spin: Load Rtail, (tail)
if Rhead==Rtail goto spin
Load R, (Rhead)
Rhead=Rhead+1
Store (head), Rhead

process(R)

What is wrong with this code?

Critical section:
Needs to be executed atomically
by one consumer

tail head
Producer

Rtail

Consumer
1

R Rhead

Rtail

Consumer
2

R Rhead

Rtail

4/6/2016 CS152, Spring 2016

Mutual Exclusion Using Load/Store

26

A protocol based on two shared variables c1 and c2.
Initially, both c1 and c2 are 0 (not busy)

What is wrong?

Process 1
...
c1=1;

L: if c2=1 then go to L
< critical section>

c1=0;

Process 2
...
c2=1;

L: if c1=1 then go to L
< critical section>

c2=0;

Deadlock!

4/6/2016 CS152, Spring 2016

Mutual Exclusion: second attempt

27

To avoid deadlock, let a process give up the reservation
(i.e. Process 1 sets c1 to 0) while waiting.

• Deadlock is not possible but with a low probability
a livelock may occur.

• An unlucky process may never get to enter the
critical section starvation

Process 1
...

L: c1=1;
if c2=1 then

{ c1=0; go to L}
< critical section>

c1=0

Process 2
...

L: c2=1;
if c1=1 then

{ c2=0; go to L}
< critical section>

c2=0

4/6/2016 CS152, Spring 2016

A Protocol for Mutual Exclusion
T. Dekker, 1966

28

Process 1
...
c1=1;
turn = 1;

L: if c2=1 & turn=1
then go to L

< critical section>
c1=0;

A protocol based on 3 shared variables c1, c2 and turn.
Initially, both c1 and c2 are 0 (not busy)

• turn = i ensures that only process i can wait
• variables c1 and c2 ensure mutual exclusion

Solution for n processes was given by Dijkstra
and is quite tricky!

Process 2
...
c2=1;
turn = 2;

L: if c1=1 & turn=2
then go to L

< critical section>
c2=0;

4/6/2016 CS152, Spring 2016

Analysis of Dekker’s Algorithm

29

... Process 1
c1=1;
turn = 1;

L: if c2=1 & turn=1
then go to L

< critical section>
c1=0;

... Process 2
c2=1;
turn = 2;

L: if c1=1 & turn=2
then go to L

< critical section>
c2=0;

S
c
e
n
a
ri
o
 1

... Process 1
c1=1;
turn = 1;

L: if c2=1 & turn=1
then go to L

< critical section>
c1=0;

... Process 2
c2=1;
turn = 2;

L: if c1=1 & turn=2
then go to L

< critical section>
c2=0;

S
c
e
n
a
ri
o
 2

4/6/2016 CS152, Spring 2016

N-process Mutual Exclusion
Lamport’s Bakery Algorithm

30

Process i

choosing[i] = 1;
num[i] = max(num[0], …, num[N-1]) + 1;
choosing[i] = 0;

for(j = 0; j < N; j++) {
while(choosing[j]);
while(num[j] &&

((num[j] < num[i]) ||
(num[j] == num[i] && j < i)));

}

num[i] = 0;

Initially num[j] = 0, for all j
Entry Code

Exit Code

4/6/2016 CS152, Spring 2016

Locks or Semaphores
E. W. Dijkstra, 1965

31

A semaphore is a non-negative integer, with the
following operations:

P(s): if s>0, decrement s by 1, otherwise wait

V(s): increment s by 1 and wake up one of
the waiting processes

P’s and V’s must be executed atomically, i.e., without
• interruptions or
• interleaved accesses to s by other processors

initial value of s determines
the maximum no. of processes
in the critical section

Process i
P(s)

<critical section>
V(s)

4/6/2016 CS152, Spring 2016

Implementation of Semaphores

32

Semaphores (mutual exclusion) can be implemented
using ordinary Load and Store instructions in the
Sequential Consistency memory model. However,
protocols for mutual exclusion are difficult to design...

Simpler solution:
atomic read-modify-write instructions

Test&Set (m), R:
R M[m];
if R==0 then

M[m] 1;

Swap (m), R:
Rt M[m];
M[m] R;
R Rt;

Fetch&Add (m), RV, R:
R M[m];
M[m] R + RV;

Examples: m is a memory location, R is a register

4/6/2016 CS152, Spring 2016

Multiple Consumers Example
using the Test&Set Instruction

33

Critical
Section

P: Test&Set (mutex),Rtemp

if (Rtemp!=0) goto P
Load Rhead, (head)

spin: Load Rtail, (tail)
if Rhead==Rtail goto spin
Load R, (Rhead)
Rhead=Rhead+1
Store (head), Rhead

V: Store (mutex),0
process(R)

Other atomic read-modify-write instructions (Swap,
Fetch&Add, etc.) can also implement P’s and V’s

What if the process stops or is swapped out while
in the critical section?

4/6/2016 CS152, Spring 2016

Nonblocking Synchronization

34

Compare&Swap(m), Rt, Rs:
if (Rt==M[m])

then M[m]=Rs;
Rs=Rt ;
status success;

else status fail;

try: Load Rhead, (head)
spin: Load Rtail, (tail)

if Rhead==Rtail goto spin
Load R, (Rhead)
Rnewhead = Rhead+1
Compare&Swap(head), Rhead, Rnewhead

if (status==fail) goto try
process(R)

status is an
implicit
argument

4/6/2016 CS152, Spring 2016

Load-reserve & Store-conditional

35

Special register(s) to hold reservation flag and address,
and the outcome of store-conditional

try: Load-reserve Rhead, (head)
spin: Load Rtail, (tail)

if Rhead==Rtail goto spin
Load R, (Rhead)
Rhead = Rhead + 1
Store-conditional (head), Rhead

if (status==fail) goto try
process(R)

Load-reserve R, (m):
<flag, adr> <1, m>;
R M[m];

Store-conditional (m), R:
if <flag, adr> == <1, m>
then cancel other procs’

reservation on m;
M[m] R;
status succeed;

else status fail;

4/6/2016 CS152, Spring 2016

Performance of Locks

36

Blocking atomic read-modify-write instructions
e.g., Test&Set, Fetch&Add, Swap

vs
Non-blocking atomic read-modify-write instructions

e.g., Compare&Swap,
Load-reserve/Store-conditional

vs
Protocols based on ordinary Loads and Stores

Performance depends on several interacting factors:
degree of contention,
caches,
out-of-order execution of Loads and Stores

later ...

4/6/2016 CS152, Spring 2016

Strong Consistency

37

An execution is strongly consistent (linearizable)

if the method calls can be correctly arranged

retaining the mutual order of calls that do not

overlap in time, regardless of what thread calls

them.

4/6/2016 CS152, Spring 2016

Quiescent Consistent

38

An execution is quiescently consistent if the

method calls can be correctly arranged retaining

the mutual order of calls separated by

quiescence, a period of time where no method is

being called in any thread.

4/6/2016 CS152, Spring 2016

Acknowledgements

 These slides contain material developed and copyright by:
– Arvind (MIT)

– Krste Asanovic (MIT/UCB)

– Joel Emer (Intel/MIT)

– James Hoe (CMU)

– John Kubiatowicz (UCB)

– David Patterson (UCB)

 MIT material derived from course 6.823

 UCB material derived from course CS252

 “New microprocessor claims 10x energy improvement”,
from extremetech

 “Exploring the diverse world of programming” by Pavel
Shved

39

