
4/4/2016 CS152, Spring 2016

CS 152 Computer Architecture

and Engineering

Lecture 16: Graphics Processing Units (GPUs)

Dr. George Michelogiannakis

EECS, University of California at Berkeley

CRD, Lawrence Berkeley National Laboratory

http://inst.eecs.berkeley.edu/~cs152



4/4/2016 CS152, Spring 2016

Administrivia

 PS5 is out

 PS4 due on Wednesday

 Lab 4

 Quiz 4 on Monday April 11th

2



4/4/2016 CS152, Spring 2016

Vector Programming Model

3

+ + + + + +

[0] [1] [VLR-1]

Vector Arithmetic 
Instructions

ADDV v3, v1, v2 v3

v2
v1

Scalar Registers

r0

r15
Vector Registers

v0

v15

[0] [1] [2] [VLRMAX-1]

VLRVector Length Register

v1
Vector Load and 

Store Instructions

LV v1, r1, r2

Base, r1 Stride, r2
Memory

Vector Register



4/4/2016 CS152, Spring 2016

Vector Stripmining
Problem: Vector registers have finite length

Solution: Break loops into pieces that fit in registers, “Stripmining”

4

for (i=0; i<N; i++)

C[i] = A[i]+B[i];

+

+

+

A B C

64 elements

Remainder



4/4/2016 CS152, Spring 2016

Vector Conditional Execution

5

Problem: Want to vectorize loops with conditional code:
for (i=0; i<N; i++)

if (A[i]>0) then

A[i] = B[i];

Solution: Add vector mask (or flag) registers
– vector version of predicate registers, 1 bit per element

…and maskable vector instructions
– vector operation becomes bubble (“NOP”) at elements where mask bit is clear

Code example:

CVM             # Turn on all elements 

LV vA, rA # Load entire A vector

SGTVS.D vA, F0  # Set bits in mask register where A>0

LV vA, rB # Load B vector into A under mask

SV vA, rA # Store A back to memory under mask



4/4/2016 CS152, Spring 2016

Masked Vector Instructions

6

C[4]

C[5]

C[1]

Write data port

A[7] B[7]

M[3]=0

M[4]=1

M[5]=1

M[6]=0

M[2]=0

M[1]=1

M[0]=0

M[7]=1

Density-Time Implementation
– scan mask vector and only execute 

elements with non-zero masks

C[1]

C[2]

C[0]

A[3] B[3]

A[4] B[4]

A[5] B[5]

A[6] B[6]

M[3]=0

M[4]=1

M[5]=1

M[6]=0

M[2]=0

M[1]=1

M[0]=0

Write data portWrite Enable

A[7] B[7]M[7]=1

Simple Implementation
– execute all N operations, turn off result 

writeback according to mask



4/4/2016 CS152, Spring 2016

Vector Reductions

7

Problem: Loop-carried dependence on reduction variables
sum = 0;

for (i=0; i<N; i++)

sum += A[i];  # Loop-carried dependence on sum

Solution: Re-associate operations if possible, use binary tree to perform reduction
# Rearrange as:

sum[0:VL-1] = 0                 # Vector of VL partial sums

for(i=0; i<N; i+=VL)            # Stripmine VL-sized chunks

sum[0:VL-1] += A[i:i+VL-1]; # Vector sum

# Now have VL partial sums in one vector register

do {

VL = VL/2;                    # Halve vector length

sum[0:VL-1] += sum[VL:2*VL-1] # Halve no. of partials

} while (VL>1)



4/4/2016 CS152, Spring 2016

Vector Scatter/Gather

8

Want to vectorize loops with indirect accesses:
for (i=0; i<N; i++)

A[i] = B[i] + C[D[i]]

Indexed load instruction (Gather)
LV vD, rD # Load indices in D vector

LVI vC, rC, vD # Load indirect from rC base

LV vB, rB # Load B vector

ADDV.D vA,vB,vC # Do add

SV vA, rA # Store result



4/4/2016 CS152, Spring 2016

Multimedia Extensions (aka SIMD extensions)

11

 Very short vectors added to existing ISAs for microprocessors

 Use existing 64-bit registers split into 2x32b or 4x16b or 8x8b
– Lincoln Labs TX-2 from 1957 had 36b datapath split into 2x18b or 4x9b

– Newer designs have wider registers

• 128b for PowerPC Altivec, Intel SSE2/3/4

• 256b for Intel AVX 

 Single instruction operates on all elements within register

16b 16b 16b 16b

32b 32b

64b

8b 8b 8b 8b 8b 8b 8b 8b

16b 16b 16b 16b

16b 16b 16b 16b

16b 16b 16b 16b

+ + + +4x16b adds



4/4/2016 CS152, Spring 2016

Multimedia Extensions versus Vectors

 Limited instruction set:
– no vector length control

– no strided load/store or scatter/gather

– unit-stride loads must be aligned to 64/128-bit boundary

 Limited vector register length:
– requires superscalar dispatch to keep multiply/add/load units busy

– loop unrolling to hide latencies increases register pressure

 Trend towards fuller vector support in microprocessors
– Better support for misaligned memory accesses

– Support of double-precision (64-bit floating-point)

– New Intel AVX spec (announced April 2008), 256b vector registers 
(expandable up to 1024b) 

12



4/4/2016 CS152, Spring 2016

Degree of Vectorization

 Compilers are good at finding data-level parallelism

13

MIPS processor with vector coprocessor



4/4/2016 CS152, Spring 2016

Types of Parallelism

 Instruction-Level Parallelism (ILP)
– Execute independent instructions from one instruction stream in parallel 

(pipelining, superscalar, VLIW)

 Thread-Level Parallelism (TLP)
– Execute independent instruction streams in parallel (multithreading, 

multiple cores)

 Data-Level Parallelism (DLP)
– Execute multiple operations of the same type in parallel (vector/SIMD 

execution)

 Which is easiest to program?

 Which is most flexible form of parallelism?
– i.e., can be used in more situations

 Which is most efficient?
– i.e., greatest tasks/second/area, lowest energy/task

15



4/4/2016 CS152, Spring 2016

Resurgence of DLP

 Convergence of application demands and technology 
constraints drives architecture choice

 New applications, such as graphics, machine vision, 
speech recognition, machine learning, etc. all require large 
numerical computations that are often trivially data 
parallel

 SIMD-based architectures (vector-SIMD, subword-SIMD, 
SIMT/GPUs) are most efficient way to execute these 
algorithms

16



4/4/2016 CS152, Spring 2016

DLP important for conventional CPUs too

 Prediction for x86 processors, 
from Hennessy & Patterson, 5th

edition
– Note: Educated guess, not Intel product 

plans!

 TLP: 2+ cores / 2 years

 DLP: 2x width / 4 years

 DLP will account for more 
mainstream parallelism growth 
than TLP in next decade.

– SIMD –single-instruction multiple-data 
(DLP)

– MIMD- multiple-instruction multiple-data 
(TLP)

17



4/4/2016 CS152, Spring 2016

Graphics Processing Units (GPUs)

 Original GPUs were dedicated fixed-function devices for 
generating 3D graphics (mid-late 1990s) including high-
performance floating-point units

– Provide workstation-like graphics for PCs

– User could configure graphics pipeline, but not really program it

 Over time, more programmability added (2001-2005)
– E.g., New language Cg for writing small programs run on each vertex or 

each pixel, also Windows DirectX variants

– Massively parallel (millions of vertices or pixels per frame) but very 
constrained programming model

 Some users noticed they could do general-purpose 
computation by mapping input and output data to images, 
and computation to vertex and pixel shading computations

– Incredibly difficult programming model as had to use graphics pipeline 
model for general computation

18



4/4/2016 CS152, Spring 2016

General-Purpose GPUs (GP-GPUs)

 In 2006, Nvidia introduced GeForce 8800 GPU supporting a 
new programming language: CUDA 

– “Compute Unified Device Architecture”

– Subsequently, broader industry pushing for OpenCL, a vendor-neutral version 
of same ideas.

 Idea: Take advantage of GPU computational performance and 
memory bandwidth to accelerate some kernels for general-
purpose computing

 Attached processor model:  Host CPU issues data-parallel 
kernels to GP-GPU for execution

 This lecture has a simplified version of Nvidia CUDA-style model 
and only considers GPU execution for computational kernels, 
not graphics

– Would probably need another course to describe graphics processing

19



4/4/2016 CS152, Spring 2016

Simplified CUDA Programming Model
 Computation performed by a very large number of 

independent small scalar threads (CUDA threads or 
microthreads) grouped into thread blocks.

// C version of DAXPY loop.

void daxpy(int n, double a, double*x, double*y)

{ for (int i=0; i<n; i++)

y[i] = a*x[i] + y[i]; }

// CUDA version.

__host__  // Piece run on host processor.

int nblocks = (n+255)/256; // 256 CUDA threads/block

daxpy<<<nblocks,256>>>(n,2.0,x,y);

__device__  // Piece run on GP-GPU.

void daxpy(int n, double a, double*x, double*y)

{ int i = blockIdx.x*blockDim.x + threadId.x;

if (i<n) y[i]=a*x[i]+y[i]; }

20



4/4/2016 CS152, Spring 2016

Programmer’s View of Execution

21

blockIdx 0

threadId 0
threadId 1

threadId 255

blockIdx 1

threadId 0
threadId 1

threadId 255

blockIdx

(n+255/256)

threadId 0
threadId 1

threadId 255

Create enough 
blocks to cover 

input vector

(Nvidia calls this 
ensemble of 

blocks a Grid, can 
be 2-dimensional)

Conditional (i<n)
turns off unused 

threads in last block

blockDim = 256 
(programmer can 

choose)



4/4/2016 CS152, Spring 2016

GPU

Hardware Execution Model

 GPU is built from multiple parallel cores, each core contains a 
multithreaded SIMD processor with multiple lanes but with no 
scalar processor

 CPU sends whole “grid” over to GPU, which distributes thread 
blocks among cores (each thread block executes on one core)

– Programmer unaware of number of cores

22

Core 0

Lane 0 

Lane 1

Lane 15

Core 1

Lane 0 

Lane 1

Lane 15

Core 15

Lane 0 

Lane 1

Lane 15

GPU Memory

CPU

CPU Memory



4/4/2016 CS152, Spring 2016

“Single Instruction, Multiple Thread”

 GPUs use a SIMT model (SIMD with multithreading)

 Individual scalar instruction streams for each CUDA thread 
are grouped together for SIMD execution (each thread 
executes the same instruction each cycle) on hardware 
(Nvidia groups 32 CUDA threads into a warp). Threads are 
independent from each other

23

µT0 µT1 µT2 µT3 µT4 µT5 µT6 µT7
ld x

mul a

ld y

add

st y

Scalar 
instruction 

stream

SIMD execution across warp



4/4/2016 CS152, Spring 2016

Implications of SIMT Model

 All “vector” loads and stores are scatter-gather, as 
individual µthreads perform scalar loads and stores

– GPU adds hardware to dynamically coalesce individual 
µthread loads and stores to mimic vector loads and stores

 Every µthread has to perform stripmining calculations 
redundantly (“am I active?”) as there is no scalar 
processor equivalent

24



4/4/2016 CS152, Spring 2016

Conditionals in SIMT model

 Simple if-then-else are compiled into predicated 
execution, equivalent to vector masking

 More complex control flow compiled into branches

 How to execute a vector of branches?

25

µT0 µT1 µT2 µT3 µT4 µT5 µT6 µT7

tid=threadid

If (tid >= n) skip

Call func1

add

st y

Scalar 

instruction 

stream

SIMD execution across warp

skip:



4/4/2016 CS152, Spring 2016

Branch divergence

 Hardware tracks which 
µthreads take or don’t take 
branch

 If all go the same way, then 
keep going in SIMD fashion

 If not, create mask vector 
indicating taken/not-taken

 Keep executing not-taken 
path under mask, push taken 
branch PC+mask onto a 
hardware stack and execute 
later

 When can execution of 
µthreads in warp reconverge?

26



4/4/2016 CS152, Spring 2016

Warps are multithreaded on core

 One warp of 32 µthreads is a 
single thread in the hardware

 Multiple warp threads are 
interleaved in execution on a 
single core to hide latencies 
(memory and functional unit)

 A single thread block can contain 
multiple warps (up to 512 µT max 
in CUDA), all mapped to single 
core

 Can have multiple blocks 
executing on one core

27
[Nvidia, 2010]



4/4/2016 CS152, Spring 2016

GPU Memory Hierarchy

28

[ Nvidia, 2010]



4/4/2016 CS152, Spring 2016

SIMT

 Illusion of many independent threads
– Threads inside a warp execute in a SIMD fashion

 But for efficiency, programmer must try and keep 
µthreads aligned in a SIMD fashion

– Try and do unit-stride loads and store so memory coalescing kicks 
in

– Avoid branch divergence so most instruction slots execute useful 
work and are not masked off

29



4/4/2016 CS152, Spring 2016

Nvidia Fermi GF100 GPU

30

[Nvidia, 

2010]



4/4/2016 CS152, Spring 2016

Fermi “Streaming Multiprocessor” 
Core

31



4/4/2016 CS152, Spring 2016

GPU Versus CPU

35



4/4/2016 CS152, Spring 2016

Why?

 Need to understand the difference
– Latency intolerance versus latency tolerance

– Task parallelism versus data parallelism

– Multithreaded cores versus SIMT cores

– 10s of threads versus thousands of threads

 CPUs: low latency, low throughput

 GPUs: high latency, high throughput
– GPUs are designed for tasks that tolerate latency

36



4/4/2016 CS152, Spring 2016

What About Caches?

 GPUs can have more ALUs in the same area and therefore 
run more threads of computation

37



4/4/2016 CS152, Spring 2016

GPU Future

 High-end desktops have separate GPU chip, but trend 
towards integrating GPU on same die as CPU (already in 
laptops, tablets and smartphones)

– Advantage is shared memory with CPU, no need to transfer data

– Disadvantage is reduced memory bandwidth compared to 
dedicated smaller-capacity specialized memory system

• Graphics DRAM (GDDR) versus regular DRAM (DDR3)

 Will GP-GPU survive? Or will improvements in CPU DLP 
make GP-GPU redundant?

– On same die, CPU and GPU should have same memory bandwidth

– GPU might have more FLOPS as needed for graphics anyway

38



4/4/2016 CS152, Spring 2016

Acknowledgements

 These slides contain material developed and copyright by:
– Krste Asanovic (UCB)

– Mohamed Zahran (NYU)

 “An introduction to modern GPU architecture”. Ashu
Rege. NVIDIA.

39


