4/4/2016

CS 152 Computer Architecture
and Engineering

Lecture 16: Graphics Processing Units (GPUs)

Dr. George Michelogiannakis
EECS, University of California at Berkeley
CRD, Lawrence Berkeley National Laboratory

http://inst.eecs.berkeley.edu/~csl52

CS152, Spring 2016

Administrivia

= PS5 is out

= PS4 due on Wednesday

= [ab4

" Quiz 4 on Monday April 11th

4/4/2016 CS152, Spring 2016

Vector Programming Model

/ Scalar Registers Vector Registers \
ri5 v1l5
"0 VOro1 11 2] [VLRMAX-1]
\ Vector Length Register] \/LR /
| Vector Arithmetic V3T
Instructions @ @ @ @ @
ADDV v3, vl, v2 ‘ !

N [0] [1] [VLR-1]
" Vector Load and Vector Register N
Store Instructions '

LV v1, r1, r2 W /'
Memory
NS Base, ri Stride, r2 %

4/4/2016 CS152, Spring 2016 3

Vector Stripmining
Problem: Vector registers have finite length

Solution: Break loops into pieces that fit in registers, “Stripmining”
for (i=0; i<N; i++)
C[i] = A[i]+B[i];
A B C

} Remainder

~

| —1

L—

Al

~64 elements

4/4/2016 CS152, Spring 2016

Vector Conditional Execution

Problem: Want to vectorize loops with conditional code:
for (i=0; i<N; i++)
if (A[i]>0) then
A[i] = B[1i];

Solution: Add vector mask (or flag) registers
— vector version of predicate registers, 1 bit per element

...and maskable vector instructions
— vector operation becomes bubble (“NOP”) at elements where mask bit is clear

Code example:

CVM # Turn on all elements

LV vA, rA # Load entire A vector

SGTVS.D vA, FO # Set bits in mask register where A>0
LV vA, rB # Load B vector into A under mask

SV vA, rA # Store A back to memory under mask

4/4/2016 CS152, Spring 2016

Simple Implementation

— execute all N operations, turn off result
writeback according to mask

M[7]=1
M[6]=0
M[5]=1
M[4]=1
M[3]=0

M[2]=0
M[1]=1

Masked Vector Instructions

A[7] B[7]
AI6] B[6]
A[5] B[5]
A[4] B[4]
A[3] BI[3]
' ' /
T C2] /]
C[1]/
C[0]

M[0]=0 _l

Write Enable

4/4/2016

eleme

M[7]=1
M[6]=0
M[5]=1
M[4]=1
M[3]=0
M[2]=0
M[1]=1
M[0]=0

Write data port

CS152, Spring 2016

Density-Time Implementation

— scan mask vector and only execute

nts with non-zero masks

\ A[7] BI[7]

\ -
\ C[5] f
| Cl4] /¢

\ <

—

C[1]

Write data port

Vector Reductions

Problem: Loop-carried dependence on reduction variables
sum = 0;
for (i=0; i<N; i++)
sum += A[i]; # Loop-carried dependence on sum
Solution: Re-associate operations if possible, use binary tree to perform reduction
Rearrange as:
sum[0:VL-1] = O # Vector of VL partial sums
for (i=0; i<N; i+=VL) # Stripmine VL-sized chunks
sum[0:VL-1] += A[i:i+VL-1]; # Vector sum
Now have VL partial sums in one vector register
do {
VL = VL/2; # Halve vector length
sum[0:VL-1] += sum[VL:2*VL-1] # Halve no. of partials
} while (VL>1)

4/4/2016 CS152, Spring 2016

4/4/2016

Vector Scatter/Gather

Want to vectorize loops with indirect accesses:
for (i=0; i<N; i++)
A[i] = B[i] + C[D[i]]

Indexed load instruction (Gather)

LV vD, D # Load indices in D vector
LVI vC, rC, vD # Load indirect from rC base
LV vB, rB # Load B vector

ADDV.D vA,vB,vC # Do add

SV vA, rA # Store result

CS152, Spring 2016

Multimedia Extensions (aka SIMD extensions)
64b

32b 32b
16b 16b 16b 16b

8b 8b 8b 8b 8b 8b 8b 8b
" Very short vectors added to existing [SAS for MICroprocessors
= Use existing 64-bit registers split into 2x32b or 4x16b or 8x8b
— Lincoln Labs TX-2 from 1957 had 36b datapath split into 2x18b or 4x9b
— Newer designs have wider registers
* 128b for PowerPC Altivec, Intel SSE2/3/4
e 256b for Intel AVX

= Single instruction operates on all elements within register
16b 16b 16b 16b

A\

\

\ 16b \ 16b \ 16b 16b

S o SN o SN © SR

16b 16b 16b 16b

AT

4/4/2016 CS152, Spring 2016 11

Multimedia Extensions versus Vectors

= | imited instruction set:

— no vector length control
— no strided load/store or scatter/gather
— unit-stride loads must be aligned to 64/128-bit boundary

" Limited vector register length:

— requires superscalar dispatch to keep multiply/add/load units busy
— loop unrolling to hide latencies increases register pressure

" Trend towards fuller vector support in microprocessors

— Better support for misalighed memory accesses
— Support of double-precision (64-bit floating-point)

— New Intel AVX spec (announced April 2008), 256b vector registers
(expandable up to 1024b)

4/4/2016 CS152, Spring 2016

12

Degree of Vectorization

MIPS processor with vector coprocessor
= Compilers are good at finding data-level parallelism

O Vector B Scalar

ﬁ*@“aﬁﬁ“o"*ﬁ@@““

4/4/2016 CS152, Spring 2016 13

:

2

5

% of Dynamic Operations

Types of Parallelism

" |[nstruction-Level Parallelism (ILP)

— Execute independent instructions from one instruction stream in parallel
(pipelining, superscalar, VLIW)

" Thread-Level Parallelism (TLP)

— Execute independent instruction streams in parallel (multithreading,
multiple cores)

» Data-Level Parallelism (DLP)

— Execute multiple operations of the same type in parallel (vector/SIMD
execution)

= Which is easiest to program?

= Which is most flexible form of parallelism?
— j.e., can be used in more situations

= Which is most efficient?
— i.e., greatest tasks/second/area, lowest energy/task

4/4/2016 CS152, Spring 2016

15

Resurgence of DLP

= Convergence of application demands and technology
constraints drives architecture choice

= New applications, such as graphics, machine vision,
speech recognition, machine learning, etc. all require large
numerical computations that are often trivially data
parallel

—
7 =

N aavim

= SIMD-based architectures (vector-SIMD, subword-SIMD,
SIMT/GPUs) are most efficient way to execute these
algorithms

4/4/2016 CS152, Spring 2016 16

DLP important for conventional CPUs too

——MIMD*SIMD (32 b) = Prediction for x86 processors,

from Hennessy & Patterson, 5t
edition

— Note: Educated guess, not Intel product
plans!

= TLP: 2+ cores / 2 years
= DLP: 2x width / 4 years

s A IMID * SIMD (84)
SIMD [32b)

—4—SIMD [B4b)

=i=MIMD

:

= DLP will account for more
mainstream parallelism growth
than TLP in next decade.

— SIMD —single-instruction multiple-data
(DLP)

— MIMD- multiple-instruction multiple-data
(TLP)

Potential Parallel Speedup

2003 2007 2011 2015 2019 2023
4/4/2016 CS152, Spring 2016 17

Graphics Processing Units (GPUs)

» Original GPUs were dedicated fixed-function devices for
generating 3D graphics (mid-late 1990s) including high-
performance floating-point units

— Provide workstation-like graphics for PCs
— User could configure graphics pipeline, but not really program it

= Over time, more programmability added (2001-2005)

— E.g., New language Cg for writing small programs run on each vertex or
each pixel, also Windows DirectX variants

— Massively parallel (millions of vertices or pixels per frame) but very
constrained programming model

= Some users noticed they could do general-purpose
computation by mapping input and output data to images,
and computation to vertex and pixel shading computations

— Incredibly difficult programming model as had to use graphics pipeline
model for general computation

4/4/2016 CS152, Spring 2016

18

General-Purpose GPUs (GP-GPUs)

" In 2006, Nvidia introduced GeForce 8800 GPU supporting a
new programming language: CUDA
— “Compute Unified Device Architecture”

— Subsequently, broader industry pushing for OpenCL, a vendor-neutral version
of same ideas.

" |dea: Take advantage of GPU computational performance and
memory bandwidth to accelerate some kernels for general-
purpose computing

= Attached processor model: Host CPU issues data-parallel
kernels to GP-GPU for execution

" This lecture has a simplified version of Nvidia CUDA-style model
and only considers GPU execution for computational kernels,
not graphics

— Would probably need another course to describe graphics processing

4/4/2016 CS152, Spring 2016

19

Simplified CUDA Programming Model

* Computation performed by a very large number of
independent small scalar threads (CUDA threads or

microthreads) grouped into thread blocks.

// C version of DAXPY loop.
void daxpy(int n, double a, double*x, double*y)

{ for (int i=0; i<n; i++)
yl[i] = a*x[1] + y[i]; }

// CUDA version.
__host // Piece run on host processor.

int nblocks = (n+255)/256; // 256 CUDA threads/block
daxpy<<<nblocks,b256>>>(n,2.0,x,vy) ;

__device // Piece run on GP-GPU.
void daxpy(int n, double a, double*x, double*y)
{ int 1 = blockIdx.x*blockDim.x + threadId.x;

if (i<n) yl[il=a*x[i]+y[i]; }

4/4/2016 CS152, Spring 2016 20

Programmer’s View of Execution

Create enough
blocks to cover —
input vector

(Nvidia calls this
ensemble of
blocks a Grid, can

be 2-dimensional)

4/4/2016

1
threadld O s
threadid 1 blockDim = 256
blockldx 0 i (programmer can
threadld 255) choose)
threadld O
threadld 1
blockldx 1 : !
threadld 255i
i i
1 1
1 1
threadld O .ps .
blockldx threadld 1 /Condltlonal (I<n)
(n+255/256 L turns off unused
threadld 255 threads in last block

CS152, Spring 2016

21

Hardware Execution Model

Lane O Lane O Lane O
Lane 1 Lane 1 Lane 1
CPU |
Lane 15 Lane 15 Lane 15
) Core O Corel | Core 15
CPU Memory GPP
GPU Memory

" GPU is built from multiple parallel cores, each core contains a
multithreaded SIMD processor with multiple lanes but with no
scalar processor

" CPU sends whole “grid” over to GPU, which distributes thread
blocks among cores (each thread block executes on one core)
— Programmer unaware of number of cores

4/4/2016 CS152, Spring 2016

“Single Instruction, Multiple Thread”

* GPUs use a SIMT model (SIMD with multithreading)

" Individual scalar instruction streams for each CUDA thread
are grouped together for SIMD execution (each thread
executes the same instruction each cycle) on hardware
(Nvidia groups 32 CUDA threads into a warp). Threads are
independent from each other

UT0 pTl pT2 pf3 pulf4d pls5 ple ut7/

1d x

Scalar mul a

instruction 1d y

stream Sa:c;
 Z

SIMD execution across warp

4/4/2016 CS152, Spring 2016

23

Implications of SIMT Model

= All “vector” loads and stores are scatter-gather, as
individual pthreads perform scalar loads and stores

— GPU adds hardware to dynamically coalesce individual
uthread loads and stores to mimic vector loads and stores

" Every uthread has to perform stripmining calculations
redundantly (“am | active?”) as there is no scalar
processor equivalent

4/4/2016 CS152, Spring 2016

24

Conditionals in SIMT model

= Simple if-then-else are compiled into predicated
execution, equivalent to vector masking

" More complex control flow compiled into branches
" How to execute a vector of branches?

MTO PT1 pT2 uT3 pT4 pTs pT6 uT7/

tid=threadid
Scalar If (tid >= n) skip
instruction Call funcl
stream add
st y
vV skip:

SIMD execution across warp

4/4/2016 CS152, Spring 2016 25

Branch divergence

* Hardware tracks which
uthreads take or don’t take
branch

= |If all go the same way, then
keep going in SIMD fashion

" |f not, create mask vector
indicating taken/not-taken

= Keep executing not-taken
path under mask, push taken
branch PC+mask onto a

hardware stack and execute

later

= When can execution of
uthreads in warp reconverge?

4/4/2016 CS152, Spring 2016

26

Warps are multithreaded on core

ST mubltthroadad
msiruchon schedalar

=

1111 a1 111 i 111 " One warpof 32 uthreads is a
single thread in the hardware

LL L1l 11| I " Multiple warp threads are
FLL T interleaved in execution on a

LL 11| single core to hide latencies

(memory and functional unit)

'FEEEEEEREE BREERE
"o = Asingle thread block can contain
N RN T T T Y Y O T O N O N .
wap B instruction 12 multiple warps (up to 512 uT max
O T T O O B O N in CUDA), all mapped to single
P 1 1 & 4§ 11 § &3 11 1§13°.1
- : core
warp 3 insbnaction 06
1”“:””:””1 = Can have multiple blocks
.,:F-r.ﬂ“ﬂ“g executing on one core

1

4/4/2016 [Nvidia, 2010] 515, soring 2016 27

4/4/2016

GPU Memory Hierarchy

Theoad

'ﬂmdb!odt

Per-thread private

=

gobal memaory

Gro 0
l’ """':”:‘"":::: " » g
- Grog 1
o e » 2
&

CS152, Spring 2016

[Nvidia, 2010]

28

SIMT

" [[lusion of many independent threads
— Threads inside a warp execute in a SIMD fashion

= But for efficiency, programmer must try and keep
uthreads aligned in a SIMD fashion

— Try and do unit-stride loads and store so memory coalescing kicks
in

— Avoid branch divergence so most instruction slots execute useful
work and are not masked off

4/4/2016 CS152, Spring 2016

29

[Nvidia,

2010]

4/4/2016

Mamory Condrallar

Nvidia Fermi GF100 GPU

Hosld Invlefsos

: 5 . 3
" L

T T . 3 T
L] E L

=] ey rH ™
4 A 4 L

GPE

ey [e =T
A r s L &

GPC

Fermi “Streaming Multiprocessor’
Core

T

208088 N 8 NS S

PatyMaeph Engine
| Wartas Felch | Tessellior || Jfewport |
Atibuse Setup | Stresm Cutput

4/4/2016 CS152, Spring 2016

GPU Versus CPU

Peak Double Precision FLOPS Peak Memory Bandwidth

2008 2009 2010 2011 2012 2013 2008 2009 2010 201 2012 2013 2014
~@-NVIDIA GPU ~0—x86 CPU ~i~NVIDIA GPU ~&--xB86 CPU

4/4/2016 CS152, Spring 2016

Why?

= Need to understand the difference

— Latency intolerance versus latency tolerance
— Task parallelism versus data parallelism

— Multithreaded cores versus SIMT cores

— 10s of threads versus thousands of threads

" CPUs: low latency, low throughput
® GPUs: high latency, high throughput

— GPUs are designed for tasks that tolerate latency

4/4/2016 CS152, Spring 2016

36

What About Caches?

= GPUs can have more ALUs in the same area and therefore
run more threads of computation

4/4/2016 CS152, Spring 2016

37

4/4/2016

GPU Future

* High-end desktops have separate GPU chip, but trend
towards integrating GPU on same die as CPU (already in
laptops, tablets and smartphones)

— Advantage is shared memory with CPU, no need to transfer data

— Disadvantage is reduced memory bandwidth compared to
dedicated smaller-capacity specialized memory system

e Graphics DRAM (GDDR) versus regular DRAM (DDR3)

= Will GP-GPU survive? Or will improvements in CPU DLP
make GP-GPU redundant?

— On same die, CPU and GPU should have same memory bandwidth
— GPU might have more FLOPS as needed for graphics anyway

CS152, Spring 2016

38

Acknowledgements

= These slides contain material developed and copyright by:

— Krste Asanovic (UCB)
— Mohamed Zahran (NYU)

= “An introduction to modern GPU architecture”. Ashu
Rege. NVIDIA.

4/4/2016 CS152, Spring 2016

39

