CS 152 Computer Architecture and Engineering

Lecture 16: Graphics Processing Units (GPUs)

Dr. George Michelogiannakis EECS, University of California at Berkeley CRD, Lawrence Berkeley National Laboratory

http://inst.eecs.berkeley.edu/~cs152

CS152, Spring 2016

Administrivia

- PS5 is out
- PS4 due on Wednesday
- Lab 4
- Quiz 4 on Monday April 11th

Vector Programming Model

CS152, Spring 2016

Vector Stripmining

Problem: Vector registers have finite length

Solution: Break loops into pieces that fit in registers, "Stripmining"

Vector Conditional Execution

Solution: Add vector mask (or flag) registers

- vector version of predicate registers, 1 bit per element

...and maskable vector instructions

- vector operation becomes bubble ("NOP") at elements where mask bit is clear

Code example:

CVM	# Turn on all elements
LV vA, rA	# Load entire A vector
SGTVS.D vA, FO	<pre># Set bits in mask register where A>0</pre>
LV vA, rB	<pre># Load B vector into A under mask</pre>
SV vA, rA	<pre># Store A back to memory under mask</pre>

Masked Vector Instructions

Simple Implementation

 execute all N operations, turn off result writeback according to mask

Density-Time Implementation

 scan mask vector and only execute elements with non-zero masks

Vector Reductions

Problem: Loop-carried dependence on reduction variables

```
sum = 0;
for (i=0; i<N; i++)
    sum += A[i]; # Loop-carried dependence on sum
```

Solution: Re-associate operations if possible, use binary tree to perform reduction

VL = VL/2; # Halve vector length
sum[0:VL-1] += sum[VL:2*VL-1] # Halve no. of partials
} while (VL>1)

Vector Scatter/Gather

Want to vectorize loops with indirect accesses:

```
for (i=0; i<N; i++)
    A[i] = B[i] + C[D[i]]</pre>
```

Indexed load instruction (Gather)

LV vD, rD # Load indices in D vector LVI vC, rC, vD # Load indirect from rC base LV vB, rB # Load B vector ADDV.D vA,vB,vC # Do add SV vA, rA # Store result

Multimedia Extensions (aka SIMD extensions)

64b							
32b				32b			
16	16b 16b		16	5b	16b		
8b	8b	8b	8b	8b	8b	8b	8b

- Very short vectors added to existing ISAs for microprocessors
- Use existing 64-bit registers split into 2x32b or 4x16b or 8x8b
 - Lincoln Labs TX-2 from 1957 had 36b datapath split into 2x18b or 4x9b
 - Newer designs have wider registers
 - 128b for PowerPC Altivec, Intel SSE2/3/4
 - 256b for Intel AVX
- Single instruction operates on all elements within register

Multimedia Extensions versus Vectors

Limited instruction set:

- no vector length control
- no strided load/store or scatter/gather
- unit-stride loads must be aligned to 64/128-bit boundary
- Limited vector register length:
 - requires superscalar dispatch to keep multiply/add/load units busy
 - loop unrolling to hide latencies increases register pressure

Trend towards fuller vector support in microprocessors

- Better support for misaligned memory accesses
- Support of double-precision (64-bit floating-point)
- New Intel AVX spec (announced April 2008), 256b vector registers (expandable up to 1024b)

Degree of Vectorization

MIPS processor with vector coprocessor

Compilers are good at finding data-level parallelism

Types of Parallelism

- Instruction-Level Parallelism (ILP)
 - Execute independent instructions from one instruction stream in parallel (pipelining, superscalar, VLIW)
- Thread-Level Parallelism (TLP)
 - Execute independent instruction streams in parallel (multithreading, multiple cores)
- Data-Level Parallelism (DLP)
 - Execute multiple operations of the same type in parallel (vector/SIMD execution)
- Which is easiest to program?
- Which is most flexible form of parallelism?
 - i.e., can be used in more situations
- Which is most efficient?
 - i.e., greatest tasks/second/area, lowest energy/task

Resurgence of DLP

- Convergence of application demands and technology constraints drives architecture choice
- New applications, such as graphics, machine vision, speech recognition, machine learning, etc. all require large numerical computations that are often trivially data parallel

 SIMD-based architectures (vector-SIMD, subword-SIMD, SIMT/GPUs) are most efficient way to execute these algorithms

DLP important for conventional CPUs too

- Prediction for x86 processors, from Hennessy & Patterson, 5th edition
 - Note: Educated guess, not Intel product plans!
- TLP: 2+ cores / 2 years
- DLP: 2x width / 4 years
- DLP will account for more mainstream parallelism growth than TLP in next decade.
 - SIMD –single-instruction multiple-data (DLP)
 - MIMD- multiple-instruction multiple-data (TLP)

Graphics Processing Units (GPUs)

- Original GPUs were dedicated fixed-function devices for generating 3D graphics (mid-late 1990s) including highperformance floating-point units
 - Provide workstation-like graphics for PCs
 - User could configure graphics pipeline, but not really program it
- Over time, more programmability added (2001-2005)
 - E.g., New language Cg for writing small programs run on each vertex or each pixel, also Windows DirectX variants
 - Massively parallel (millions of vertices or pixels per frame) but very constrained programming model
- Some users noticed they could do general-purpose computation by mapping input and output data to images, and computation to vertex and pixel shading computations
 - Incredibly difficult programming model as had to use graphics pipeline model for general computation

General-Purpose GPUs (GP-GPUs)

- In 2006, Nvidia introduced GeForce 8800 GPU supporting a new programming language: CUDA
 - "Compute Unified Device Architecture"
 - Subsequently, broader industry pushing for OpenCL, a vendor-neutral version of same ideas.
- Idea: Take advantage of GPU computational performance and memory bandwidth to accelerate some kernels for generalpurpose computing
- Attached processor model: Host CPU issues data-parallel kernels to GP-GPU for execution
- This lecture has a simplified version of Nvidia CUDA-style model and only considers GPU execution for computational kernels, not graphics
 - Would probably need another course to describe graphics processing

Simplified CUDA Programming Model

 Computation performed by a very large number of independent small scalar threads (CUDA threads or microthreads) grouped into thread blocks.

```
// C version of DAXPY loop.
void daxpy(int n, double a, double*x, double*y)
{ for (int i=0; i<n; i++)
     y[i] = a*x[i] + y[i]; }</pre>
```

```
// CUDA version.
```

```
__host__ // Piece run on host processor.
int nblocks = (n+255)/256; // 256 CUDA threads/block
daxpy<<<nblocks,256>>>(n,2.0,x,y);
```

```
__device__ // Piece run on GP-GPU.
void daxpy(int n, double a, double*x, double*y)
{ int i = blockIdx.x*blockDim.x + threadId.x;
if (i<n) y[i]=a*x[i]+y[i]; }</pre>
```

Programmer's View of Execution

Hardware Execution Model

- GPU is built from multiple parallel cores, each core contains a multithreaded SIMD processor with multiple lanes but with no scalar processor
- CPU sends whole "grid" over to GPU, which distributes thread blocks among cores (each thread block executes on one core)
 - Programmer unaware of number of cores

"Single Instruction, Multiple Thread"

- GPUs use a SIMT model (SIMD with multithreading)
- Individual scalar instruction streams for each CUDA thread are grouped together for SIMD execution (each thread executes the same instruction each cycle) on hardware (Nvidia groups 32 CUDA threads into a *warp*). Threads are independent from each other

Implications of SIMT Model

- All "vector" loads and stores are scatter-gather, as individual µthreads perform scalar loads and stores
 - GPU adds hardware to dynamically coalesce individual µthread loads and stores to mimic vector loads and stores
- Every µthread has to perform stripmining calculations redundantly ("am I active?") as there is no scalar processor equivalent

Conditionals in SIMT model

- Simple if-then-else are compiled into predicated execution, equivalent to vector masking
- More complex control flow compiled into branches
- How to execute a vector of branches?

SIMD execution across warp

Branch divergence

- Hardware tracks which µthreads take or don't take branch
- If all go the same way, then keep going in SIMD fashion
- If not, create mask vector indicating taken/not-taken
- Keep executing not-taken path under mask, push taken branch PC+mask onto a hardware stack and execute later

Warps are multithreaded on core

- One warp of 32 µthreads is a single thread in the hardware
- Multiple warp threads are interleaved in execution on a single core to hide latencies (memory and functional unit)
- A single thread block can contain multiple warps (up to 512 µT max in CUDA), all mapped to single core
- Can have multiple blocks executing on one core

GPU Memory Hierarchy

4/4/2016

CS152, Spring 2016

SIMT

- Illusion of many independent threads
 - Threads inside a warp execute in a SIMD fashion
- But for efficiency, programmer must try and keep µthreads aligned in a SIMD fashion
 - Try and do unit-stride loads and store so memory coalescing kicks in
 - Avoid branch divergence so most instruction slots execute useful work and are not masked off

Nvidia Fermi GF100 GPU

30

Fermi "Streaming Multiprocessor" Core

UUL	/A 1	JOL	9	
Disp	patch P	lart		
Opera	nd Col	leator		
				1
FP Unit		INT L	inii,	
_		-		
		-		

,	SM								
		Instruction Cache							
	War	p Sched	uler	Warp Scheduler					
	Dispatch Unit			Dispatch Unit					
		*		+					
	Register File (32,768 x 32-bit)								
	+	+	+	+	+	+			
ì	Core	Core	Core	Core	LOIST	OC11			
	Core	Core	Core	Core	LD/ST				
	Core	Core	Core	Core	LD/ST				
	Core	Core	Core	Core	LD/ST	SFU			
	Core	Core	Core	Core	LD/ST LD/ST				
	Core	Core	Core	Core	LD/ST LD/ST	SFU			
	Core	Core	Core	Core	LD/ST LD/ST	0511			
	Core	Core	Core	Core	LD/ST LD/ST	aru			
	68888	esse ini	erconne	ct Netwo	rk 20005	88889			
	64 KB Shared Memory / L1 Cache								
	Uniform Cache								
	Tex		Tex	Tex Tex					
	Texture Cache PolyMorph Engine								
	Verter	Fetch	Tesse	llator	Viewp Transk	ort orm			
	Attribute Setup Stream Output								

GPU Versus CPU

Why?

- Need to understand the difference
 - Latency intolerance versus latency tolerance
 - Task parallelism versus data parallelism
 - Multithreaded cores versus SIMT cores
 - 10s of threads versus thousands of threads
- CPUs: low latency, low throughput
- GPUs: high latency, high throughput
 - GPUs are designed for tasks that tolerate latency

What About Caches?

 GPUs can have more ALUs in the same area and therefore run more threads of computation

GPU Future

- High-end desktops have separate GPU chip, but trend towards integrating GPU on same die as CPU (already in laptops, tablets and smartphones)
 - Advantage is shared memory with CPU, no need to transfer data
 - Disadvantage is reduced memory bandwidth compared to dedicated smaller-capacity specialized memory system
 - Graphics DRAM (GDDR) versus regular DRAM (DDR3)
- Will GP-GPU survive? Or will improvements in CPU DLP make GP-GPU redundant?
 - On same die, CPU and GPU should have same memory bandwidth
 - GPU might have more FLOPS as needed for graphics anyway

Acknowledgements

- These slides contain material developed and copyright by:
 - Krste Asanovic (UCB)
 - Mohamed Zahran (NYU)
- "An introduction to modern GPU architecture". Ashu Rege. NVIDIA.