
3/30/2016	 CS152,	Spring	2016	

CS	152	Computer	Architecture	
and	Engineering	

	
	Lecture	15:	Vector	Computers		

	
Dr. George Michelogiannakis

EECS, University of California at Berkeley
CRD, Lawrence Berkeley National Laboratory

http://inst.eecs.berkeley.edu/~cs152!

3/30/2016	 CS152,	Spring	2016	

Last	Time	Lecture	14:	Mul?threading	

2	

Tim
e (

pr
oc

es
so

r c
yc

le)
 Superscalar Fine-Grained Coarse-Grained Multiprocessing

Simultaneous
Multithreading

Thread 1
Thread 2

Thread 3
Thread 4

Thread 5
Idle slot

3/30/2016	 CS152,	Spring	2016	

Ques?on	of	the	Day	

3	

§ Can	Vector	and	VLIW	combine?	

3/30/2016	 CS152,	Spring	2016	

Supercomputers	

§ Defini@on	of	a	supercomputer:	
§  Fastest	machine	in	world	at	given	task	

–  	Performs	at	or	near	the	currently	highest	opera@onal	rate	for	computers	

§ A	device	to	turn	a	compute-bound	problem	into	an	I/O	
bound	problem		

§ Any	machine	cos@ng	$30M+	
§ Any	machine	designed	by	Seymour	Cray	

§ CDC6600	(Cray,	1964)	regarded	as	first	supercomputer	

4	

3/30/2016	 CS152,	Spring	2016	

CDC	6600	Seymour	Cray,	1963	

§ A	fast	pipelined	machine	with	60-bit	words	
–  128	Kword	main	memory	capacity,	32	banks	

§ Ten	func@onal	units	(parallel,	unpipelined)	
–  Floa@ng	Point:	adder,	2	mul@pliers,	divider	
–  Integer:	adder,	2	incrementers,	...	

§ Hardwired	control	(no	microcoding)	
§ Scoreboard	for	dynamic	scheduling	of	instruc@ons		
§ Ten	Peripheral	Processors	for	Input/Output	

–  a	fast	mul@-threaded	12-bit	integer	ALU	
§ Very	fast	clock,	10	MHz	(FP	add	in	4	clocks)	
§ >400,000	transistors,		750	sq.	b.,	5	tons,	150	kW,	novel	
freon-based	technology	for	cooling	

§ Fastest	machine	in	world	for	5	years	(un@l	7600)	
–  over	100	sold	($7-10M	each)	

5	
3/10/2009

3/30/2016	 CS152,	Spring	2016	

IBM	Memo	on	CDC6600	
Thomas	Watson	Jr.,	IBM	CEO,	August	1963:	

	“Last	week,	Control	Data	...	announced	the	
6600	system.	I	understand	that	in	the	
laboratory	developing	the	system	there	are	
only	34	people	including	the	janitor.	Of	these,	
14	are	engineers	and	4	are	programmers...	
ContrasGng	this	modest	effort	with	our	vast	
development	acGviGes,	I	fail	to	understand	why	
we	have	lost	our	industry	leadership	posiGon	by	
leIng	someone	else	offer	the	world's	most	
powerful	computer.”	

		
To	which	Cray	replied:	“It	seems	like	Mr.	Watson	has	
answered	his	own	quesGon.”	

6	

3/30/2016	 CS152,	Spring	2016	

Top	500	Systems	

7	

LINPACK & LAPACK: Software libraries for performing linear algebra

3/30/2016	 CS152,	Spring	2016	

Oak	Ridge	Titan	

§  560,640	cores	
§  LinkPack	performance	17,590	TFlop/s	
§  Theore@cal	peak	27,112.5	TFlop/s	
§  8,209.00	kW	
§  710,144	GB	
§ Opteron	6274	16C	2.2GHz	

8	

3/30/2016	 CS152,	Spring	2016	

NERSC	(LBNL)	Cori	

§ Cray	XC40	supercomputer	
§  Theore@cal	Peak	performance	1.92	Petaflops/sec	
§  1,630	computes	nodes,	52,160	cores	in	total	
§ Cray	Aries	high-speed	interconnect	with	Dragonfly	
topology	as	on	Edison	(0.25	μs	to	3.7	μs	MPI	latency,	
~8GB/sec	MPI	bandwidth)		

§ Aggregate	memory:	203	TB		
§  Scratch	storage	capacity:	30	PB	

9	

3/30/2016	 CS152,	Spring	2016	

CDC	6600:		
A	Load/Store	Architecture	

10	

•  Separate instructions to manipulate three types of reg.
 8 60-bit data registers (X)

 8 18-bit address registers (A)
 8 18-bit index registers (B)

• All arithmetic and logic instructions are reg-to-reg

• Only Load and Store instructions refer to memory!

 Touching address registers 1 to 5 initiates a load
 6 to 7 initiates a store

 - very useful for vector operations

opcode i j k Ri ← (Rj) op (Rk)

opcode i j disp Ri ← M[(Rj) + disp]

6 3 3 3

6 3 3 18

3/30/2016	 CS152,	Spring	2016	

CDC	6600:	Datapath	

11	

Address	Regs									Index	Regs	
		8	x	18-bit																8	x	18-bit	

Operand	Regs	
8	x	60-bit	

Inst.	Stack	
8	x	60-bit	

IR	

10	Func@onal	
Units	

Central	
Memory	

128K	words,	
32	banks,	
1µs	cycle	

result	
addr	

result	

operand	

operand	
addr	

3/30/2016	 CS152,	Spring	2016	

CDC6600	ISA	designed	to	simplify	high-
performance	implementa?on	

§ Use	of	three-address,	register-register	ALU	instruc@ons	
simplifies	pipelined	implementa@on	
–  No	implicit	dependencies	between	inputs	and	outputs	

§ Decoupling	seong	of	address	register	(Ar)	from	retrieving	
value	from	data	register	(Xr)	simplifies	providing	mul@ple	
outstanding	memory	accesses	
–  Sobware	can	schedule	load	of	address	register	before	use	of	value	
–  Can	interleave	independent	instruc@ons	inbetween	

§ CDC6600	has	mul@ple	parallel	but	unpipelined	func@onal	
units	
–  E.g.,	2	separate	mul@pliers	

§  Follow-on	machine	CDC7600	used	pipelined	func@onal	
units	
–  Foreshadows	later	RISC	designs	

12	

3/30/2016	 CS152,	Spring	2016	

CDC6600:	Vector	Addi?on	

13	

B0		<-	-	n	
loop: 	JZE			B0,	exit	

A0		<-		B0	+	a0	 	load	X0	
A1		<-		B0	+	b0	 	load	X1	
X6		<-		X0	+	X1	
A6		<-		B0	+	c0		 	store	X6	
B0		<-		B0	+	1	
jump	loop	

	
Ai	=	address	register	
Bi	=	index	register	
Xi	=	data	register	

3/30/2016	 CS152,	Spring	2016	

Supercomputer	Applica?ons	

§  Typical	applica@on	areas	
–  	Military	research	(nuclear	weapons,	cryptography)	
–  	Scien@fic	research	
–  	Weather	forecas@ng	
–  	Oil	explora@on	
–  	Industrial	design	(car	crash	simula@on)	
–  	Bioinforma@cs	
–  	Cryptography	

§ All	involve	huge	computa@ons	on	large	data	sets	

§  In	70s-80s,	Supercomputer	≡	Vector	Machine	

14	

3/30/2016	 CS152,	Spring	2016	

VLIW	vs	Vector	

15	

§ VLIW	takes	advantage	of	instruc@on	level	parallelism	(ILP)	
by	specifying	instruc@ons	to	execute	in	parallel	

	
§ Vector	architectures	perform	the	same	opera@on	on	
mul@ple	data	elements	
–  Data-level	parallelism	

+ + + + + +

[0] [1] [VLR-1]

Vector Arithmetic
Instructions

ADDV v3, v1, v2 v3

v2
v1

Int	Op	2	 Mem	Op	1	 Mem	Op	2	 FP	Op	1	 FP	Op	2	Int	Op	1	

3/30/2016	 CS152,	Spring	2016	

Vector	Programming	Model	

16	

+ + + + + +

[0] [1] [VLR-1]

Vector Arithmetic
Instructions

ADDV v3, v1, v2 v3

v2
v1

Scalar Registers

r0

r15
Vector Registers

v0

v15

[0] [1] [2] [VLRMAX-1]

VLR Vector Length Register

v1
Vector Load and
Store Instructions

LV v1, r1, r2

Base, r1 Stride, r2
Memory

Vector Register

3/30/2016	 CS152,	Spring	2016	

Control	Informa?on	

17	

§ VLR	limits	the	highest	vector	element	to	be	processed	by	a	
vector	instruc@on	
–  VLR	is	loaded	prior	to	execu@ng	the	vector	instruc@on	with	a	
special	instruc@on	

§  Stride	for	load/stores:	
–  Vectors	may	not	be	adjacent	in	memory	addresses	
–  E.g.,	different	dimensions	of	a	matrix	
–  Stride	can	be	specified	as	part	of	the	load/store	

3/30/2016	 CS152,	Spring	2016	

Vector	Code	Example	

18	

Scalar Code
 LI R4, 64
loop:
 L.D F0, 0(R1)
 L.D F2, 0(R2)
 ADD.D F4, F2, F0
 S.D F4, 0(R3)
 DADDIU R1, 8
 DADDIU R2, 8
 DADDIU R3, 8
 DSUBIU R4, 1
 BNEZ R4, loop

Vector Code
 LI VLR, 64
 LV V1, R1
 LV V2, R2
 ADDV.D V3, V1, V2
 SV V3, R3

C code
for (i=0; i<64; i++)
 C[i] = A[i] + B[i];

3/30/2016	 CS152,	Spring	2016	

Flynn’s	Taxonomy	

19	

§ Single	instruc@on,	single	data	(SISD)	
–  E.g.,	our	in-order	processor	

§ Single	instruc@on,	mul@ple	data	(SIMD)	
–  Mul@ple	processing	elements,	same	opera@on,	different	data	
–  Vector	
–  Mul@ple	processing	units	execute	the	same	instruc@on	on	
different	data	in	a	lockstep.	Either	all	complete	or	none	do.	
Therefore,	all	units	have	to	execute	the	same	instruc@on	at	a	
given	@me	

§ Mul@ple	instruc@on,	mul@ple	data	(MIMD)	
–  Mul@ple	autonomous	processors	execu@ng	different	instruc@ons	
on	different	data	

–  Most	common	and	general	parallel	machine	

§ Mul@ple	instruc@on,	single	data	(MISD)	
– Why	would	anyone	do	this?	

3/30/2016	 CS152,	Spring	2016	

More	Categories	

20	

§ Single	program,	mul@ple	data	(SPMD)	
–  Mul@ple	autonomous	processors	execute	the	program	at	
independent	points	

–  Difference	with	SIMD:	SIMD	imposes	a	lockstep	
–  Programs	at	SPMD	can	be	at	independent	points	
–  SPMD	can	run	on	general	purpose	processors	
–  Most	common	method	for	parallel	compu@ng	

§ Mul@ple	program,	mul@ple	data	(MPMD)	
–  Mul@ple	autonomous	processors	simultaneously	opera@ng	at	
least	2	independent	programs	

3/30/2016	 CS152,	Spring	2016	

Vector	Supercomputers	

§ Epitomy:	Cray-1,	1976	
§ Scalar	Unit	

–  Load/Store	Architecture	

§ Vector	Extension	
–  Vector	Registers	
–  Vector	Instruc@ons	

§ Implementa@on	
–  Hardwired	Control	
–  Highly	Pipelined	Func@onal	Units	
–  Interleaved	Memory	System	
–  No	Data	Caches	
–  No	Virtual	Memory	

21	

3/30/2016	 CS152,	Spring	2016	

Cray-1	(1976)	

22	

Single Port
Memory

16 banks of 64-
bit words

+
8-bit SECDED

80MW/sec data
load/store

320MW/sec
instruction
buffer refill

4 Instruction Buffers

64-bitx16 NIP

LIP

CIP

(A0)

((Ah) + j k m)

64
T Regs

(A0)

((Ah) + j k m)

64
B Regs

S0
S1
S2
S3
S4
S5
S6
S7

A0
A1
A2
A3
A4
A5
A6
A7

Si

Tjk

Ai

Bjk

FP Add
FP Mul
FP Recip

Int Add
Int Logic
Int Shift
Pop Cnt

Sj

Si

Sk

Addr Add
Addr Mul

Aj

Ai

Ak

memory bank cycle 50 ns processor cycle 12.5 ns (80MHz)

V0
V1
V2
V3
V4
V5
V6
V7

Vk

Vj

Vi V. Mask

V. Length 64 Element
Vector Registers

3/30/2016	 CS152,	Spring	2016	

Vector	Instruc?on	Set	Advantages	

§ Compact	
–  one	short	instruc@on	encodes	N	opera@ons	

§ Expressive,	tells	hardware	that	these	N	opera@ons:	
–  are	independent	
–  use	the	same	func@onal	unit	
–  access	disjoint	registers	
–  access	registers	in	same	pauern	as	previous	instruc@ons	
–  access	a	con@guous	block	of	memory	
	(unit-stride	load/store)	

–  access	memory	in	a	known	pauern		
(strided	load/store)		

§ Scalable	
–  can	run	same	code	on	more	parallel	pipelines	(lanes)	

23	

3/30/2016	 CS152,	Spring	2016	

Vector	Arithme?c	Execu?on	
	

24	

• Use	deep	pipeline	(=>	fast	clock)	to	
execute	element	opera@ons	

•  Simplifies	control	of	deep	pipeline	
because	elements	in	vector	are	
independent	(=>	no	hazards!)		

V
1	

V
2	

V
3	

V3	<-	v1	*	v2	

Six	stage	mulGply	pipeline	

3/30/2016	 CS152,	Spring	2016	

Vector	Instruc?on	Execu?on	

25	

ADDV C,A,B

C[1]

C[2]

C[0]

A[3] B[3]

A[4] B[4]

A[5] B[5]

A[6] B[6]

Execution using
one pipelined
functional unit

C[4]

C[8]

C[0]

A[12] B[12]

A[16] B[16]

A[20] B[20]

A[24] B[24]

C[5]

C[9]

C[1]

A[13] B[13]

A[17] B[17]

A[21] B[21]

A[25] B[25]

C[6]

C[10]

C[2]

A[14] B[14]

A[18] B[18]

A[22] B[22]

A[26] B[26]

C[7]

C[11]

C[3]

A[15] B[15]

A[19] B[19]

A[23] B[23]

A[27] B[27]

Execution using
four pipelined
functional units

3/30/2016	 CS152,	Spring	2016	

How	Do	Vector	Architectures	Affect	
Memory?	

26	

3/30/2016	 CS152,	Spring	2016	

Interleaved	Vector	Memory	System	

27	

0 1 2 3 4 5 6 7 8 9 A B C D E F

+

Base Stride Vector Registers

Memory Banks

Address
Generator

Cray-1, 16 banks, 4 cycle bank busy time, 12 cycle latency

•  Bank busy time: Time before bank ready to accept next request

3/30/2016	 CS152,	Spring	2016	

Vector	Unit	Structure	

28	

Lane	

FuncGonal	Unit	

Vector	
Registers	

Memory	Subsystem	

Elements	
0,	4,	8,	…	

Elements	
1,	5,	9,	…	

Elements	
2,	6,	10,	…	

Elements	
3,	7,	11,	…	

3/30/2016	 CS152,	Spring	2016	

T0	Vector	Microprocessor	(UCB/ICSI,	1995)	

29	

Lane	Vector	register	
elements	striped	

over	lanes	

[0]
[8]
[16]
[24]

[1]
[9]
[17]
[25]

[2]
[10]
[18]
[26]

[3]
[11]
[19]
[27]

[4]
[12]
[20]
[28]

[5]
[13]
[21]
[29]

[6]
[14]
[22]
[30]

[7]
[15]
[23]
[31]

3/30/2016	 CS152,	Spring	2016	

Vector	Instruc?on	Parallelism	
§ Can	overlap	execu@on	of	mul@ple	vector	instruc@ons	

–  example	machine	has	32	elements	per	vector	register	and	8	lanes	

30	

load

load
mul

mul

add

add

Load Unit Multiply Unit Add Unit

time

Instruction
issue

Complete	24	opera@ons/cycle	while	issuing	1	short	instruc@on/cycle	

3/30/2016	 CS152,	Spring	2016	

Vector	Chaining	

31	

§ Vector	version	of	register	bypassing	
–  introduced	with	Cray-1	

Memory

V1

Load
Unit

Mult.

V
2

V
3

Chain

Add

V
4

V
5

Chain

LV v1

MULV v3,v1,v2

ADDV v5, v3, v4

3/30/2016	 CS152,	Spring	2016	

Vector	Chaining	Advantage	

32	

•  With	chaining,	can	start	dependent	instruc@on	as	soon	as	first	
result	appears	

Load	
Mul	

Add	

Load	
Mul	

Add	Time	

•  Without	chaining,	must	wait	for	last	element	of	result	to	be	
wriuen	before	star@ng	dependent	instruc@on	

3/30/2016	 CS152,	Spring	2016	

Vector	Startup	
§  Two	components	of	vector	startup	penalty	

–  func@onal	unit	latency	(@me	through	pipeline)	
–  dead	@me	or	recovery	@me	(@me	before	another	vector	instruc@on	can	
start	down	pipeline).	Some	pipelines	reduce	control	logic	by	requiring	
dead	@me	between	instruc@ons	to	the	same	vector	unit	

33	

R	 X	 X	 X	 W
R	 X	 X	 X	 W

R	 X	 X	 X	 W
R	 X	 X	 X	 W

R	 X	 X	 X	 W
R	 X	 X	 X	 W

R	 X	 X	 X	 W

R	 X	 X	 X	 W
R	 X	 X	 X	 W

R	 X	 X	 X	 W

Func@onal	Unit	Latency	

Dead	Time	

First	Vector	Instruc@on	

Second	Vector	Instruc@on	

Dead	Time	

3/30/2016	 CS152,	Spring	2016	

Dead	Time	and	Short	Vectors	

34	

Cray C90, Two lanes
4 cycle dead time

Maximum efficiency 94%
with 128 element vectors

4 cycles dead time T0, Eight lanes
No dead time

100% efficiency with 8 element
vectors

No dead time

64 cycles active

3/30/2016	 CS152,	Spring	2016	

Vector	Memory-Memory	versus	Vector	
Register	Machines	

§ Vector	memory-memory	instruc@ons	hold	all	vector	
operands	in	main	memory	

§  The	first	vector	machines,	CDC	Star-100	(‘73)	and	TI	ASC	
(‘71),	were	memory-memory	machines	

§ Cray-1	(’76)	was	first	vector	register	machine	

35	

for (i=0; i<N; i++)
{
 C[i] = A[i] + B[i];
 D[i] = A[i] - B[i];
}

Example Source Code ADDV C, A, B
SUBV D, A, B

Vector Memory-Memory Code

LV V1, A
LV V2, B
ADDV V3, V1, V2
SV V3, C
SUBV V4, V1, V2
SV V4, D

Vector Register Code

3/30/2016	 CS152,	Spring	2016	

Vector	Memory-Memory	vs.	Vector	
Register	Machines	

§ Vector	memory-memory	architectures	(VMMA)	require	
greater	main	memory	bandwidth,	why?	
–  All	operands	must	be	read	in	and	out	of	memory	

§ VMMAs	make	if	difficult	to	overlap	execu@on	of	mul@ple	
vector	opera@ons,	why?		
–  Must	check	dependencies	on	memory	addresses	

§ VMMAs	incur	greater	startup	latency	
–  Scalar	code	was	faster	on	CDC	Star-100	(VMM)	for	vectors	<	100	elements	

§ Apart	from	CDC	follow-ons	(Cyber-205,	ETA-10)	all	major	
vector	machines	since	Cray-1	have	had	vector	register	
architectures	

§  (we	ignore	vector	memory-memory	from	now	on)	

36	

3/30/2016	 CS152,	Spring	2016	

Automa?c	Code	Vectoriza?on	

37	

for (i=0; i < N; i++)
 C[i] = A[i] + B[i];

load	
load	

add	

store	

load	
load	

add	

store	

Iter.	1	

Iter.	2	

Scalar	SequenGal	Code	

Vectoriza@on	is	a	massive	compile-@me	reordering	
of	opera@on	sequencing	

⇒	requires	extensive	loop	dependence	analysis	

Vector	InstrucGon	

load	

load	

add	

store	

load	

load	

add	

store	

Iter.	1	 Iter.	2	

Vectorized	Code	

Ti
m
e	

3/30/2016	 CS152,	Spring	2016	

Vector	Stripmining	
Problem:	Vector	registers	have	finite	length	
Solu?on:	Break	loops	into	pieces	that	fit	in	registers,	“Stripmining”	

38	

 ANDI R1, N, 63 # N mod 64
 MTC1 VLR, R1 # Do remainder
loop:
 LV V1, RA
 DSLL R2, R1, 3 # Multiply by 8
 DADDU RA, RA, R2 # Bump pointer
 LV V2, RB
 DADDU RB, RB, R2
 ADDV.D V3, V1, V2
 SV V3, RC
 DADDU RC, RC, R2
 DSUBU N, N, R1 # Subtract elements
 LI R1, 64
 MTC1 VLR, R1 # Reset full length
 BGTZ N, loop # Any more to do?

for (i=0; i<N; i++)
 C[i] = A[i]+B[i];

+

+

+

A B C

64 elements

Remainder

3/30/2016	 CS152,	Spring	2016	

Vector	Condi?onal	Execu?on	

39	

Problem: Want to vectorize loops with conditional code:
for (i=0; i<N; i++)
 if (A[i]>0) then
 A[i] = B[i];

Solution: Add vector mask (or flag) registers
–  vector version of predicate registers, 1 bit per element

…and maskable vector instructions
–  vector operation becomes bubble (“NOP”) at elements where mask bit is clear

Code example:
CVM # Turn on all elements
LV vA, rA # Load entire A vector
SGTVS.D vA, F0 # Set bits in mask register where A>0
LV vA, rB # Load B vector into A under mask
SV vA, rA # Store A back to memory under mask

3/30/2016	 CS152,	Spring	2016	

Masked	Vector	Instruc?ons	

40	

C[4]

C[5]

C[1]

Write data port

A[7] B[7]

M[3]=0

M[4]=1

M[5]=1

M[6]=0

M[2]=0

M[1]=1

M[0]=0

M[7]=1

Density-Time	Implementa@on	
–  scan	mask	vector	and	only	execute	
elements	with	non-zero	masks	

C[1]

C[2]

C[0]

A[3] B[3]

A[4] B[4]

A[5] B[5]

A[6] B[6]

M[3]=0

M[4]=1

M[5]=1

M[6]=0

M[2]=0

M[1]=1

M[0]=0

Write data port Write Enable

A[7] B[7] M[7]=1

Simple	Implementa@on	
–  execute	all	N	opera@ons,	turn	off	result	
writeback	according	to	mask	

3/30/2016	 CS152,	Spring	2016	

Vector	Reduc?ons	

41	

Problem:	Loop-carried	dependence	on	reduc@on	variables	
sum = 0;
for (i=0; i<N; i++)
 sum += A[i]; # Loop-carried dependence on sum	

Solu?on:	Re-associate	opera@ons	if	possible,	use	binary	tree	to	perform	reduc@on
Rearrange as:
sum[0:VL-1] = 0 # Vector of VL partial sums
for(i=0; i<N; i+=VL) # Stripmine VL-sized chunks
 sum[0:VL-1] += A[i:i+VL-1]; # Vector sum
Now have VL partial sums in one vector register
do {
 VL = VL/2; # Halve vector length
 sum[0:VL-1] += sum[VL:2*VL-1] # Halve no. of partials
} while (VL>1)

3/30/2016	 CS152,	Spring	2016	

Vector	Scacer/Gather	

42	

Want	to	vectorize	loops	with	indirect	accesses:	
for (i=0; i<N; i++)
 A[i] = B[i] + C[D[i]]

Indexed	load	instruc@on	(Gather)	
LV vD, rD # Load indices in D vector
LVI vC, rC, vD # Load indirect from rC base
LV vB, rB # Load B vector
ADDV.D vA,vB,vC # Do add
SV vA, rA # Store result

3/30/2016	 CS152,	Spring	2016	

Vector	Scacer/Gather	

43	

Histogram	example:	
for (i=0; i<N; i++)
 A[B[i]]++;

Is	following	a	correct	transla@on?
LV vB, rB # Load indices in B vector
LVI vA, rA, vB # Gather initial A values
ADDV vA, vA, 1 # Increment
SVI vA, rA, vB # Scatter incremented values	

3/30/2016	 CS152,	Spring	2016	

A	Modern	Vector	Super:	NEC	SX-9	(2008)	
§ 65nm	CMOS	technology	
§ Vector	unit	(3.2	GHz)	

– 8	foreground	VRegs	+	64	background	
VRegs	(256x64-bit	elements/VReg)	

– 64-bit	func@onal	units:	2	mul@ply,	2	add,	
1	divide/sqrt,	1	logical,	1	mask	unit	

– 8	lanes	(32+	FLOPS/cycle,	100+	GFLOPS	
peak	per	CPU)	

– 1	load	or	store	unit	(8	x	8-byte	accesses/
cycle)		

§ Scalar	unit	(1.6	GHz)	
– 4-way	superscalar	with	out-of-order	and	
specula@ve	execu@on	

– 64KB	I-cache	and	64KB	data	cache	

44	

• Memory	system	provides	256GB/s	DRAM	bandwidth	per	CPU	
• Up	to	16	CPUs	and	up	to	1TB	DRAM	form	shared-memory	node	

–  total	of	4TB/s	bandwidth	to	shared	DRAM	memory	

• Up	to	512	nodes	connected	via	128GB/s	network	links	(message	
passing	between	nodes)	

3/30/2016	 CS152,	Spring	2016	

Mul?media	Extensions	(aka	SIMD	extensions)	

45	

§  Very	short	vectors	added	to	exis@ng	ISAs	for	microprocessors	
§  Use	exis@ng	64-bit	registers	split	into	2x32b	or	4x16b	or	8x8b	

–  Lincoln	Labs	TX-2	from	1957	had	36b	datapath	split	into	2x18b	or	4x9b	
–  Newer	designs	have	wider	registers	

•  128b	for	PowerPC	Al@vec,	Intel	SSE2/3/4	
•  256b	for	Intel	AVX		

§  Single	instruc@on	operates	on	all	elements	within	register	

16b	 16b	 16b	 16b	

32b	 32b	

64b	

8b	 8b	 8b	 8b	 8b	 8b	 8b	 8b	

16b	 16b	 16b	 16b	

16b	 16b	 16b	 16b	

16b	 16b	 16b	 16b	

+ + + + 4x16b	adds	

3/30/2016	 CS152,	Spring	2016	

Mul?media	Extensions	versus	Vectors	

§ Limited	instruc@on	set:	
–  no	vector	length	control	
–  no	strided	load/store	or	scauer/gather	
–  unit-stride	loads	must	be	aligned	to	64/128-bit	boundary	

§ Limited	vector	register	length:	
–  requires	superscalar	dispatch	to	keep	mul@ply/add/load	units	busy	
–  loop	unrolling	to	hide	latencies	increases	register	pressure	

§ Trend	towards	fuller	vector	support	in	microprocessors	
–  Beuer	support	for	misaligned	memory	accesses	
–  Support	of	double-precision	(64-bit	floa@ng-point)	
–  New	Intel	AVX	spec	(announced	April	2008),	256b	vector	registers	
(expandable	up	to	1024b)		

46	

3/30/2016	 CS152,	Spring	2016	

Degree	of	Vectoriza?on	

§ Compilers	are	good	at	finding	data-level	parallelism	

47	

3/30/2016	 CS152,	Spring	2016	

Average	Vector	Length	

§ Maximum	depends	on	if	becnhmarks	use	16	bit	or	32	bit	
opera@ons	

48	

3/30/2016	 CS152,	Spring	2016	

Distribu?on	of	Instruc?ons	

49	

3/30/2016	 CS152,	Spring	2016	

Ques?on	of	the	Day	

50	

§ Can	Vector	and	VLIW	combine?	

§  Yes!	
§  Fujitsy	FR-V	can	process	both	VLIW	and	vector	instruc@ons	
§  Exploits	both	instruc@on-	and	data-level	parallelism	

3/30/2016	 CS152,	Spring	2016	

Acknowledgements	

§  These	slides	contain	material	developed	and	copyright	by:	
–  Arvind	(MIT)	
–  Krste	Asanovic	(MIT/UCB)	
–  Joel	Emer	(Intel/MIT)	
–  James	Hoe	(CMU)	
–  John	Kubiatowicz	(UCB)	
–  David	Pauerson	(UCB)	

§ MIT	material	derived	from	course	6.823	
§ UCB	material	derived	from	course	CS252	
§  “Vector	Vs.	Superscalar	and	VLIW	Architectures	for	
Embedded	Mul@media	Benchmarks”.	Christos	Kozyrakis	
and	David	Pauerson.	MICRO-35.	2002	

	

51	

