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Last	Time	Lecture	14:	Mul?threading	
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Ques?on	of	the	Day	

3	

§ Can	Vector	and	VLIW	combine?	
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Supercomputers	

§ Defini@on	of	a	supercomputer:	
§  Fastest	machine	in	world	at	given	task	

–  	Performs	at	or	near	the	currently	highest	opera@onal	rate	for	computers	

§ A	device	to	turn	a	compute-bound	problem	into	an	I/O	
bound	problem		

§ Any	machine	cos@ng	$30M+	
§ Any	machine	designed	by	Seymour	Cray	

§ CDC6600	(Cray,	1964)	regarded	as	first	supercomputer	

4	
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CDC	6600	Seymour	Cray,	1963	

§ A	fast	pipelined	machine	with	60-bit	words	
–  128	Kword	main	memory	capacity,	32	banks	

§ Ten	func@onal	units	(parallel,	unpipelined)	
–  Floa@ng	Point:	adder,	2	mul@pliers,	divider	
–  Integer:	adder,	2	incrementers,	...	

§ Hardwired	control	(no	microcoding)	
§ Scoreboard	for	dynamic	scheduling	of	instruc@ons		
§ Ten	Peripheral	Processors	for	Input/Output	

–  a	fast	mul@-threaded	12-bit	integer	ALU	
§ Very	fast	clock,	10	MHz	(FP	add	in	4	clocks)	
§ >400,000	transistors,		750	sq.	b.,	5	tons,	150	kW,	novel	
freon-based	technology	for	cooling	

§ Fastest	machine	in	world	for	5	years	(un@l	7600)	
–  over	100	sold	($7-10M	each)	

5	
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IBM	Memo	on	CDC6600	
Thomas	Watson	Jr.,	IBM	CEO,	August	1963:	

	“Last	week,	Control	Data	...	announced	the	
6600	system.	I	understand	that	in	the	
laboratory	developing	the	system	there	are	
only	34	people	including	the	janitor.	Of	these,	
14	are	engineers	and	4	are	programmers...	
ContrasGng	this	modest	effort	with	our	vast	
development	acGviGes,	I	fail	to	understand	why	
we	have	lost	our	industry	leadership	posiGon	by	
leIng	someone	else	offer	the	world's	most	
powerful	computer.”	

		
To	which	Cray	replied:	“It	seems	like	Mr.	Watson	has	
answered	his	own	quesGon.”	

6	
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Top	500	Systems	

7	

LINPACK & LAPACK: Software libraries for performing linear algebra 
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Oak	Ridge	Titan	

§  560,640	cores	
§  LinkPack	performance	17,590	TFlop/s	
§  Theore@cal	peak	27,112.5	TFlop/s	
§  8,209.00	kW	
§  710,144	GB	
§ Opteron	6274	16C	2.2GHz	

8	
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NERSC	(LBNL)	Cori	

§ Cray	XC40	supercomputer	
§  Theore@cal	Peak	performance	1.92	Petaflops/sec	
§  1,630	computes	nodes,	52,160	cores	in	total	
§ Cray	Aries	high-speed	interconnect	with	Dragonfly	
topology	as	on	Edison	(0.25	μs	to	3.7	μs	MPI	latency,	
~8GB/sec	MPI	bandwidth)		

§ Aggregate	memory:	203	TB		
§  Scratch	storage	capacity:	30	PB	

9	
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CDC	6600:		
A	Load/Store	Architecture	

10	

•  Separate instructions to manipulate three types of reg. 
     8   60-bit data registers (X) 

     8   18-bit address registers (A) 
     8   18-bit index registers (B) 

• All arithmetic and logic instructions are reg-to-reg  
 
 
 

• Only Load and Store instructions refer to memory! 
 
 
 

 Touching address registers 1 to 5 initiates a load   
                  6 to 7 initiates a store  

 - very useful for vector operations 

opcode   i      j      k     Ri ← (Rj) op (Rk) 
 

  
opcode   i     j                disp                  Ri ← M[(Rj) + disp] 

 

6 3 3 3 

6 3 3 18 
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CDC	6600:	Datapath	

11	

Address	Regs									Index	Regs	
		8	x	18-bit																8	x	18-bit	

Operand	Regs	
8	x	60-bit	

Inst.	Stack	
8	x	60-bit	

IR	

10	Func@onal	
Units	

Central	
Memory	

128K	words,	
32	banks,	
1µs	cycle	

result	
addr	

result	

operand	

operand	
addr	
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CDC6600	ISA	designed	to	simplify	high-
performance	implementa?on	

§ Use	of	three-address,	register-register	ALU	instruc@ons	
simplifies	pipelined	implementa@on	
–  No	implicit	dependencies	between	inputs	and	outputs	

§ Decoupling	seong	of	address	register	(Ar)	from	retrieving	
value	from	data	register	(Xr)	simplifies	providing	mul@ple	
outstanding	memory	accesses	
–  Sobware	can	schedule	load	of	address	register	before	use	of	value	
–  Can	interleave	independent	instruc@ons	inbetween	

§ CDC6600	has	mul@ple	parallel	but	unpipelined	func@onal	
units	
–  E.g.,	2	separate	mul@pliers	

§  Follow-on	machine	CDC7600	used	pipelined	func@onal	
units	
–  Foreshadows	later	RISC	designs	

12	
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CDC6600:	Vector	Addi?on	

13	

B0		<-	-	n	
loop: 	JZE			B0,	exit	

A0		<-		B0	+	a0	 	load	X0	
A1		<-		B0	+	b0	 	load	X1	
X6		<-		X0	+	X1	
A6		<-		B0	+	c0		 	store	X6	
B0		<-		B0	+	1	
jump	loop	

	
Ai	=	address	register	
Bi	=	index	register	
Xi	=	data	register	
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Supercomputer	Applica?ons	

§   Typical	applica@on	areas	
–  	Military	research	(nuclear	weapons,	cryptography)	
–  	Scien@fic	research	
–  	Weather	forecas@ng	
–  	Oil	explora@on	
–  	Industrial	design	(car	crash	simula@on)	
–  	Bioinforma@cs	
–  	Cryptography	

§ All	involve	huge	computa@ons	on	large	data	sets	

§  In	70s-80s,	Supercomputer	≡	Vector	Machine	

14	
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VLIW	vs	Vector	

15	

§ VLIW	takes	advantage	of	instruc@on	level	parallelism	(ILP)	
by	specifying	instruc@ons	to	execute	in	parallel	

	
§ Vector	architectures	perform	the	same	opera@on	on	
mul@ple	data	elements	
–  Data-level	parallelism	

+ + + + + + 

[0] [1] [VLR-1] 

Vector Arithmetic 
Instructions 

ADDV v3, v1, v2 v3 

v2 
v1 

Int	Op	2	 Mem	Op	1	 Mem	Op	2	 FP	Op	1	 FP	Op	2	Int	Op	1	
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Vector	Programming	Model	

16	

+ + + + + + 

[0] [1] [VLR-1] 

Vector Arithmetic 
Instructions 

ADDV v3, v1, v2 v3 

v2 
v1 

Scalar Registers 

r0 

r15 
Vector Registers 

v0 

v15 

[0] [1] [2] [VLRMAX-1] 

VLR Vector Length Register 

v1 
Vector Load and 
Store Instructions 

LV v1, r1, r2 

Base, r1 Stride, r2 
Memory 

Vector Register 
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Control	Informa?on	

17	

§ VLR	limits	the	highest	vector	element	to	be	processed	by	a	
vector	instruc@on	
–  VLR	is	loaded	prior	to	execu@ng	the	vector	instruc@on	with	a	
special	instruc@on	

§  Stride	for	load/stores:	
–  Vectors	may	not	be	adjacent	in	memory	addresses	
–  E.g.,	different	dimensions	of	a	matrix	
–  Stride	can	be	specified	as	part	of	the	load/store	
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Vector	Code	Example	

18	

# Scalar Code 
  LI R4, 64 
loop: 
  L.D F0, 0(R1) 
  L.D F2, 0(R2) 
  ADD.D F4, F2, F0 
  S.D F4, 0(R3) 
  DADDIU R1, 8 
  DADDIU R2, 8 
  DADDIU R3, 8 
  DSUBIU R4, 1 
  BNEZ R4, loop 

# Vector Code 
  LI VLR, 64  
  LV V1, R1 
  LV V2, R2 
  ADDV.D V3, V1, V2 
  SV V3, R3 

# C code 
for (i=0; i<64; i++) 
  C[i] = A[i] + B[i]; 



3/30/2016	 CS152,	Spring	2016	

Flynn’s	Taxonomy	

19	

§ Single	instruc@on,	single	data	(SISD)	
–  E.g.,	our	in-order	processor	

§ Single	instruc@on,	mul@ple	data	(SIMD)	
–  Mul@ple	processing	elements,	same	opera@on,	different	data	
–  Vector	
–  Mul@ple	processing	units	execute	the	same	instruc@on	on	
different	data	in	a	lockstep.	Either	all	complete	or	none	do.	
Therefore,	all	units	have	to	execute	the	same	instruc@on	at	a	
given	@me	

§ Mul@ple	instruc@on,	mul@ple	data	(MIMD)	
–  Mul@ple	autonomous	processors	execu@ng	different	instruc@ons	
on	different	data	

–  Most	common	and	general	parallel	machine	

§ Mul@ple	instruc@on,	single	data	(MISD)	
– Why	would	anyone	do	this?	
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More	Categories	

20	

§ Single	program,	mul@ple	data	(SPMD)	
–  Mul@ple	autonomous	processors	execute	the	program	at	
independent	points	

–  Difference	with	SIMD:	SIMD	imposes	a	lockstep	
–  Programs	at	SPMD	can	be	at	independent	points	
–  SPMD	can	run	on	general	purpose	processors	
–  Most	common	method	for	parallel	compu@ng	

§ Mul@ple	program,	mul@ple	data	(MPMD)	
–  Mul@ple	autonomous	processors	simultaneously	opera@ng	at	
least	2	independent	programs	
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Vector	Supercomputers	

§ Epitomy:	Cray-1,	1976	
§ Scalar	Unit	

–  Load/Store	Architecture	

§ Vector	Extension	
–  Vector	Registers	
–  Vector	Instruc@ons	

§ Implementa@on	
–  Hardwired	Control	
–  Highly	Pipelined	Func@onal	Units	
–  Interleaved	Memory	System	
–  No	Data	Caches	
–  No	Virtual	Memory	

21	
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Cray-1	(1976)	

22	

Single Port 
Memory 
 
16 banks of 64-
bit words 

+  
8-bit SECDED 

 
80MW/sec data 
load/store 
 
320MW/sec 
instruction 
buffer refill 

4 Instruction Buffers 

64-bitx16 NIP 

LIP 

CIP 

(A0) 

( (Ah) + j k m ) 

64 
T Regs 

(A0) 

( (Ah) + j k m ) 

64  
B Regs 

S0 
S1 
S2 
S3 
S4 
S5 
S6 
S7 

A0 
A1 
A2 
A3 
A4 
A5 
A6 
A7 

Si 

Tjk 

Ai 

Bjk 

FP Add 
FP Mul 
FP Recip 

Int Add 
Int Logic 
Int Shift 
Pop Cnt 

Sj 

Si 

Sk 

Addr Add 
Addr Mul 

Aj 

Ai 

Ak 

memory bank cycle 50 ns     processor cycle 12.5 ns (80MHz) 

V0 
V1 
V2 
V3 
V4 
V5 
V6 
V7 

Vk 

Vj 

Vi V. Mask 

V. Length 64 Element 
Vector Registers 
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Vector	Instruc?on	Set	Advantages	

§ Compact	
–  one	short	instruc@on	encodes	N	opera@ons	

§ Expressive,	tells	hardware	that	these	N	opera@ons:	
–  are	independent	
–  use	the	same	func@onal	unit	
–  access	disjoint	registers	
–  access	registers	in	same	pauern	as	previous	instruc@ons	
–  access	a	con@guous	block	of	memory	
	(unit-stride	load/store)	

–  access	memory	in	a	known	pauern		
(strided	load/store)		

§ Scalable	
–  can	run	same	code	on	more	parallel	pipelines	(lanes)	

23	
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Vector	Arithme?c	Execu?on	
	

24	

• Use	deep	pipeline	(=>	fast	clock)	to	
execute	element	opera@ons	

•  Simplifies	control	of	deep	pipeline	
because	elements	in	vector	are	
independent	(=>	no	hazards!)		

V
1	

V
2	

V
3	

V3	<-	v1	*	v2	

Six	stage	mulGply	pipeline	
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Vector	Instruc?on	Execu?on	

25	

ADDV C,A,B 

C[1] 

C[2] 

C[0] 

A[3] B[3] 

A[4] B[4] 

A[5] B[5] 

A[6] B[6] 

Execution using 
one pipelined 
functional unit 

C[4] 

C[8] 

C[0] 

A[12] B[12] 

A[16] B[16] 

A[20] B[20] 

A[24] B[24] 

C[5] 

C[9] 

C[1] 

A[13] B[13] 

A[17] B[17] 

A[21] B[21] 

A[25] B[25] 

C[6] 

C[10] 

C[2] 

A[14] B[14] 

A[18] B[18] 

A[22] B[22] 

A[26] B[26] 

C[7] 

C[11] 

C[3] 

A[15] B[15] 

A[19] B[19] 

A[23] B[23] 

A[27] B[27] 

Execution using 
four pipelined 
functional units 
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How	Do	Vector	Architectures	Affect	
Memory?	

26	
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Interleaved	Vector	Memory	System	

27	

0 1 2 3 4 5 6 7 8 9 A B C D E F 

+

Base Stride Vector Registers 

Memory Banks 

Address 
Generator 

Cray-1, 16 banks, 4 cycle bank busy time, 12 cycle latency 

•  Bank busy time: Time before bank ready to accept next request 
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Vector	Unit	Structure	

28	

Lane	

FuncGonal	Unit	

Vector	
Registers	

Memory	Subsystem	

Elements	
0,	4,	8,	…	

Elements	
1,	5,	9,	…	

Elements	
2,	6,	10,	…	

Elements	
3,	7,	11,	…	
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T0	Vector	Microprocessor	(UCB/ICSI,	1995)	

29	

Lane	Vector	register	
elements	striped	

over	lanes	

[0] 
[8] 
[16] 
[24] 

[1] 
[9] 
[17] 
[25] 

[2] 
[10] 
[18] 
[26] 

[3] 
[11] 
[19] 
[27] 

[4] 
[12] 
[20] 
[28] 

[5] 
[13] 
[21] 
[29] 

[6] 
[14] 
[22] 
[30] 

[7] 
[15] 
[23] 
[31] 



3/30/2016	 CS152,	Spring	2016	

Vector	Instruc?on	Parallelism	
§ Can	overlap	execu@on	of	mul@ple	vector	instruc@ons	

–  example	machine	has	32	elements	per	vector	register	and	8	lanes	

30	

load 

load 
mul 

mul 

add 

add 

Load Unit Multiply Unit Add Unit 

time 

Instruction 
issue 

Complete	24	opera@ons/cycle	while	issuing	1	short	instruc@on/cycle	
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Vector	Chaining	

31	

§ Vector	version	of	register	bypassing	
–  introduced	with	Cray-1	

Memory 

V1 

Load 
Unit 

Mult. 

V
2 

V
3 

Chain 

Add 

V
4 

V
5 

Chain 

LV   v1 

MULV v3,v1,v2 

ADDV v5, v3, v4 
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Vector	Chaining	Advantage	

32	

•  With	chaining,	can	start	dependent	instruc@on	as	soon	as	first	
result	appears	

Load	
Mul	

Add	

Load	
Mul	

Add	Time	

•  Without	chaining,	must	wait	for	last	element	of	result	to	be	
wriuen	before	star@ng	dependent	instruc@on	
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Vector	Startup	
§  Two	components	of	vector	startup	penalty	

–  func@onal	unit	latency	(@me	through	pipeline)	
–  dead	@me	or	recovery	@me	(@me	before	another	vector	instruc@on	can	
start	down	pipeline).	Some	pipelines	reduce	control	logic	by	requiring	
dead	@me	between	instruc@ons	to	the	same	vector	unit	

33	

R	 X	 X	 X	 W
R	 X	 X	 X	 W

R	 X	 X	 X	 W
R	 X	 X	 X	 W

R	 X	 X	 X	 W
R	 X	 X	 X	 W

R	 X	 X	 X	 W

R	 X	 X	 X	 W
R	 X	 X	 X	 W

R	 X	 X	 X	 W

Func@onal	Unit	Latency	

Dead	Time	

First	Vector	Instruc@on	

Second	Vector	Instruc@on	

Dead	Time	
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Dead	Time	and	Short	Vectors	

34	

Cray C90, Two lanes 
4 cycle dead time 

Maximum efficiency 94% 
with 128 element vectors 

4 cycles dead time T0, Eight lanes 
No dead time 

100% efficiency with 8 element 
vectors 

No dead time 

64 cycles active 
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Vector	Memory-Memory	versus	Vector	
Register	Machines	

§ Vector	memory-memory	instruc@ons	hold	all	vector	
operands	in	main	memory	

§  The	first	vector	machines,	CDC	Star-100	(‘73)	and	TI	ASC	
(‘71),	were	memory-memory	machines	

§ Cray-1	(’76)	was	first	vector	register	machine	

35	

for (i=0; i<N; i++) 
{ 
  C[i] = A[i] + B[i]; 
  D[i] = A[i] - B[i]; 
} 

Example Source Code ADDV C, A, B 
SUBV D, A, B 

Vector Memory-Memory Code 

LV V1, A 
LV V2, B 
ADDV V3, V1, V2 
SV V3, C 
SUBV V4, V1, V2 
SV V4, D 

Vector Register Code 
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Vector	Memory-Memory	vs.	Vector	
Register	Machines	

§ Vector	memory-memory	architectures	(VMMA)	require	
greater	main	memory	bandwidth,	why?	
–  All	operands	must	be	read	in	and	out	of	memory	

§ VMMAs	make	if	difficult	to	overlap	execu@on	of	mul@ple	
vector	opera@ons,	why?		
–  Must	check	dependencies	on	memory	addresses	

§ VMMAs	incur	greater	startup	latency	
–  Scalar	code	was	faster	on	CDC	Star-100	(VMM)	for	vectors	<	100	elements	

§ Apart	from	CDC	follow-ons	(Cyber-205,	ETA-10)	all	major	
vector	machines	since	Cray-1	have	had	vector	register	
architectures	

§  (we	ignore	vector	memory-memory	from	now	on)	

36	
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Automa?c	Code	Vectoriza?on	

37	

for (i=0; i < N; i++) 
    C[i] = A[i] + B[i]; 

load	
load	

add	

store	

load	
load	

add	

store	

Iter.	1	

Iter.	2	

Scalar	SequenGal	Code	

Vectoriza@on	is	a	massive	compile-@me	reordering	
of	opera@on	sequencing	

⇒	requires	extensive	loop	dependence	analysis	

Vector	InstrucGon	

load	

load	

add	

store	

load	

load	

add	

store	

Iter.	1	 Iter.	2	

Vectorized	Code	

Ti
m
e	
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Vector	Stripmining	
Problem:	Vector	registers	have	finite	length	
Solu?on:	Break	loops	into	pieces	that	fit	in	registers,	“Stripmining”	

38	

 ANDI R1, N, 63   # N mod 64 
 MTC1 VLR, R1     # Do remainder 
loop: 
 LV V1, RA 
 DSLL R2, R1, 3  # Multiply by 8       
 DADDU RA, RA, R2 # Bump pointer 
 LV V2, RB 
 DADDU RB, RB, R2  
 ADDV.D V3, V1, V2 
 SV V3, RC 
 DADDU RC, RC, R2 
 DSUBU N, N, R1 # Subtract elements 
 LI R1, 64 
 MTC1 VLR, R1   # Reset full length 
 BGTZ N, loop   # Any more to do? 

for (i=0; i<N; i++) 
    C[i] = A[i]+B[i]; 

+ 

+ 

+ 

A B C 

64 elements 

Remainder 
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Vector	Condi?onal	Execu?on	

39	

Problem: Want to vectorize loops with conditional code: 
for (i=0; i<N; i++) 
    if (A[i]>0) then 
        A[i] = B[i]; 
     

Solution: Add vector mask (or flag) registers 
–  vector version of predicate registers, 1 bit per element 

…and maskable vector instructions 
–  vector operation becomes bubble (“NOP”) at elements where mask bit is clear 

Code example: 
CVM             # Turn on all elements  
LV vA, rA       # Load entire A vector 
SGTVS.D vA, F0  # Set bits in mask register where A>0 
LV vA, rB       # Load B vector into A under mask 
SV vA, rA       # Store A back to memory under mask 
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Masked	Vector	Instruc?ons	

40	

C[4] 

C[5] 

C[1] 

Write data port 

A[7] B[7] 

M[3]=0 

M[4]=1 

M[5]=1 

M[6]=0 

M[2]=0 

M[1]=1 

M[0]=0 

M[7]=1 

Density-Time	Implementa@on	
–  scan	mask	vector	and	only	execute	
elements	with	non-zero	masks	

C[1] 

C[2] 

C[0] 

A[3] B[3] 

A[4] B[4] 

A[5] B[5] 

A[6] B[6] 

M[3]=0 

M[4]=1 

M[5]=1 

M[6]=0 

M[2]=0 

M[1]=1 

M[0]=0 

Write data port Write Enable 

A[7] B[7] M[7]=1 

Simple	Implementa@on	
–  execute	all	N	opera@ons,	turn	off	result	
writeback	according	to	mask	
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Vector	Reduc?ons	
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Problem:	Loop-carried	dependence	on	reduc@on	variables	
sum = 0; 
for (i=0; i<N; i++) 
    sum += A[i];  # Loop-carried dependence on sum	

Solu?on:	Re-associate	opera@ons	if	possible,	use	binary	tree	to	perform	reduc@on 
# Rearrange as: 
sum[0:VL-1] = 0                 # Vector of VL partial sums 
for(i=0; i<N; i+=VL)            # Stripmine VL-sized chunks 
    sum[0:VL-1] += A[i:i+VL-1]; # Vector sum 
# Now have VL partial sums in one vector register 
do { 
    VL = VL/2;                    # Halve vector length 
    sum[0:VL-1] += sum[VL:2*VL-1] # Halve no. of partials 
} while (VL>1) 
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Vector	Scacer/Gather	
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Want	to	vectorize	loops	with	indirect	accesses:	
for (i=0; i<N; i++) 
    A[i] = B[i] + C[D[i]] 

 

Indexed	load	instruc@on	(Gather)	
LV vD, rD       # Load indices in D vector 
LVI vC, rC, vD  # Load indirect from rC base 
LV vB, rB       # Load B vector 
ADDV.D vA,vB,vC # Do add 
SV vA, rA       # Store result 
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Vector	Scacer/Gather	
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Histogram	example:	
for (i=0; i<N; i++) 
    A[B[i]]++; 
 

Is	following	a	correct	transla@on? 
LV vB, rB       # Load indices in B vector 
LVI vA, rA, vB  # Gather initial A values 
ADDV vA, vA, 1  # Increment 
SVI vA, rA, vB  # Scatter incremented values	
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A	Modern	Vector	Super:	NEC	SX-9	(2008)	
§ 65nm	CMOS	technology	
§ Vector	unit	(3.2	GHz)	

– 8	foreground	VRegs	+	64	background	
VRegs	(256x64-bit	elements/VReg)	

– 64-bit	func@onal	units:	2	mul@ply,	2	add,	
1	divide/sqrt,	1	logical,	1	mask	unit	

– 8	lanes	(32+	FLOPS/cycle,	100+	GFLOPS	
peak	per	CPU)	

– 1	load	or	store	unit	(8	x	8-byte	accesses/
cycle)		

§ Scalar	unit	(1.6	GHz)	
– 4-way	superscalar	with	out-of-order	and	
specula@ve	execu@on	

– 64KB	I-cache	and	64KB	data	cache	

44	

• Memory	system	provides	256GB/s	DRAM	bandwidth	per	CPU	
• Up	to	16	CPUs	and	up	to	1TB	DRAM	form	shared-memory	node	

–  total	of	4TB/s	bandwidth	to	shared	DRAM	memory	

• Up	to	512	nodes	connected	via	128GB/s	network	links	(message	
passing	between	nodes)	
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Mul?media	Extensions	(aka	SIMD	extensions)	

45	

§  Very	short	vectors	added	to	exis@ng	ISAs	for	microprocessors	
§  Use	exis@ng	64-bit	registers	split	into	2x32b	or	4x16b	or	8x8b	

–  Lincoln	Labs	TX-2	from	1957	had	36b	datapath	split	into	2x18b	or	4x9b	
–  Newer	designs	have	wider	registers	

•  128b	for	PowerPC	Al@vec,	Intel	SSE2/3/4	
•  256b	for	Intel	AVX		

§  Single	instruc@on	operates	on	all	elements	within	register	

16b	 16b	 16b	 16b	

32b	 32b	

64b	

8b	 8b	 8b	 8b	 8b	 8b	 8b	 8b	

16b	 16b	 16b	 16b	

16b	 16b	 16b	 16b	

16b	 16b	 16b	 16b	

+ + + + 4x16b	adds	
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Mul?media	Extensions	versus	Vectors	

§ Limited	instruc@on	set:	
–  no	vector	length	control	
–  no	strided	load/store	or	scauer/gather	
–  unit-stride	loads	must	be	aligned	to	64/128-bit	boundary	

§ Limited	vector	register	length:	
–  requires	superscalar	dispatch	to	keep	mul@ply/add/load	units	busy	
–  loop	unrolling	to	hide	latencies	increases	register	pressure	

§ Trend	towards	fuller	vector	support	in	microprocessors	
–  Beuer	support	for	misaligned	memory	accesses	
–  Support	of	double-precision	(64-bit	floa@ng-point)	
–  New	Intel	AVX	spec	(announced	April	2008),	256b	vector	registers	
(expandable	up	to	1024b)		

46	
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Degree	of	Vectoriza?on	

§ Compilers	are	good	at	finding	data-level	parallelism	

47	
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Average	Vector	Length	

§ Maximum	depends	on	if	becnhmarks	use	16	bit	or	32	bit	
opera@ons	

48	
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Distribu?on	of	Instruc?ons	

49	
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Ques?on	of	the	Day	
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§ Can	Vector	and	VLIW	combine?	

§  Yes!	
§  Fujitsy	FR-V	can	process	both	VLIW	and	vector	instruc@ons	
§  Exploits	both	instruc@on-	and	data-level	parallelism	
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