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Administrivia	

§  PS	3	due	NOW	

§  Lab	3	is	due	on	Monday	a?er	spring	break	
–  March	28th	

§ March	28th	is	also	quiz	3	
–  Be	on	Jme!	
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Last	Time	Lecture	13:	VLIW	

§  In	a	classic	VLIW,	compiler	is	responsible	for	avoiding	all	
hazards	->	simple	hardware,	complex	compiler.	Later	
VLIWs	added	more	dynamic	hardware	interlocks	

§ Use	loop	unrolling	and	so?ware	pipelining	for	loops,	trace	
scheduling	for	more	irregular	code	

§  StaJc	scheduling	difficult	in	presence	of	unpredictable	
branches	and	variable	latency	memory	
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Mul<threading	

§ Difficult	to	conJnue	to	extract	instrucJon-level	parallelism	
(ILP)	from	a	single	sequenJal	thread	of	control	

§ Many	workloads	can	make	use	of	thread-level	parallelism	
(TLP)	
– TLP	from	mulJprogramming	(run	independent	
sequenJal	jobs)	

– TLP	from	mulJthreaded	applicaJons	(run	one	job	
faster	using	parallel	threads)	

§ MulJthreading	uses	TLP	to	improve	uJlizaJon	of	a	single	
processor	
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Pipeline	Hazards	

§  Each	instrucJon	may	depend	on	the	next	
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LW r1, 0(r2) 
LW r5, 12(r1) 
ADDI r5, r5, #12 
SW 12(r1), r5 
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What is usually done to cope with this? 
– interlocks (slow) 
– or bypassing (needs hardware, doesn’t help all 

hazards) 
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Mul<threading	

How	can	we	guarantee	no	dependencies	between	
instrucJons	in	a	pipeline?	

--	One	way	is	to	interleave	execuJon	of	instrucJons	from	
different	program	threads	on	same	pipeline	
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F D X M W 
t0 t1 t2 t3 t4 t5 t6 t7 t8 

T1: LW r1, 0(r2) 
T2: ADD r7, r1, r4 
T3: XORI r5, r4, #12 
T4: SW 0(r7),  r5 
T1: LW r5, 12(r1) 
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Interleave 4 threads, T1-T4, on non-bypassed 5-stage pipe 

Prior instruction in 
a thread always 
completes write-
back before next 
instruction in 
same thread reads 
register file 
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CDC	6600	Peripheral	Processors	
(Cray,	1964)	

§  First	mulJthreaded	hardware	
§  10	“virtual”	I/O	processors	
§  Fixed	interleave	on	simple	pipeline	
§  Pipeline	has	100ns	cycle	Jme	
§  Each	virtual	processor	executes	one	instrucJon	every	1000ns	
§  Accumulator-based	instrucJon	set	to	reduce	processor	state	
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How	To	Make	Mul<threaded?	
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Simple	Mul<threaded	Pipeline	

§ Have	to	carry	thread	select	down	pipeline	to	ensure	correct	state	bits	read/
wrieen	at	each	pipe	stage	

§ Appears	to	so?ware	(including	OS)	as	mulJple,	albeit	slower,	CPUs	
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Mul<threading	Costs	

§ Each	thread	requires	its	own	user	state	
–  	PC	
–  	GPRs	

§ Also,	needs	its	own	system	state	
–  Virtual-memory	page-table-base	register	
–  ExcepJon-handling	registers	

§ Other	overheads:	
–  AddiJonal	cache/TLB	conflicts	from	compeJng	threads	
–  (or	add	larger	cache/TLB	capacity)	
–  More	OS	overhead	to	schedule	more	threads	(where	do	all	these	
threads	come	from?)	
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Thread	Scheduling	Policies	

§  Fixed	interleave	(CDC	6600	PPUs,	1964)	
–  Each	of	N	threads	executes	one	instrucJon	every	N	cycles	
–  If	thread	not	ready	to	go	in	its	slot,	insert	pipeline	bubble	

§  So?ware-controlled	interleave	(TI	ASC	PPUs,	1971)	
–  OS	allocates	S	pipeline	slots	amongst	N	threads	
–  Hardware	performs	fixed	interleave	over	S	slots,	execuJng	whichever	thread	is	
in	that	slot	

§ Hardware-controlled	thread	scheduling	(HEP,	1982)	
–  Hardware	keeps	track	of	which	threads	are	ready	to	go	
–  Picks	next	thread	to	execute	based	on	hardware	priority	scheme	

11	



3/16/2016	 CS152,	Spring	2016	

Denelcor	HEP	
(Burton	Smith,	1982)	

First	commercial	machine	to	use	hardware	threading	in	main	CPU	
–  120	threads	per	processor	
–  10	MHz	clock	rate	
–  Up	to	8	processors	
–  precursor	to	Tera	MTA	(MulJthreaded	Architecture)	
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Tera	MTA	(1990-)	

§ Up	to	256	processors	
§ Up	to	128	acJve	threads	per	processor	
§  Processors	and	memory	modules	populate	a	
sparse	3D	torus	interconnecJon	fabric	

§  Flat,	shared	main	memory	
–  	No	data	cache	
–  	Sustains	one	main	memory	access	per	cycle	per	
processor	

§ GaAs	logic	in	prototype,	1KW/processor	@	
260MHz	
–  Second	version	CMOS,	MTA-2,	50W/processor	
–  New	version,	XMT,	fits	into	AMD	Opteron	socket,	runs	at	
500MHz	
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MTA	Pipeline	
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Issue Pool 
•  Every cycle, one 
VLIW instruction from 
one active thread is 
launched into pipeline 

•  Instruction pipeline is 
21 cycles long 

•  Memory operations 
incur ~150 cycles of 
latency 

Assuming a single thread issues one 
instruction every 21 cycles, and clock 
rate is 260 MHz… 

What is single-thread performance?  

Effective single-thread issue rate 
is 260/21 = 12.4 MIPS 
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Coarse-Grain	Mul<threading	

Tera	MTA	designed	for	supercompuJng	applicaJons	with	
large	data	sets	and	low	locality	
–  No	data	cache	
–  Many	parallel	threads	needed	to	hide	large	memory	latency	

Other	applicaJons	are	more	cache	friendly	
–  Few	pipeline	bubbles	if	cache	mostly	has	hits	
–  Just	add	a	few	threads	to	hide	occasional	cache	miss	latencies	
–  Swap	threads	on	cache	misses	

§ Tradeoff	between	expected	cache	misses	(working	
set	size)	and	number	of	threads	
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MIT	Alewife	(1990)	

§ Modified	SPARC	chips	
–  register	windows	hold	different	thread	
contexts	

§ Up	to	four	threads	per	node	
§ Thread	switch	on	local	cache	miss	
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IBM	PowerPC	RS64-IV	(2000)	

§ Commercial	coarse-grain	mulJthreading	CPU	
§ Based	on	PowerPC	with	quad-issue	in-order	five-stage	
pipeline	

§  Each	physical	CPU	supports	two	virtual	CPUs	
§ On	L2	cache	miss,	pipeline	is	flushed	and	execuJon	
switches	to	second	thread	
–  short	pipeline	minimizes	flush	penalty	(4	cycles),	small	compared	to	
memory	access	latency	

–  flush	pipeline	to	simplify	excepJon	handling	
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Oracle/Sun	Niagara	processors	

§  Target	is	datacenters	running	web	servers	and	databases,	
with	many	concurrent	requests	

§  Provide	mulJple	simple	cores	each	with	mulJple	
hardware	threads,	reduced	energy/operaJon	though	
much	lower	single	thread	performance	

§ Niagara-1	[2004],	8	cores,	4	threads/core	
§ Niagara-2	[2007],	8	cores,	8	threads/core	
§ Niagara-3	[2009],	16	cores,	8	threads/core	
§  T4	[2011],	8	cores,	8	threads/core	
§  T5	[2012],	16	cores,	8	threads/core	
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Oracle/Sun	Niagara-3,	“Rainbow	Falls”	2009	
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Simultaneous	Mul<threading	(SMT)	for	
OoO	Superscalars	

§  Techniques	presented	so	far	have	all	been	“verJcal”	
mulJthreading	where	each	pipeline	stage	works	on	one	
thread	at	a	Jme	

§  SMT	uses	fine-grain	control	already	present	inside	an	OoO	
superscalar	to	allow	instrucJons	from	mulJple	threads	to	
enter	execuJon	on	same	clock	cycle.		Gives	beeer	
uJlizaJon	of	machine	resources.	

20	



3/16/2016	 CS152,	Spring	2016	

For	most	apps,	most	execu<on	units	lie	
idle	in	an	OoO	superscalar	
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From: Tullsen, Eggers, and Levy,"
“Simultaneous Multithreading: 
Maximizing On-chip Parallelism”, 
ISCA 1995."

For an 8-way 
superscalar.!

“Processor busy” 

are 

the actual 

used issue slots 
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Superscalar	Machine	Efficiency	
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Ver<cal	Mul<threading	

§  What	is	the	effect	of	cycle-by-cycle	interleaving?	
–  removes	verJcal	waste,	but	leaves	some	horizontal	waste	
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Chip	Mul<processing	(CMP)	

§  What	is	the	effect	of	splisng	into	mulJple	processors?	
–  reduces	horizontal	waste,		
–  leaves	some	verJcal	waste,	and		
–  puts	upper	limit	on	peak	throughput	of	each	thread.	
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Ideal	Superscalar	Mul<threading		
[Tullsen,	Eggers,	Levy,	UW,	1995]	

§  Interleave	mulJple	threads	to	mulJple	issue	slots	with	no	
restricJons	
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O-o-O	Simultaneous	Mul<threading	
[Tullsen,	Eggers,	Emer,	Levy,	Stamm,	Lo,	DEC/UW,	1996]	

	

§ Add	mulJple	contexts	and	fetch	engines	and	allow	
instrucJons	fetched	from	different	threads	to	issue	
simultaneously	

§ UJlize	wide	out-of-order	superscalar	processor	issue	queue	
to	find	instrucJons	to	issue	from	mulJple	threads	

§ OOO	instrucJon	window	already	has	most	of	the	circuitry	
required	to	schedule	from	mulJple	threads	

§ Any	single	thread	can	uJlize	whole	machine	
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IBM	Power	4	

27	

Single-threaded predecessor to 
Power 5.  8 execution units in!
out-of-order engine, each may!
issue an instruction each cycle.!
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Power 4 

Power 5 

2 fetch (PC), 
2 initial decodes 

2 commits 
(architected 
register sets) 
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Power	5	data	flow	...	
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With 4, one of the shared resources (physical 
registers, cache, memory bandwidth) would be 
prone to bottleneck  

Why only 2 threads?  
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Changes	in	Power	5	to	support	SMT	
§  Increased	associaJvity	of	L1	instrucJon	cache	and	the	instrucJon	
address	translaJon	buffers		

§ Added	per-thread	load	and	store	queues		
§  Increased	size	of	the	L2	(1.92	vs.	1.44	MB)	and	L3	caches	
§ Added	separate	instrucJon	prefetch	and	buffering	per	thread	
§  Increased	the	number	of	virtual	registers	from	152	to	240	
§  Increased	the	size	of	several	issue	queues	
§  The	Power5	core	is	about	24%	larger	than	the	Power4	core	
because	of	the	addiJon	of	SMT	support	

30	



3/16/2016	 CS152,	Spring	2016	

Pen<um-4	Hyperthreading	(2002)	

§  First	commercial	SMT	design	(2-way	SMT)	
–  Hyperthreading	==	SMT	

§  Logical	processors	share	nearly	all	resources	of	the	physical	processor	
–  Caches,	execuJon	units,	branch	predictors	

§  Die	area	overhead	of	hyperthreading		~	5%	
§  When	one	logical	processor	is	stalled,	the	other	can	make	progress	

–  No	logical	processor	can	use	all	entries	in	queues	when	two	threads	are	acJve	
§  Processor	running	only	one	acJve	so?ware	thread	runs	at	approximately	
same	speed	with	or	without	hyperthreading	

§  Hyperthreading	dropped	on	OoO	P6	based	followons		to	PenJum-4	
(PenJum-M,	Core	Duo,	Core	2	Duo),	unJl	revived	with	Nehalem	
generaJon	machines	in	2008.	

§  Intel	Atom	(in-order	x86	core)	has	two-way	verJcal	mulJthreading	
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Ini<al	Performance	of	SMT	
§  PenJum	4	Extreme	SMT	yields	1.01	speedup	for	SPECint_rate	
benchmark	and	1.07	for	SPECfp_rate	
–  PenJum	4	is	dual	threaded	SMT	
–  SPECRate	requires	that	each	SPEC	benchmark	be	run	against	a	vendor-
selected	number	of	copies	of	the	same	benchmark	

§ Running	on	PenJum	4	each	of	26	SPEC	benchmarks	paired	
with	every	other	(262	runs)	speed-ups	from	0.90	to	1.58;	
average	was	1.20	

§  Power	5,	8-processor	server	1.23	faster	for	SPECint_rate	with	
SMT,	1.16	faster	for	SPECfp_rate	

§  Power	5	running	2	copies	of	each	app	speedup	between	0.89	
and	1.41	
–  Most	gained	some	
–  Fl.Pt.	apps	had	most	cache	conflicts	and	least	gains	
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Performance	

33	
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SMT	adapta<on	to	parallelism	type		
For	regions	with	high	thread	level	
parallelism	(TLP)	enJre	machine	width	
is	shared	by	all	threads	
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For regions with low thread level 
parallelism (TLP) entire machine 
width is available for instruction level 
parallelism (ILP) 
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Choosing	Policy	

§ Among	four	threads,	from	which	do	we	fetch?	
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Icount	(Fair)	Choosing	Policy	
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Fetch from thread with the least instructions in flight. 
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Summary:	Mul<threaded	Categories	
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