
3/16/2016	 CS152,	Spring	2016	

CS	152	Computer	Architecture	
and	Engineering	

	
	Lecture	14:	Mul<threading		

	
Dr. George Michelogiannakis

EECS, University of California at Berkeley
CRD, Lawrence Berkeley National Laboratory

http://inst.eecs.berkeley.edu/~cs152!

3/16/2016	 CS152,	Spring	2016	

Administrivia	

§  PS	3	due	NOW	

§  Lab	3	is	due	on	Monday	a?er	spring	break	
–  March	28th	

§ March	28th	is	also	quiz	3	
–  Be	on	Jme!	

2	

3/16/2016	 CS152,	Spring	2016	

Last	Time	Lecture	13:	VLIW	

§  In	a	classic	VLIW,	compiler	is	responsible	for	avoiding	all	
hazards	->	simple	hardware,	complex	compiler.	Later	
VLIWs	added	more	dynamic	hardware	interlocks	

§ Use	loop	unrolling	and	so?ware	pipelining	for	loops,	trace	
scheduling	for	more	irregular	code	

§  StaJc	scheduling	difficult	in	presence	of	unpredictable	
branches	and	variable	latency	memory	

3	

3/16/2016	 CS152,	Spring	2016	

Mul<threading	

§ Difficult	to	conJnue	to	extract	instrucJon-level	parallelism	
(ILP)	from	a	single	sequenJal	thread	of	control	

§ Many	workloads	can	make	use	of	thread-level	parallelism	
(TLP)	
– TLP	from	mulJprogramming	(run	independent	
sequenJal	jobs)	

– TLP	from	mulJthreaded	applicaJons	(run	one	job	
faster	using	parallel	threads)	

§ MulJthreading	uses	TLP	to	improve	uJlizaJon	of	a	single	
processor	

4	

3/16/2016	 CS152,	Spring	2016	

Pipeline	Hazards	

§  Each	instrucJon	may	depend	on	the	next	

5	

LW r1, 0(r2)
LW r5, 12(r1)
ADDI r5, r5, #12
SW 12(r1), r5

F D X M W
t0 t1 t2 t3 t4 t5 t6 t7 t8

F D X M W D D D
F D X M W D D D F F F

F D D D D F F F

t9 t10 t11 t12 t13 t14

What is usually done to cope with this?
– interlocks (slow)
– or bypassing (needs hardware, doesn’t help all

hazards)

3/16/2016	 CS152,	Spring	2016	

Mul<threading	

How	can	we	guarantee	no	dependencies	between	
instrucJons	in	a	pipeline?	

--	One	way	is	to	interleave	execuJon	of	instrucJons	from	
different	program	threads	on	same	pipeline	

6	

F D X M W
t0 t1 t2 t3 t4 t5 t6 t7 t8

T1: LW r1, 0(r2)
T2: ADD r7, r1, r4
T3: XORI r5, r4, #12
T4: SW 0(r7), r5
T1: LW r5, 12(r1)

t9

F D X M W
F D X M W

F D X M W
F D X M W

Interleave 4 threads, T1-T4, on non-bypassed 5-stage pipe

Prior instruction in
a thread always
completes write-
back before next
instruction in
same thread reads
register file

3/16/2016	 CS152,	Spring	2016	

CDC	6600	Peripheral	Processors	
(Cray,	1964)	

§  First	mulJthreaded	hardware	
§  10	“virtual”	I/O	processors	
§  Fixed	interleave	on	simple	pipeline	
§  Pipeline	has	100ns	cycle	Jme	
§  Each	virtual	processor	executes	one	instrucJon	every	1000ns	
§  Accumulator-based	instrucJon	set	to	reduce	processor	state	

7	

3/16/2016	 CS152,	Spring	2016	

How	To	Make	Mul<threaded?	

8	

ASrc
IR IR IR

PC
A

B

Y

R

MD1 MD2

addr
inst

Inst
Memory

0x4
Add

IR ALU

Imm
Ext

rd1

GPRs

rs1
rs2

ws
wd rd2

we

wdata

addr

wdata

rdata
Data
Memory

we

31

nop

stall

D

E M W

PC for JAL, ...

BSrc

3/16/2016	 CS152,	Spring	2016	

Simple	Mul<threaded	Pipeline	

§ Have	to	carry	thread	select	down	pipeline	to	ensure	correct	state	bits	read/
wrieen	at	each	pipe	stage	

§ Appears	to	so?ware	(including	OS)	as	mulJple,	albeit	slower,	CPUs	

9	

+1

2 Thread
select

PC
1 PC

1 PC
1 PC

1
I$ IR GPR1 GPR1 GPR1 GPR1

X

Y

2

D$

3/16/2016	 CS152,	Spring	2016	

Mul<threading	Costs	

§ Each	thread	requires	its	own	user	state	
–  	PC	
–  	GPRs	

§ Also,	needs	its	own	system	state	
–  Virtual-memory	page-table-base	register	
–  ExcepJon-handling	registers	

§ Other	overheads:	
–  AddiJonal	cache/TLB	conflicts	from	compeJng	threads	
–  (or	add	larger	cache/TLB	capacity)	
–  More	OS	overhead	to	schedule	more	threads	(where	do	all	these	
threads	come	from?)	

10	

3/16/2016	 CS152,	Spring	2016	

Thread	Scheduling	Policies	

§  Fixed	interleave	(CDC	6600	PPUs,	1964)	
–  Each	of	N	threads	executes	one	instrucJon	every	N	cycles	
–  If	thread	not	ready	to	go	in	its	slot,	insert	pipeline	bubble	

§  So?ware-controlled	interleave	(TI	ASC	PPUs,	1971)	
–  OS	allocates	S	pipeline	slots	amongst	N	threads	
–  Hardware	performs	fixed	interleave	over	S	slots,	execuJng	whichever	thread	is	
in	that	slot	

§ Hardware-controlled	thread	scheduling	(HEP,	1982)	
–  Hardware	keeps	track	of	which	threads	are	ready	to	go	
–  Picks	next	thread	to	execute	based	on	hardware	priority	scheme	

11	

3/16/2016	 CS152,	Spring	2016	

Denelcor	HEP	
(Burton	Smith,	1982)	

First	commercial	machine	to	use	hardware	threading	in	main	CPU	
–  120	threads	per	processor	
–  10	MHz	clock	rate	
–  Up	to	8	processors	
–  precursor	to	Tera	MTA	(MulJthreaded	Architecture)	

12	

3/16/2016	 CS152,	Spring	2016	

Tera	MTA	(1990-)	

§ Up	to	256	processors	
§ Up	to	128	acJve	threads	per	processor	
§  Processors	and	memory	modules	populate	a	
sparse	3D	torus	interconnecJon	fabric	

§  Flat,	shared	main	memory	
–  	No	data	cache	
–  	Sustains	one	main	memory	access	per	cycle	per	
processor	

§ GaAs	logic	in	prototype,	1KW/processor	@	
260MHz	
–  Second	version	CMOS,	MTA-2,	50W/processor	
–  New	version,	XMT,	fits	into	AMD	Opteron	socket,	runs	at	
500MHz	

13	

3/16/2016	 CS152,	Spring	2016	

MTA	Pipeline	

14	

A

W

C

W

M

Inst Fetch

M
em

or
y

Po
ol

Retry Pool

Interconnection Network

W
rit

e
Po

ol

W

Memory pipeline

Issue Pool
•  Every cycle, one
VLIW instruction from
one active thread is
launched into pipeline

•  Instruction pipeline is
21 cycles long

•  Memory operations
incur ~150 cycles of
latency

Assuming a single thread issues one
instruction every 21 cycles, and clock
rate is 260 MHz…

What is single-thread performance?

Effective single-thread issue rate
is 260/21 = 12.4 MIPS

3/16/2016	 CS152,	Spring	2016	

Coarse-Grain	Mul<threading	

Tera	MTA	designed	for	supercompuJng	applicaJons	with	
large	data	sets	and	low	locality	
–  No	data	cache	
–  Many	parallel	threads	needed	to	hide	large	memory	latency	

Other	applicaJons	are	more	cache	friendly	
–  Few	pipeline	bubbles	if	cache	mostly	has	hits	
–  Just	add	a	few	threads	to	hide	occasional	cache	miss	latencies	
–  Swap	threads	on	cache	misses	

§ Tradeoff	between	expected	cache	misses	(working	
set	size)	and	number	of	threads	

15	

3/16/2016	 CS152,	Spring	2016	

MIT	Alewife	(1990)	

§ Modified	SPARC	chips	
–  register	windows	hold	different	thread	
contexts	

§ Up	to	four	threads	per	node	
§ Thread	switch	on	local	cache	miss	

16	

3/16/2016	 CS152,	Spring	2016	

IBM	PowerPC	RS64-IV	(2000)	

§ Commercial	coarse-grain	mulJthreading	CPU	
§ Based	on	PowerPC	with	quad-issue	in-order	five-stage	
pipeline	

§  Each	physical	CPU	supports	two	virtual	CPUs	
§ On	L2	cache	miss,	pipeline	is	flushed	and	execuJon	
switches	to	second	thread	
–  short	pipeline	minimizes	flush	penalty	(4	cycles),	small	compared	to	
memory	access	latency	

–  flush	pipeline	to	simplify	excepJon	handling	

17	

3/16/2016	 CS152,	Spring	2016	

Oracle/Sun	Niagara	processors	

§  Target	is	datacenters	running	web	servers	and	databases,	
with	many	concurrent	requests	

§  Provide	mulJple	simple	cores	each	with	mulJple	
hardware	threads,	reduced	energy/operaJon	though	
much	lower	single	thread	performance	

§ Niagara-1	[2004],	8	cores,	4	threads/core	
§ Niagara-2	[2007],	8	cores,	8	threads/core	
§ Niagara-3	[2009],	16	cores,	8	threads/core	
§  T4	[2011],	8	cores,	8	threads/core	
§  T5	[2012],	16	cores,	8	threads/core	

18	

3/16/2016	 CS152,	Spring	2016	

Oracle/Sun	Niagara-3,	“Rainbow	Falls”	2009	

19	

3/16/2016	 CS152,	Spring	2016	

Simultaneous	Mul<threading	(SMT)	for	
OoO	Superscalars	

§  Techniques	presented	so	far	have	all	been	“verJcal”	
mulJthreading	where	each	pipeline	stage	works	on	one	
thread	at	a	Jme	

§  SMT	uses	fine-grain	control	already	present	inside	an	OoO	
superscalar	to	allow	instrucJons	from	mulJple	threads	to	
enter	execuJon	on	same	clock	cycle.		Gives	beeer	
uJlizaJon	of	machine	resources.	

20	

3/16/2016	 CS152,	Spring	2016	

For	most	apps,	most	execu<on	units	lie	
idle	in	an	OoO	superscalar	

21	

From: Tullsen, Eggers, and Levy,"
“Simultaneous Multithreading:
Maximizing On-chip Parallelism”,
ISCA 1995."

For an 8-way
superscalar.!

“Processor busy”

are

the actual

used issue slots

3/16/2016	 CS152,	Spring	2016	

Superscalar	Machine	Efficiency	

22	

Issue width

Time

Completely idle cycle
(vertical waste)

Instruction
issue

Partially filled cycle,
i.e., IPC < 4
(horizontal waste)

3/16/2016	 CS152,	Spring	2016	

Ver<cal	Mul<threading	

§  What	is	the	effect	of	cycle-by-cycle	interleaving?	
–  removes	verJcal	waste,	but	leaves	some	horizontal	waste	

23	

Issue width

Time

Second thread interleaved
cycle-by-cycle

Instruction
issue

Partially filled cycle,
i.e., IPC < 4
(horizontal waste)

3/16/2016	 CS152,	Spring	2016	

Chip	Mul<processing	(CMP)	

§  What	is	the	effect	of	splisng	into	mulJple	processors?	
–  reduces	horizontal	waste,		
–  leaves	some	verJcal	waste,	and		
–  puts	upper	limit	on	peak	throughput	of	each	thread.	

24	

Issue width

Time

3/16/2016	 CS152,	Spring	2016	

Ideal	Superscalar	Mul<threading		
[Tullsen,	Eggers,	Levy,	UW,	1995]	

§  Interleave	mulJple	threads	to	mulJple	issue	slots	with	no	
restricJons	

25	

Issue width

Time

3/16/2016	 CS152,	Spring	2016	

O-o-O	Simultaneous	Mul<threading	
[Tullsen,	Eggers,	Emer,	Levy,	Stamm,	Lo,	DEC/UW,	1996]	

	

§ Add	mulJple	contexts	and	fetch	engines	and	allow	
instrucJons	fetched	from	different	threads	to	issue	
simultaneously	

§ UJlize	wide	out-of-order	superscalar	processor	issue	queue	
to	find	instrucJons	to	issue	from	mulJple	threads	

§ OOO	instrucJon	window	already	has	most	of	the	circuitry	
required	to	schedule	from	mulJple	threads	

§ Any	single	thread	can	uJlize	whole	machine	

26	

3/16/2016	 CS152,	Spring	2016	

IBM	Power	4	

27	

Single-threaded predecessor to
Power 5. 8 execution units in!
out-of-order engine, each may!
issue an instruction each cycle.!

3/16/2016	 CS152,	Spring	2016	 28	

Power 4

Power 5

2 fetch (PC),
2 initial decodes

2 commits
(architected
register sets)

3/16/2016	 CS152,	Spring	2016	

Power	5	data	flow	...	

29	

With 4, one of the shared resources (physical
registers, cache, memory bandwidth) would be
prone to bottleneck

Why only 2 threads?

3/16/2016	 CS152,	Spring	2016	

Changes	in	Power	5	to	support	SMT	
§  Increased	associaJvity	of	L1	instrucJon	cache	and	the	instrucJon	
address	translaJon	buffers		

§ Added	per-thread	load	and	store	queues		
§  Increased	size	of	the	L2	(1.92	vs.	1.44	MB)	and	L3	caches	
§ Added	separate	instrucJon	prefetch	and	buffering	per	thread	
§  Increased	the	number	of	virtual	registers	from	152	to	240	
§  Increased	the	size	of	several	issue	queues	
§  The	Power5	core	is	about	24%	larger	than	the	Power4	core	
because	of	the	addiJon	of	SMT	support	

30	

3/16/2016	 CS152,	Spring	2016	

Pen<um-4	Hyperthreading	(2002)	

§  First	commercial	SMT	design	(2-way	SMT)	
–  Hyperthreading	==	SMT	

§  Logical	processors	share	nearly	all	resources	of	the	physical	processor	
–  Caches,	execuJon	units,	branch	predictors	

§  Die	area	overhead	of	hyperthreading		~	5%	
§  When	one	logical	processor	is	stalled,	the	other	can	make	progress	

–  No	logical	processor	can	use	all	entries	in	queues	when	two	threads	are	acJve	
§  Processor	running	only	one	acJve	so?ware	thread	runs	at	approximately	
same	speed	with	or	without	hyperthreading	

§  Hyperthreading	dropped	on	OoO	P6	based	followons		to	PenJum-4	
(PenJum-M,	Core	Duo,	Core	2	Duo),	unJl	revived	with	Nehalem	
generaJon	machines	in	2008.	

§  Intel	Atom	(in-order	x86	core)	has	two-way	verJcal	mulJthreading	

31	

3/16/2016	 CS152,	Spring	2016	

Ini<al	Performance	of	SMT	
§  PenJum	4	Extreme	SMT	yields	1.01	speedup	for	SPECint_rate	
benchmark	and	1.07	for	SPECfp_rate	
–  PenJum	4	is	dual	threaded	SMT	
–  SPECRate	requires	that	each	SPEC	benchmark	be	run	against	a	vendor-
selected	number	of	copies	of	the	same	benchmark	

§ Running	on	PenJum	4	each	of	26	SPEC	benchmarks	paired	
with	every	other	(262	runs)	speed-ups	from	0.90	to	1.58;	
average	was	1.20	

§  Power	5,	8-processor	server	1.23	faster	for	SPECint_rate	with	
SMT,	1.16	faster	for	SPECfp_rate	

§  Power	5	running	2	copies	of	each	app	speedup	between	0.89	
and	1.41	
–  Most	gained	some	
–  Fl.Pt.	apps	had	most	cache	conflicts	and	least	gains	

32	

3/16/2016	 CS152,	Spring	2016	

Performance	

33	

3/16/2016	 CS152,	Spring	2016	

SMT	adapta<on	to	parallelism	type		
For	regions	with	high	thread	level	
parallelism	(TLP)	enJre	machine	width	
is	shared	by	all	threads	

34	

Issue width

Time

Issue width

Time

For regions with low thread level
parallelism (TLP) entire machine
width is available for instruction level
parallelism (ILP)

3/16/2016	 CS152,	Spring	2016	

Choosing	Policy	

§ Among	four	threads,	from	which	do	we	fetch?	

35	

3/16/2016	 CS152,	Spring	2016	

Icount	(Fair)	Choosing	Policy	

36	

Fetch from thread with the least instructions in flight.

3/16/2016	 CS152,	Spring	2016	

Summary:	Mul<threaded	Categories	

37	

Tim
e (

pr
oc

es
so

r c
yc

le)
 Superscalar Fine-Grained Coarse-Grained Multiprocessing

Simultaneous
Multithreading

Thread 1
Thread 2

Thread 3
Thread 4

Thread 5
Idle slot

3/16/2016	 CS152,	Spring	2016	

Acknowledgements	

§  These	slides	contain	material	developed	and	copyright	by:	
–  Arvind	(MIT)	
–  Krste	Asanovic	(MIT/UCB)	
–  Joel	Emer	(Intel/MIT)	
–  James	Hoe	(CMU)	
–  John	Kubiatowicz	(UCB)	
–  David	Paeerson	(UCB)	

§ MIT	material	derived	from	course	6.823	
§ UCB	material	derived	from	course	CS252	

38	

