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Administrivia

= PS 3 due NOW

" Lab 3 is due on Monday after spring break
— March 28t

»= March 28" is also quiz 3
— Be on time!
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Last Time Lecture 13: VLIW

" |In a classic VLIW, compiler is responsible for avoiding all
hazards -> simple hardware, complex compiler. Later
VLIWs added more dynamic hardware interlocks

= Use loop unrolling and software pipelining for loops, trace
scheduling for more irregular code

= Static scheduling difficult in presence of unpredictable
branches and variable latency memory
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Multithreading

= Difficult to continue to extract instruction-level parallelism
(ILP) from a single sequential thread of control

" Many workloads can make use of thread-level parallelism
(TLP)

— TLP from multiprogramming (run independent
sequential jobs)

— TLP from multithreaded applications (run one job
faster using parallel threads)

" Multithreading uses TLP to improve utilization of a single
processor
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Pipeline Hazards

10 .t1 .t2 .t3 .t4 .t5 .t6 .t7 .t8 .9 t10 t11 t12 t13 t14.

LW r1, 0(r2) FID|X|M[W| : :@ :

LW r5, 12(r1) . |F[D|D|D[D|{X|M[W| i i |
ADDIr5,r5,#12 ¢ | |F|F|F|F|D|D(D|D|X|M|W
SW12(r1),r5 + + i i i ! [F|F|F|F|D|D|D|D

" Each instruction may depend on the next

What is usually done to cope with this?
— interlocks (slow)

— or bypassing (needs hardware, doesn’t help all
hazards)
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Multithreading

How can we guarantee no dependencies between
instructions in a pipeline?

-- One way is to interleave execution of instructions from
different program threads on same pipeline

Interleave 4 threads, T1-T4, on non-bypassed 5-stage pipe

10 t1 t2 13 t4 15 16 17 .t8 . t9

T1: LW r1, 0(r2) F[{D|X{M WL Prior instruction in
T2:ADD(7,r1,r4 i [EIDIXIMIW: & | @ @ thread always
T13: XORI r5, r4, #12 .F D| XM W[ backpbefore next
T4: SW 0O(r7), r5 i i ¢ |F|D|IX[M|W| instruc;ion/('/jv )

: : 1  same thread reads
T1:. LW r5, 12(r1) .F D—‘X'M—Wl register file
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CDC 6600 Peripheral Processors
(Cray, 1964)

First multithreaded hardware
10 “virtual” 1/O processors
Fixed interleave on simple pipeline

Pipeline has 100ns cycle time
Each virtual processor executes one instruction every 1000ns
Accumulator-based instruction set to reduce processor state
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How To Make Multithreaded?
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Simple Multithreaded Pipeline

™ i | x :\ _T

— 2 GPR1 = 1

15'3 | :Y :/ é D$
N

+1[
] 1 . -

2 Thread N 2 W

select

= Have to carry thread select down pipeline to ensure correct state bits read/
written at each pipe stage

= Appears to software (including OS) as multiple, albeit slower, CPUs

3/16/2016 CS152, Spring 2016




Multithreading Costs

» Each thread requires its own user state
~ PC
— GPRs

" Also, needs its own system state
— Virtual-memory page-table-base register
— Exception-handling registers

= Other overheads:
— Additional cache/TLB conflicts from competing threads
— (or add larger cache/TLB capacity)

— More OS overhead to schedule more threads (where do all these
threads come from?)
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Thread Scheduling Policies

= Fixed interleave (CDC 6600 PPUs, 1964)

— Each of N threads executes one instruction every N cycles
— If thread not ready to go in its slot, insert pipeline bubble

= Software-controlled interleave (71 ASC PPUs, 1971)
— OS allocates S pipeline slots amongst N threads

— Hardware performs fixed interleave over S slots, executing whichever thread is
in that slot

* Hardware-controlled thread scheduling (HEP, 1982)
— Hardware keeps track of which threads are ready to go
— Picks next thread to execute based on hardware priority scheme
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Denelcor HEP

(Burton Smith, 1982)

First commercial machine to use hardware threading in main CPU
— 120 threads per processor
— 10 MHz clock rate
— Up to 8 processors
— precursor to Tera MTA (Multithreaded Architecture)
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Tera MTA (1990-)

Up to 256 processors
Up to 128 active threads per processor

" Processors and memory modules populate a
sparse 3D torus interconnection fabric

Flat, shared main memory
— No data cache

— Sustains one main memory access per cycle per
processor

= GaAs logic in prototype, 1KW/processor @
260MHz

— Second version CMOS, MTA-2, 50W/processor

— New version, XMT, fits into AMD Opteron socket, runs at
500MHz
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MTA Pipeline

[ Issue Pool ] Inst Fetch
e Every cycle, one

W : / l \ VLIW instruction from

" A c one active thread is
launched into pipeline
N — — e Instruction pipeline is
) E 21 cycles long
o o W
o > e Memory operations
= o .
= £ incur ~150 cycles of
L = v latency
[ Retry Pool ]
Assuming a single thread issues one
instruction every 21 cycles, and clock

[ Interconnection Network ] rate is 260 MHz...

What is single-thread performance?

Memory pipeline

Effective single-thread issue rate
is 260/21 = 12.4 MIPS
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Coarse-Grain Multithreading

Tera MTA designed for supercomputing applications with
large data sets and low locality

— No data cache
— Many parallel threads needed to hide large memory latency

Other applications are more cache friendly
— Few pipeline bubbles if cache mostly has hits
— Just add a few threads to hide occasional cache miss latencies
— Swap threads on cache misses

* Tradeoff between expected cache misses (working
set size) and number of threads
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3/16/2016

MIT Alewife (1990)

= Modified SPARC chips

— register windows hold different thread
contexts

= Up to four threads per node
=" Thread switch on local cache miss

CS152, Spring 2016
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IBM PowerPC RS64-1V (2000)

= Commercial coarse-grain multithreading CPU

» Based on PowerPC with quad-issue in-order five-stage
pipeline

= Each physical CPU supports two virtual CPUs

*" On L2 cache miss, pipeline is flushed and execution
switches to second thread

— short pipeline minimizes flush penalty (4 cycles), small compared to
memory access latency

— flush pipeline to simplify exception handling
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Oracle/Sun Niagara processors

" Target is datacenters running web servers and databases,

with many concurrent requests

" Provide multiple simple cores each with multiple
hardware threads, reduced energy/operation though
much lower single thread performance

= Niagara-1
= Niagara-2
= Niagara-3

2004
2007

2009]

, 8 cores, 4 threads/core
, 8 cores, 8 threads/core
, 16 cores, 8 threads/core

= T4 [2011], 8 cores, 8 threads/core
= T5[2012], 16 cores, 8 threads/core
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Oracle/Sun Niagara-3, “Rainbow Falls” 2009
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Simultaneous Multithreading (SMT) for
000 Superscalars

I”

* Techniques presented so far have all been “vertica
multithreading where each pipeline stage works on one
thread at a time

= SMT uses fine-grain control already present inside an OoO
superscalar to allow instructions from multiple threads to
enter execution on same clock cycle. Gives better
utilization of machine resources.
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For most apps, most execution units lie
idle in an OoO superscalar

100 ;
alolEl Elgla| 4 For an 8-way
o AL 2 1 superscalar.
17 al | memory contiict Processor busy
ol |7 2 A tong
2 i E short fp are
wn oied v
% 70 long integer the actual
) X B short integer _
8 60 load delays used issue slots
_.':‘” [ control hazards
g 50 @ branch misprediction
% m dcache miss
= 40 3?’ I]II icache miss
% B dub miss
A« 30 B iub miss

. processor busy
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“Simultaneous Multithreading:
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g3 8¢% %a “2 95 E 5E 2 Maximizing On-chip Parallelism”,
SSFES3 FEF OFUE ISCA 1995.

3/16/2016 AppSits2oi5pring 2016 21



Superscalar Machine Efficiency

Issue width

Instruction
issue ——+
Completely idle cycle
(vertical waste)
Time

Partially filled cycle,
— i.e,IPC<4

(horizontal waste)
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Vertical Multithreading

Issue width

Instruction
issue ————F
Second thread interleaved
cycle-by-cycle
Time

Partially filled cycle,
— i.e.,IPC<4
(horizontal waste)

= What is the effect of cycle-by-cycle interleaving?
— removes vertical waste, but leaves some horizontal waste
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23



Chip Multiprocessing (CMP)

Issue width

P
<

< »
« 1

v

Time

= What is the effect of splitting into multiple processors?
— reduces horizontal waste,

— |leaves some vertical waste, and
— puts upper limit on peak throughput of each thread.
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Ideal Superscalar Multithreading

[Tullsen, Eggers, Levy, UW, 1995]

Issue width

L——

Time

]
 e— |
f—

" Interleave multiple threads to multiple issue slots with no
restrictions
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0-0-0 Simultaneous Multithreading
[Tullsen, Eggers, Emer, Levy, Stamm, Lo, DEC/UW, 1996]

= Add multiple contexts and fetch engines and allow
instructions fetched from different threads to issue
simultaneously

= Utilize wide out-of-order superscalar processor issue queue
to find instructions to issue from multiple threads

= 00O instruction window already has most of the circuitry
required to schedule from multiple threads

= Any single thread can utilize whole machine

3/16/2016 CS152, Spring 2016
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Branch redirects

[ :
y Instruction fetch

Ly

—-’[IF
-

—

IC

IBM Power 4

Single-threaded predecessor to
Power 5. 8 execution units in
out-of-order engine, each may
issue an instruction each cycle.

S

: Interrupts and flushes

ut-of-order processing
-----------------------------------------------
1
! BR
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BP L
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Instruction crack and '
group formation -1 MP [} ISS = FP
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______________________________________________________________________
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_ Power 4
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Power 5 data flow ...

Why only 2 threads?
4 - Dynamic
Branch prediction ] ins%ruction
t selection Shared
Shared -
Program Branch| | Return| | Target oat execution
counter history | Bf stack | | cache queues units
tables LSUO Data Data
\_/ﬂ’"‘:’“’ = FXUO Translation ~ Cache
nstruct LSU1
: buffer 0 Group formation LSUT
Instruction P g " = FXU1 - G St
h Instruction decode [— - i - drn e
cache Dispatch FPUO EoNpieon] RS
Instruction
translation L
| BXU |
Thread CRL Data Data
priority Shared- Read Write translation | |cache
register shared- shared- o
mappers register files register files L2
cache

| () Shared by two threads [T Thread 0 resources I Thread 1 resources |

With 4, one of the shared resources (physical
registers, cache, memory bandwidth) would be

prone to bottleneck
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Changes in Power 5 to support SMT

" Increased associativity of L1 instruction cache and the instruction
address translation buffers

= Added per-thread load and store queues

" [ncreased size of the L2 (1.92 vs. 1.44 MB) and L3 caches

* Added separate instruction prefetch and buffering per thread
" Increased the number of virtual registers from 152 to 240

" Increased the size of several issue queues

" The Power5 core is about 24% larger than the Power4 core
because of the addition of SMT support

3/16/2016 CS152, Spring 2016
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Pentium-4 Hyperthreading (2002)

" First commercial SMT design (2-way SMT)
— Hyperthreading == SMT

= Logical processors share nearly all resources of the physical processor
— Caches, execution units, branch predictors

= Die area overhead of hyperthreading ~ 5%

= When one logical processor is stalled, the other can make progress
— No logical processor can use all entries in queues when two threads are active

= Processor running only one active software thread runs at approximately
same speed with or without hyperthreading

= Hyperthreading dropped on OoO P6 based followons to Pentium-4
(Pentium-M, Core Duo, Core 2 Duo), until revived with Nehalem
generation machines in 2008.

" |ntel Atom (in-order x86 core) has two-way vertical multithreading
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Initial Performance of SMT

" Pentium 4 Extreme SMT yields 1.01 speedup for SPECint_rate
benchmark and 1.07 for SPECfp_rate
— Pentium 4 is dual threaded SMT

— SPECRate requires that each SPEC benchmark be run against a vendor-
selected number of copies of the same benchmark

" Running on Pentium 4 each of 26 SPEC benchmarks paired
with every other (262 runs) speed-ups from 0.90 to 1.58;
average was 1.20

" Power 5, 8-processor server 1.23 faster for SPECint_rate with
SMT, 1.16 faster for SPECfp_rate

" Power 5 running 2 copies of each app speedup between 0.89
and 1.41

— Most gained some
— FI.Pt. apps had most cache conflicts and least gains
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Performance

Multiprogrammed workload

r || ¥

Specint SpecFP Mixed Int/FP
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SMT adaptation to parallelism type

For regions with high thread level For regions with low thread level
parallelism (TLP) entire machine width parallelism (TLP) entire machine
is shared by all threads width is avalilable for instruction level
parallelism (ILP)
Issue width Issue width
Time Time

3/16/2016 CS152, Spring 2016
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Choosing Policy

= Among four threads, from which do we fetch?
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Icount (Fair) Choosing Policy

Fetch from thread with the least instructions in flight.
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Summary: Multithreaded Categories

Superscalar

<4
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