CS 152 Computer Architecture
and Engineering

Lecture 14: Multithreading

Dr. George Michelogiannakis
EECS, University of California at Berkeley
CRD, Lawrence Berkeley National Laboratory

http://inst.eecs.berkeley.edu/~csl1l52

3/16/2016 CS152, Spring 2016

Administrivia

= PS 3 due NOW

" Lab 3 is due on Monday after spring break
— March 28t

»= March 28" is also quiz 3
— Be on time!

3/16/2016 CS152, Spring 2016

Last Time Lecture 13: VLIW

" |In a classic VLIW, compiler is responsible for avoiding all
hazards -> simple hardware, complex compiler. Later
VLIWs added more dynamic hardware interlocks

= Use loop unrolling and software pipelining for loops, trace
scheduling for more irregular code

= Static scheduling difficult in presence of unpredictable
branches and variable latency memory

3/16/2016 CS152, Spring 2016

Multithreading

= Difficult to continue to extract instruction-level parallelism
(ILP) from a single sequential thread of control

" Many workloads can make use of thread-level parallelism
(TLP)

— TLP from multiprogramming (run independent
sequential jobs)

— TLP from multithreaded applications (run one job
faster using parallel threads)

" Multithreading uses TLP to improve utilization of a single
processor

3/16/2016 CS152, Spring 2016

Pipeline Hazards

10 .t1 .t2 .t3 .t4 .t5 .t6 .t7 .t8 .9 t10 t11 t12 t13 t14.

LW r1, 0(r2) FID|X|M[W| : :@ :

LW r5, 12(r1) . |F[D|D|D[D|{X|M[W| i i |
ADDIr5,r5,#12 ¢ | |F|F|F|F|D|D(D|D|X|M|W
SW12(r1),r5 + + i i i ! [F|F|F|F|D|D|D|D

" Each instruction may depend on the next

What is usually done to cope with this?
— interlocks (slow)

— or bypassing (needs hardware, doesn’t help all
hazards)

3/16/2016 CS152, Spring 2016

Multithreading

How can we guarantee no dependencies between
instructions in a pipeline?

-- One way is to interleave execution of instructions from
different program threads on same pipeline

Interleave 4 threads, T1-T4, on non-bypassed 5-stage pipe

10 t1 t2 13 t4 15 16 17 .t8 . t9

T1: LW r1, 0(r2) F[{D|X{M WL Prior instruction in
T2:ADD(7,r1,r4 i [EIDIXIMIW: & | @ @ thread always
T13: XORI r5, r4, #12 .F D| XM W[backpbefore next
T4: SW 0O(r7), r5 i i ¢ |F|D|IX[M|W| instruc;ion/('/jv)

: : 1 same thread reads
T1:. LW r5, 12(r1) .F D—‘X'M—Wl register file

3/16/2016 CS152, Spring 2016 6

CDC 6600 Peripheral Processors
(Cray, 1964)

First multithreaded hardware
10 “virtual” 1/O processors
Fixed interleave on simple pipeline

Pipeline has 100ns cycle time
Each virtual processor executes one instruction every 1000ns
Accumulator-based instruction set to reduce processor state

3/16/2016 CS152, Spring 2016

How To Make Multithreaded?

stall PC for JAL, ...

X A r Ij H ‘—M Al —
S C 31 “
M rsl

v
> 5 |
Ig

A

> rs2 >
—»P—‘ »laddr D rdl1p— = A, v i've
inst -1 Ws — Y »|addr
A »wd rd2 f—— - A

Inst GPRs | B rdata >

Memory, - LA Data
Imm Memory >

Ext = 7~ BS Plwdata

rC —

in MD1 MD2

3/16/2016 CS152, Spring 2016 8

Simple Multithreaded Pipeline

™ i | x :\ _T

— 2 GPR1 = 1

15'3 | :Y :/ é D$
N

+1[
] 1 . -

2 Thread N 2 W

select

= Have to carry thread select down pipeline to ensure correct state bits read/
written at each pipe stage

= Appears to software (including OS) as multiple, albeit slower, CPUs

3/16/2016 CS152, Spring 2016

Multithreading Costs

» Each thread requires its own user state
~ PC
— GPRs

" Also, needs its own system state
— Virtual-memory page-table-base register
— Exception-handling registers

= Other overheads:
— Additional cache/TLB conflicts from competing threads
— (or add larger cache/TLB capacity)

— More OS overhead to schedule more threads (where do all these
threads come from?)

3/16/2016 CS152, Spring 2016

10

Thread Scheduling Policies

= Fixed interleave (CDC 6600 PPUs, 1964)

— Each of N threads executes one instruction every N cycles
— If thread not ready to go in its slot, insert pipeline bubble

= Software-controlled interleave (71 ASC PPUs, 1971)
— OS allocates S pipeline slots amongst N threads

— Hardware performs fixed interleave over S slots, executing whichever thread is
in that slot

* Hardware-controlled thread scheduling (HEP, 1982)
— Hardware keeps track of which threads are ready to go
— Picks next thread to execute based on hardware priority scheme

3/16/2016 CS152, Spring 2016 11

Denelcor HEP

(Burton Smith, 1982)

First commercial machine to use hardware threading in main CPU
— 120 threads per processor
— 10 MHz clock rate
— Up to 8 processors
— precursor to Tera MTA (Multithreaded Architecture)

3/16/2016 CS152, Spring 2016

12

Tera MTA (1990-)

Up to 256 processors
Up to 128 active threads per processor

" Processors and memory modules populate a
sparse 3D torus interconnection fabric

Flat, shared main memory
— No data cache

— Sustains one main memory access per cycle per
processor

= GaAs logic in prototype, 1KW/processor @
260MHz

— Second version CMOS, MTA-2, 50W/processor

— New version, XMT, fits into AMD Opteron socket, runs at
500MHz

3/16/2016 CS152, Spring 2016

13

MTA Pipeline

[Issue Pool] Inst Fetch
e Every cycle, one

W : / l \ VLIW instruction from

" A c one active thread is
launched into pipeline
N — — e Instruction pipeline is
) E 21 cycles long
o o W
o > e Memory operations
= o .
= £ incur ~150 cycles of
L = v latency
[Retry Pool]
Assuming a single thread issues one
instruction every 21 cycles, and clock

[Interconnection Network] rate is 260 MHz...

What is single-thread performance?

Memory pipeline

Effective single-thread issue rate
is 260/21 = 12.4 MIPS

3/16/2016 CS152, Spring 2016 14

Coarse-Grain Multithreading

Tera MTA designed for supercomputing applications with
large data sets and low locality

— No data cache
— Many parallel threads needed to hide large memory latency

Other applications are more cache friendly
— Few pipeline bubbles if cache mostly has hits
— Just add a few threads to hide occasional cache miss latencies
— Swap threads on cache misses

* Tradeoff between expected cache misses (working
set size) and number of threads

3/16/2016 CS152, Spring 2016

15

3/16/2016

MIT Alewife (1990)

= Modified SPARC chips

— register windows hold different thread
contexts

= Up to four threads per node
=" Thread switch on local cache miss

CS152, Spring 2016

16

IBM PowerPC RS64-1V (2000)

= Commercial coarse-grain multithreading CPU

» Based on PowerPC with quad-issue in-order five-stage
pipeline

= Each physical CPU supports two virtual CPUs

*" On L2 cache miss, pipeline is flushed and execution
switches to second thread

— short pipeline minimizes flush penalty (4 cycles), small compared to
memory access latency

— flush pipeline to simplify exception handling

3/16/2016 CS152, Spring 2016 17

Oracle/Sun Niagara processors

" Target is datacenters running web servers and databases,

with many concurrent requests

" Provide multiple simple cores each with multiple
hardware threads, reduced energy/operation though
much lower single thread performance

= Niagara-1
= Niagara-2
= Niagara-3

2004
2007

2009]

, 8 cores, 4 threads/core
, 8 cores, 8 threads/core
, 16 cores, 8 threads/core

= T4 [2011], 8 cores, 8 threads/core
= T5[2012], 16 cores, 8 threads/core

3/16/2016

CS152, Spring 2016

18

Oracle/Sun Niagara-3, “Rainbow Falls” 2009

SRR e 555 ;5}
B e DR

iﬂ%‘#iﬂ‘ﬁ% E&"-‘l&"’r

e s s
R E 3:
!&ﬁmmm

’r

e

iaﬂ

RAINBOW FALLS

E‘*‘%
i3

o
"
‘—-

11
G0 8 e G DG E Bl T O e il o o B Gk pe o o

5 ajw‘“f‘" : wm ..LLL}‘;‘!‘ LL..L N

CORE 2
CORE 3
o=
CORE §
CORE &

CORE S
CORE 9
CORE 10 ”
CORE 11
CORE 12
CORE 13
CORE 14
CORE 15

CORET 8x9

3/16/2016 CS152, Spring 2016

Remote

Remote

19

Simultaneous Multithreading (SMT) for
000 Superscalars

I”

* Techniques presented so far have all been “vertica
multithreading where each pipeline stage works on one
thread at a time

= SMT uses fine-grain control already present inside an OoO
superscalar to allow instructions from multiple threads to
enter execution on same clock cycle. Gives better
utilization of machine resources.

3/16/2016 CS152, Spring 2016 20

For most apps, most execution units lie
idle in an OoO superscalar

100 ;
alolEl Elgla| 4 For an 8-way
o AL 2 1 superscalar.
17 al | memory contiict Processor busy
ol |7 2 A tong
2 i E short fp are
wn oied v
% 70 long integer the actual
) X B short integer _
8 60 load delays used issue slots
_.':‘” [control hazards
g 50 @ branch misprediction
% m dcache miss
= 40 3?’ I]II icache miss
% B dub miss
A« 30 B iub miss

. processor busy

20

10 From: Tullsen, Eggers, and Levy,

“Simultaneous Multithreading:

nasa? Y . L L L Ll Ll L s

g3 8¢% %a “2 95 E 5E 2 Maximizing On-chip Parallelism”,
SSFES3 FEF OFUE ISCA 1995.

3/16/2016 AppSits2oi5pring 2016 21

Superscalar Machine Efficiency

Issue width

Instruction
issue ——+
Completely idle cycle
(vertical waste)
Time

Partially filled cycle,
— i.e,IPC<4

(horizontal waste)

3/16/2016 CS152, Spring 2016 22

Vertical Multithreading

Issue width

Instruction
issue ————F
Second thread interleaved
cycle-by-cycle
Time

Partially filled cycle,
— i.e.,IPC<4
(horizontal waste)

= What is the effect of cycle-by-cycle interleaving?
— removes vertical waste, but leaves some horizontal waste

3/16/2016 CS152, Spring 2016

23

Chip Multiprocessing (CMP)

Issue width

P
<

< »
« 1

v

Time

= What is the effect of splitting into multiple processors?
— reduces horizontal waste,

— |leaves some vertical waste, and
— puts upper limit on peak throughput of each thread.

3/16/2016 CS152, Spring 2016

24

Ideal Superscalar Multithreading

[Tullsen, Eggers, Levy, UW, 1995]

Issue width

L——

Time

]
 e— |
f—

" Interleave multiple threads to multiple issue slots with no
restrictions

3/16/2016 CS152, Spring 2016

0-0-0 Simultaneous Multithreading
[Tullsen, Eggers, Emer, Levy, Stamm, Lo, DEC/UW, 1996]

= Add multiple contexts and fetch engines and allow
instructions fetched from different threads to issue
simultaneously

= Utilize wide out-of-order superscalar processor issue queue
to find instructions to issue from multiple threads

= 00O instruction window already has most of the circuitry
required to schedule from multiple threads

= Any single thread can utilize whole machine

3/16/2016 CS152, Spring 2016

26

Branch redirects

[:
y Instruction fetch

Ly

—-’[IF
-

—

IC

IBM Power 4

Single-threaded predecessor to
Power 5. 8 execution units in
out-of-order engine, each may
issue an instruction each cycle.

S

: Interrupts and flushes

ut-of-order processing

1
! BR
—| MP 1 ISS =~ EX WB Xfer
BP L
— MP [ISS = EA | DC [Fmt [7] WB | Xfer CP -,
FX
DO D1 4 D2 M D3 —Xfer GD 1 MP [ISS =~ EX WB | Xfer
Instruction crack and '
group formation -1 MP [} ISS = FP
Fé6 WB 1 Xfer
__
CS152, Spring 2016

3/16/2016

27

_ Power 4

r sets)

: N T

L3 F H1c - Bp -

g [— CP |,

. 1

! 1

X DO — DI H D2 [H D3 Xfer— GD H- !

: Instruction crack and :

: group formation 1 1

' |

. 1

. 1

: Interrupts and flushes :

L or on o on o o on on on on or on e e S SE S S S SR G ED D SR D S S S D S G ED D EE ED S S D OGN D G ED SD EE ED D D D S S G N GD G G S S SN S W S G e W Ee e e e

2 commits
orancn oo POWEY 9 Outotorderprocessing (arch itected
E ' Branch reg ISt
. Instruction fetch : ipeline
~ MP 1SS -+ RF I+ EX [i WB —{Xfer |
Load/store

pipeline

- me Hliss H rrHEA DC —||=mt - WB |—iXier

~| D2 [~{ D3 [H{Xfer{|{GD [{{MP [1|ISS [{ RF [EX - —|WB [[Xfer[—
Fixed-point

Group formation and pipeline

2 fetch (PC), " _MP—"SS_RF_JFHJ__F: |
2 initial decodes pori ppeine

WB —iXfer

CP
S—

Power 5 data flow ...

Why only 2 threads?
4 - Dynamic
Branch prediction] ins%ruction
t selection Shared
Shared -
Program Branch| | Return| | Target oat execution
counter history | Bf stack | | cache queues units
tables LSUO Data Data
_/ﬂ’"‘:’“’ = FXUO Translation ~ Cache
nstruct LSU1
: buffer 0 Group formation LSUT
Instruction P g " = FXU1 - G St
h Instruction decode [— - i - drn e
cache Dispatch FPUO EoNpieon] RS
Instruction
translation L
| BXU |
Thread CRL Data Data
priority Shared- Read Write translation | |cache
register shared- shared- o
mappers register files register files L2
cache

| () Shared by two threads [T Thread 0 resources I Thread 1 resources |

With 4, one of the shared resources (physical
registers, cache, memory bandwidth) would be

prone to bottleneck
3/16/2016 CS152, Spring 2016 29

Changes in Power 5 to support SMT

" Increased associativity of L1 instruction cache and the instruction
address translation buffers

= Added per-thread load and store queues

" [ncreased size of the L2 (1.92 vs. 1.44 MB) and L3 caches

* Added separate instruction prefetch and buffering per thread
" Increased the number of virtual registers from 152 to 240

" Increased the size of several issue queues

" The Power5 core is about 24% larger than the Power4 core
because of the addition of SMT support

3/16/2016 CS152, Spring 2016

30

Pentium-4 Hyperthreading (2002)

" First commercial SMT design (2-way SMT)
— Hyperthreading == SMT

= Logical processors share nearly all resources of the physical processor
— Caches, execution units, branch predictors

= Die area overhead of hyperthreading ~ 5%

= When one logical processor is stalled, the other can make progress
— No logical processor can use all entries in queues when two threads are active

= Processor running only one active software thread runs at approximately
same speed with or without hyperthreading

= Hyperthreading dropped on OoO P6 based followons to Pentium-4
(Pentium-M, Core Duo, Core 2 Duo), until revived with Nehalem
generation machines in 2008.

" |ntel Atom (in-order x86 core) has two-way vertical multithreading

3/16/2016 CS152, Spring 2016 31

Initial Performance of SMT

" Pentium 4 Extreme SMT yields 1.01 speedup for SPECint_rate
benchmark and 1.07 for SPECfp_rate
— Pentium 4 is dual threaded SMT

— SPECRate requires that each SPEC benchmark be run against a vendor-
selected number of copies of the same benchmark

" Running on Pentium 4 each of 26 SPEC benchmarks paired
with every other (262 runs) speed-ups from 0.90 to 1.58;
average was 1.20

" Power 5, 8-processor server 1.23 faster for SPECint_rate with
SMT, 1.16 faster for SPECfp_rate

" Power 5 running 2 copies of each app speedup between 0.89
and 1.41

— Most gained some
— FI.Pt. apps had most cache conflicts and least gains

3/16/2016 CS152, Spring 2016 32

Performance

Multiprogrammed workload

r || ¥

Specint SpecFP Mixed Int/FP

3/16/2016 CS152, Spring 2016

SMT adaptation to parallelism type

For regions with high thread level For regions with low thread level
parallelism (TLP) entire machine width parallelism (TLP) entire machine
is shared by all threads width is avalilable for instruction level
parallelism (ILP)
Issue width Issue width
Time Time

3/16/2016 CS152, Spring 2016

34

Choosing Policy

= Among four threads, from which do we fetch?

3/16/2016 CS152, Spring 2016

35

Icount (Fair) Choosing Policy

Fetch from thread with the least instructions in flight.

3/16/2016 CS152, Spring 2016

36

SS

ime (processor cycle

Summary: Multithreaded Categories

Superscalar

<4

3/16/2016

Simultaneous
Fine-Grained Coarse-Grained Multipracessing Myitithreading
_||\\ N N
NIN NN o
I NN
e IN N
NN N, N EE
NININ JP§
NINN WININ N o
NN N
N N
L NN
il IN
Thread 1 Thread 3 Thread 5
Thread 2 = Thread 4 |dle slot
CS152, Spring 2016 37

Acknowledgements

" These slides contain material developed and copyright by:
— Arvind (MIT)
— Krste Asanovic (MIT/UCB)
— Joel Emer (Intel/MIT)
— James Hoe (CMU)
— John Kubiatowicz (UCB)
— David Patterson (UCB)

= MIT material derived from course 6.823
= UCB material derived from course CS252

3/16/2016 CS152, Spring 2016

38

