
3/14/2016	 CS152,	Spring	2016	

CS	152	Computer	Architecture	and	Engineering	
	

	Lecture	13	-	VLIW	Machines	and	Sta?cally	
Scheduled	ILP	

Dr. George Michelogiannakis
EECS, University of California at Berkeley

CRD, Lawrence Berkeley National Laboratory

http://inst.eecs.berkeley.edu/~cs152!

3/14/2016	 CS152,	Spring	2016	

Administrivia	

§  This	is	the	first	lecture	of	module	4	

§  PS	3	due	on	Wednesday	

§ Quiz	3	Monday	March	28th	
–  Lab	3	due	the	same	day	

§  Pick	up	your	problem	sets!	

2	

3/14/2016	 CS152,	Spring	2016	

Last	?me	in	Lecture	12	
§ Unified	physical	register	file	machines	remove	data	values	
from	ROB	
–  All	values	only	read	and	wriSen	during	execuUon	
–  Only	register	tags	held	in	ROB	
–  Allocate	resources	(ROB	slot,	desUnaUon	physical	register,	memory	
reorder	queue	locaUon)	during	decode	

–  Issue	window	can	be	separated	from	ROB	and	made	smaller	than	ROB	
(allocate	in	decode,	free	aZer	instrucUon	completes)	

–  Free	resources	on	commit	

§  SpeculaUve	store	buffer	holds	store	values	before	commit	
to	allow	load-store	forwarding	

§ Can	execute	later	loads	past	earlier	stores	when	addresses	
known,	or	predicted	no	dependence	

3	

3/14/2016	 CS152,	Spring	2016	

Superscalar	Control	Logic	Scaling	

§  Each	issued	instrucUon	must	somehow	check	against	W*L	instrucUons,	i.e.,	
growth	in	hardware	∝	W*(W*L)	

§  For	in-order	machines,	L	is	related	to	pipeline	latencies	and	check	is	done	
during	issue	(interlocks	or	scoreboard)	

§  For	out-of-order	machines,	L	also	includes	Ume	spent	in	instrucUon	buffers	
(instrucUon	window	or	ROB),	and	check	is	done	by	broadcasUng	tags	to	
waiUng	instrucUons	at	write	back	(compleUon)	

§  As	W	increases,	larger	instrucUon	window	is	needed	to	find	enough	
parallelism	to	keep	machine	busy	=>	greater	L	

=>	Out-of-order	control	logic	grows	faster	than	W2	(~W3)	

4	

LifeUme	L	

Issue	Group	

Previously	
Issued	

InstrucUons	

Issue	Width	W	

3/14/2016	 CS152,	Spring	2016	

Out-of-Order	Control	Complexity:	
MIPS	R10000	

5	

Control	
Logic	

[SGI/MIPS	Technologies	
Inc.,	1995]	

3/14/2016	 CS152,	Spring	2016	

Sequen?al	ISA	BoMleneck	

6	

Check	instrucMon	
dependencies	

Superscalar	processor	

a = foo(b);

for (i=0, i<

SequenMal	
source	code	

Superscalar	compiler	

Find	independent	
operaMons	

Schedule	
operaMons	

SequenMal	
machine	code	

Schedule	
execuMon	

3/14/2016	 CS152,	Spring	2016	

VLIW:	Very	Long	Instruc?on	Word	

§ MulUple	operaUons	packed	into	one	instrucUon	
§ Each	operaUon	slot	is	for	a	fixed	funcUon	
§ Constant	operaUon	latencies	are	specified	
§ Architecture	requires	guarantee	of:	

–  Parallelism	within	an	instrucUon	=>	no	cross-operaUon	RAW	check	
–  No	data	use	before	data	ready	=>	no	data	interlocks	

7	

Two	Integer	Units,	
Single	Cycle	Latency	

Two	Load/Store	Units,	
Three	Cycle	Latency	 Two	FloaMng-Point	Units,	

Four	Cycle	Latency	

Int	Op	2	 Mem	Op	1	 Mem	Op	2	 FP	Op	1	 FP	Op	2	Int	Op	1	

3/14/2016	 CS152,	Spring	2016	

Early	VLIW	Machines	

§ FPS	AP120B	(1976)	
–  scienUfic	aSached	array	processor	
–  first	commercial	wide	instrucUon	machine	
–  hand-coded	vector	math	libraries	using	soZware	pipelining	and	loop	
unrolling	

§ MulUflow	Trace	(1987)	
–  commercializaUon	of	ideas	from	Fisher’s	Yale	group	including	“trace	
scheduling”	

–  available	in	configuraUons	with	7,	14,	or	28	operaUons/instrucUon	
–  28	operaUons	packed	into	a	1024-bit	instrucUon	word	

§ Cydrome	Cydra-5	(1987)	
–  7	operaUons	encoded	in	256-bit	instrucUon	word	
–  rotaUng	register	file	

8	

3/14/2016	 CS152,	Spring	2016	

VLIW	Compiler	Responsibili?es	

§ Schedule	operaUons	to	maximize	parallel	
execuUon	
	

§ Guarantees	intra-instrucUon	parallelism	

§ Schedule	to	avoid	data	hazards	(no	
interlocks)	
– Typically	separates	operaUons	with	explicit	NOPs	

9	

3/14/2016	 CS152,	Spring	2016	

Loop	Execu?on	

How	many	FP	ops/cycle?	

10	

for (i=0; i<N; i++)

 B[i] = A[i] + C;
Int1 Int 2 M1 M2 FP+ FPx

loop: fld add x1

fadd

fsd add x2 bne

1 fadd / 8 cycles = 0.125

loop: fld f1, 0(x1)

 add x1, 8

 fadd f2, f0, f1

 fsd f2, 0(x2)

 add x2, 8

 bne x1, x3,
loop

Compile

Schedule

3/14/2016	 CS152,	Spring	2016	

Loop	Unrolling	

11	

for (i=0; i<N; i++)

 B[i] = A[i] + C;

for (i=0; i<N; i+=4)

{

 B[i] = A[i] + C;

 B[i+1] = A[i+1] + C;

 B[i+2] = A[i+2] + C;

 B[i+3] = A[i+3] + C;

}

Unroll inner loop to perform 4
iterations at once

Need to handle values of N that are not multiples
of unrolling factor with final cleanup loop

3/14/2016	 CS152,	Spring	2016	

Scheduling	Loop	Unrolled	Code	

12	

loop: fld f1, 0(x1)
 fld f2, 8(x1)
 fld f3, 16(x1)
 fld f4, 24(x1)
 add x1, 32
 fadd f5, f0, f1
 fadd f6, f0, f2
 fadd f7, f0, f3
 fadd f8, f0, f4
 fsd f5, 0(x2)
 fsd f6, 8(x2)
 fsd f7, 16(x2)
 fsd f8, 24(x2)

add x2, 32
 bne x1, x3, loop

Schedule

Int1 Int 2 M1 M2 FP+ FPx

loop:

Unroll 4 ways

fld f1
fld f2
fld f3
fld f4 add x1 fadd f5

fadd f6
fadd f7
fadd f8

fsd f5
fsd f6
fsd f7
fsd f8 add x2 bne

How many FLOPS/cycle?
4 fadds / 11 cycles = 0.36

3/14/2016	 CS152,	Spring	2016	

Rota?ng	Register	Files	

13	

3/14/2016	 CS152,	Spring	2016	

Rota?ng	Register	Files	

14	

3/14/2016	 CS152,	Spring	2016	

SoVware	Pipelining	

How	many	FLOPS/cycle?	

15	

loop: fld f1, 0(x1)
 fld f2, 8(x1)
 fld f3, 16(x1)
 fld f4, 24(x1)
 add x1, 32
 fadd f5, f0, f1
 fadd f6, f0, f2
 fadd f7, f0, f3
 fadd f8, f0, f4
 fsd f5, 0(x2)
 fsd f6, 8(x2)
 fsd f7, 16(x2)
 add x2, 32
 fsd f8, -8(x2)
 bne x1, x3, loop

Int1 Int 2 M1 M2 FP+ FPx Unroll 4 ways first
fld f1
fld f2
fld f3
fld f4

fadd f5
fadd f6
fadd f7
fadd f8

fsd f5
fsd f6
fsd f7
fsd f8

add x1

add x2
bne

fld f1
fld f2
fld f3
fld f4

fadd f5
fadd f6
fadd f7
fadd f8

fsd f5
fsd f6
fsd f7
fsd f8

add x1

add x2
bne

fld f1
fld f2
fld f3
fld f4

fadd f5
fadd f6
fadd f7
fadd f8

fsd f5

add x1

loop:
iterate

prolog

epilog

4 fadds / 4 cycles = 1

3/14/2016	 CS152,	Spring	2016	

SoVware	Pipelining	vs.	Loop	
Unrolling	

16	

time

performance

time

performance

Loop Unrolled

Software Pipelined

Startup overhead

Wind-down overhead

Loop Iteration

Loop Iteration

Software pipelining pays startup/wind-down
costs only once per loop, not once per iteration

3/14/2016	 CS152,	Spring	2016	

What	if	there	are	no	loops?	

§ Branches	limit	basic	block	size	
in	control-flow	intensive	
irregular	code	

§ Difficult	to	find	ILP	in	individual	
basic	blocks	

17	

Basic	block	

3/14/2016	 CS152,	Spring	2016	

Trace	Scheduling	[Fisher,Ellis]	

§  Pick	string	of	basic	blocks,	a	trace,	that	
represents	most	frequent	branch	path	

§ Use	profiling	feedback	or	compiler	
heurisUcs	to	find	common	branch	paths		

§  Schedule	whole	“trace”	at	once	
§ Add	fixup	code	to	cope	with	branches	
jumping	out	of	trace	

18	

3/14/2016	 CS152,	Spring	2016	

Problems	with	“Classic”	VLIW	

§ Object-code	compaUbility	
–  have	to	recompile	all	code	for	every	machine	even	if	differences	are	slight	(e.g.,	
latency	of	one	funcUonal	unit)	

§  	Object	code	size	
–  instrucUon	padding	wastes	instrucUon	memory/cache	
–  loop	unrolling/soZware	pipelining	replicates	code	

§  Scheduling	variable	latency	memory	operaUons	
–  caches	and/or	memory	bank	conflicts	impose	staUcally	unpredictable	variability	

§  Knowing	branch	probabiliUes	
–  Profiling	requires	an	significant	extra	step	in	build	process	

§  Scheduling	for	staUcally	unpredictable	branches	
–  opUmal	schedule	varies	with	branch	path	
–  i.e.,	the	result	of	a	branch	can	affect	how	to	schedule	instrucUons	before	the	
branch	

19	

3/14/2016	 CS152,	Spring	2016	

VLIW	Instruc?on	Encoding	

§ Schemes	to	reduce	effect	of	unused	fields	
–  Compressed	format	in	memory,	expand	on	I-cache	refill	

•  used	in	MulUflow	Trace	
•  introduces	instrucUon	addressing	challenge	

–  Mark	parallel	groups	
•  used	in	TMS320C6x	DSPs,	Intel	IA-64	
•  Hardware	resolves	dependencies	across	groups	

–  Provide	a	single-op	VLIW	instrucUon	
•  	Cydra-5	UniOp	instrucUons	

20	

Group 1 Group 2 Group 3

3/14/2016	 CS152,	Spring	2016	

Intel	Itanium,	EPIC	IA-64	

§  EPIC	is	the	style	of	architecture	(cf.	CISC,	RISC)	
–  Explicitly	Parallel	InstrucUon	CompuUng	(really	just	VLIW)	

§  IA-64	is	Intel’s	chosen	ISA	(cf.	x86,	MIPS)	
–  IA-64	=	Intel	Architecture	64-bit	
–  An	object-code-compaUble	VLIW	

§ Merced	was	first	Itanium	implementaUon	(cf.	8086)	
–  First	customer	shipment	expected	1997	(actually	2001)	
–  McKinley,	second	implementaUon	shipped	in	2002	
–  Recent	version,	Poulson,	eight	cores,	32nm,	announced	2011	

21	

3/14/2016	 CS152,	Spring	2016	

Eight	Core	Itanium	“Poulson”	[Intel	2011]	

§  8	cores	
§  1-cycle	16KB	L1	I&D	caches	
§  9-cycle	512KB	L2	I-cache	
§  8-cycle	256KB	L2	D-cache	
§  32	MB	shared	L3	cache	
§  544mm2	in	32nm	CMOS	
§  Over	3	billion	transistors	

§  Cores	are	2-way	mulUthreaded	
§  6	instrucUon/cycle	fetch	

–  Two	128-bit	bundles	
§  Up	to	12	insts/cycle	execute	

22	

3/14/2016	 CS152,	Spring	2016	

IA-64	Instruc?on	Format	

§  Template	bits	describe	grouping	of	these	instrucUons	
with	others	in	adjacent	bundles,	and	types	of	instrucUons	

§  Each	group	contains	instrucUons	that	can	execute	in	
parallel	

23	

Instruction 2 Instruction 1 Instruction 0 Template

128-bit instruction bundle

group i group i+1 group i+2 group i-1

bundle j bundle j+1 bundle j+2 bundle j-1

3/14/2016	 CS152,	Spring	2016	

IA-64	Registers	

§  128	General	Purpose	64-bit	Integer	Registers	
§  128	General	Purpose	64/80-bit	FloaUng	Point	Registers	
§  64	1-bit	Predicate	Registers	

§ GPRs	“rotate”	to	reduce	code	size	for	soZware	
pipelined	loops	
–  RotaUon	is	a	simple	form	of	register	renaming	allowing	one	
instrucUon	to	address	different	physical	registers	on	each	iteraUon	

24	

3/14/2016	 CS152,	Spring	2016	

IA-64	Predicated	Execu?on	
Problem:	Mispredicted	branches	limit	ILP	
SoluUon:	Eliminate	hard	to	predict	branches	with	predicated	execuUon	

–  Almost	all	IA-64	instrucUons	can	be	executed	condiUonally	under	predicate	
–  InstrucUon	becomes	NOP	if	predicate	register	false	

25	

Inst 1
Inst 2
br a==b, b2

Inst 3
Inst 4
br b3

Inst 5
Inst 6

Inst 7
Inst 8

b0:

b1:

b2:

b3:

if

else

then

Four basic blocks

Inst 1
Inst 2
p1,p2 <- cmp(a==b)
(p1) Inst 3 || (p2) Inst 5
(p1) Inst 4 || (p2) Inst 6
Inst 7
Inst 8

Predication

One basic block

Mahlke et al, ISCA95: On average
>50% branches removed

3/14/2016	 CS152,	Spring	2016	

Fully	Bypassed	Datapath	

26	

ASrc
IR IR IR

PC
A

B

Y

R

MD1 MD2

addr
inst

Inst
Memory

0x4
Add

IR ALU

Imm
Ext

rd1

GPRs

rs1
rs2

ws
wd rd2

we

wdata

addr

wdata

rdata
Data
Memory

we

31

nop

stall

D

E M W

PC for JAL, ...

BSrc

Where does predication fit in?

3/14/2016	 CS152,	Spring	2016	

IA-64	Specula?ve	Execu?on	

Problem:	Branches	restrict	compiler	code	moUon	

27	

Inst 1
Inst 2
br a==b, b2

Load r1
Use r1
Inst 3

Can’t move load above branch
because might cause spurious

exception

Load.s r1
Inst 1
Inst 2
br a==b, b2

Chk.s r1
Use r1
Inst 3

Speculative load
never causes

exception, but sets
“poison” bit on

destination register

Check for exception in
original home block

jumps to fixup code if
exception detected

Particularly useful for scheduling long latency loads early

Solution: Speculative operations that don’t cause exceptions

?

3/14/2016	 CS152,	Spring	2016	

IA-64	Data	Specula?on	

Problem:	Possible	memory	hazards	limit	code	scheduling	

28	

Requires associative hardware in address check table

Inst 1
Inst 2
Store

Load r1
Use r1
Inst 3

Can’t move load above store
because store might be to same

address

Load.a r1
Inst 1
Inst 2
Store

Load.c
Use r1
Inst 3

Data speculative load
adds address to

address check table

Store invalidates any
matching loads in

address check table

Check if load invalid (or
missing), jump to fixup

code if so

Solution: Hardware to check pointer hazards

3/14/2016	 CS152,	Spring	2016	

Limits	of	Sta?c	Scheduling	

§ Unpredictable	branches	
§ Variable	memory	latency	(unpredictable	cache	misses)	
§ Code	size	explosion	
§ Compiler	complexity	
Despite	several	aSempts,	VLIW	has	failed	in	general-
purpose	compuUng	arena	(so	far).	
– More	complex	VLIW	architectures	close	to	in-order	superscalar	in	
complexity,	no	real	advantage	on	large	complex	apps	

Successful	in	embedded	DSP	market	
–  Simpler	VLIWs	with	more	constrained	environment,	friendlier	
code.	

29	

3/14/2016	 CS152,	Spring	2016	

Acknowledgements	

§  These	slides	contain	material	developed	and	copyright	by:	
–  Arvind	(MIT)	
–  Krste	Asanovic	(MIT/UCB)	
–  Joel	Emer	(Intel/MIT)	
–  James	Hoe	(CMU)	
–  John	Kubiatowicz	(UCB)	
–  David	PaSerson	(UCB)	

§ MIT	material	derived	from	course	6.823	
§ UCB	material	derived	from	course	CS252	

30	

