
3/9/2016 CS152, Spring 2016

CS 152 Computer Architecture and

Engineering

Lecture 12 - Advanced Out-of-Order

Superscalars

Dr. George Michelogiannakis

EECS, University of California at Berkeley

CRD, Lawrence Berkeley National Laboratory

http://inst.eecs.berkeley.edu/~cs152

3/9/2016 CS152, Spring 2016

Last time in Lecture 11

 Register renaming removes WAR, WAW hazards

 In-order fetch/decode, out-of-order execute, in-order
commit gives high performance and precise exceptions

 Need to rapidly recover on branch mispredictions

 Unified physical register file machines remove data values
from ROB

– All values only read and written during execution

– Only register tags held in ROB

2

3/9/2016 CS152, Spring 2016

Question of the Day

 How many in-order cores do you think take up the same
area as an out-of-order core?

3

3/9/2016 CS152, Spring 2016 4

Reminder

Fetch
Decode &
Rename

Reorder BufferPC Commit

Branch
Unit

ALU MEM
Store
Buffer

D$

Execute

In-Order

In-OrderOut-of-Order

Physical Reg. File

3/9/2016 CS152, Spring 2016

Separate Pending Instruction Window
from ROB

5

Reorder buffer used to hold

exception information for

commit.

The instruction window holds

instructions that have been

decoded and renamed but not

issued into execution. Has

register tags and presence

bits, and pointer to ROB entry.

op p1 PR1 p2 PR2 PRduse ex ROB#

ROB is usually several times larger than instruction

window – why?

Rd LPRd PC Except?
Ptr2

next to commit

Ptr1

next available

Done?

Instructions that committed

are not in the instruction

window any more

3/9/2016 CS152, Spring 2016

Reorder Buffer Holds Active Instructions
(Decoded but not Committed)

…

ld x1, (x3)

add x3, x1, x2

sub x6, x7, x9

add x3, x3, x6

ld x6, (x1)

add x6, x6, x3

sd x6, (x1)

ld x6, (x1)

…

6

(Older instructions)

(Newer instructions)

Cycle t

…

ld x1, (x3)

add x3, x1, x2

sub x6, x7, x9

add x3, x3, x6

ld x6, (x1)

add x6, x6, x3

sd x6, (x1)

ld x6, (x1)

…

Commit

Fetch

Cycle t + 1

Execute

3/9/2016 CS152, Spring 2016

Issue Timing

i1 Add R1,R1,#1 Issue1 Execute1

i2 Sub R1,R1,#1 Issue2 Execute2

How can we issue earlier?

Using knowledge of execution latency (bypass)

What makes this schedule fail?

If execution latency wasn’t as expected

i1 Add R1,R1,#1 Issue1 Execute1

i2 Sub R1,R1,#1 Issue2 Execute2

3/9/2016 CS152, Spring 2016

Issue Queue with latency prediction

 Fixed latency: latency included in queue entry (‘bypassed’)

 Predicted latency: latency included in queue entry (speculated)

 Variable latency: wait for completion signal (stall)

Issue Queue (Reorder buffer)

ptr2

next to

commit

ptr1

next

available

Inst# use exec op p1 lat1 src1 p2 lat2 src2 dest

BEQZ

Speculative Instructions

3/9/2016 CS152, Spring 2016

Improving Instruction Fetch

Performance of speculative out-of-order machines
often limited by instruction fetch bandwidth

– speculative execution can fetch 2-3x more instructions
than are committed

– mispredict penalties dominated by time to refill
instruction window

– taken branches are particularly troublesome

3/9/2016 CS152, Spring 2016

Increasing Taken Branch Bandwidth
(Alpha 21264 I-Cache)

 Fold 2-way tags and BTB into predicted next block

 Take tag checks, inst. decode, branch predict out of loop

 Raw RAM speed on critical loop (1 cycle at ~1 GHz)

 2-bit hysteresis counter per block prevents overtraining

Cached

Instructions

Line

Predict

Way

Predict

Tag

Way

0

Tag

Way

1

=? =?

fast fetch path

PC Generation

PC

Branch Prediction

Instruction Decode

Validity Checks

4 insts

Hit/Miss/Way

3/9/2016 CS152, Spring 2016

Tournament Branch Predictor
(Alpha 21264)

 Choice predictor learns whether best to use local or global
branch history in predicting next branch (best in each case)

 Global history is speculatively updated but restored on
mispredict

 Claim 90-100% success on range of applications

Local

history table

(1,024x10b)

PC

Local

prediction

(1,024x3b)

Global Prediction

(4,096x2b)

Choice Prediction

(4,096x2b)

Global History (12b)
Prediction

3/9/2016 CS152, Spring 2016

Taken Branch Limit

 Integer codes have a taken branch every 6-9 instructions

 To avoid fetch bottleneck, must execute multiple taken branches
per cycle when increasing performance

 This implies:

– predicting multiple branches per cycle

– fetching multiple non-contiguous blocks per cycle

3/9/2016 CS152, Spring 2016

Branch Address Cache
(Yeh, Marr, Patt)

PC

k

Entry PC

=

match

Valid

valid

predicted

target#1

target #1
len

len#1

predicted

target#2

target #2

Extend BTB to return multiple branch predictions per cycle

3/9/2016 CS152, Spring 2016

Fetching Multiple Basic Blocks

Requires either

– multiported cache: expensive

– interleaving: bank conflicts will occur

Merging multiple blocks to feed to decoders adds latency
increasing mispredict penalty and reducing branch
throughput

3/9/2016 CS152, Spring 2016

Trace Cache

Key Idea: Pack multiple non-contiguous basic blocks into one
contiguous trace cache line

BR BR BR

• Single fetch brings in multiple basic blocks

• Trace cache indexed by start address and next n branch predictions

• Used in Intel Pentium-4 processor to hold decoded uops

BRBRBR

3/9/2016 CS152, Spring 2016

Superscalar Register Renaming
 During decode, instructions allocated new physical destination register

 Source operands renamed to physical register with newest value

 Execution unit only sees physical register numbers

16

Rename Table

Op Src1 Src2Dest Op Src1 Src2Dest

Register
Free List

Op PSrc1 PSrc2PDestOp PSrc1 PSrc2PDest

Update
Mapping

Does this work?

Inst 1 Inst 2

Read Addresses

Read Data

W
ri

te

Po
rt

s

Issue multiple
instructions per
cycle

3/9/2016 CS152, Spring 2016

Superscalar Register Renaming

17

Rename Table

Op Src1 Src2Dest Op Src1 Src2Dest

Register
Free List

Op PSrc1 PSrc2PDestOp PSrc1 PSrc2PDest

Update
Mapping

Inst 1 Inst 2

Read Addresses

Read Data

W
ri

te

Po
rt

s
=?=?

Must check for
RAW hazards
between
instructions issuing
in same cycle. Can
be done in parallel
with rename
lookup.

MIPS R10K renames 4 serially-RAW-dependent insts/cycle

3/9/2016 CS152, Spring 2016

Speculative Loads / Stores

18

Just like register updates, stores should not modify
the memory until after the instruction is committed

- A speculative store buffer is a structure introduced to hold
speculative store data.

3/9/2016 CS152, Spring 2016

Speculative Store Buffer

Just like register updates, stores should
not modify the memory until after the
instruction is committed. A speculative
store buffer is a structure introduced to
hold speculative store data.

 During decode, store buffer slot
allocated in program order

 Stores split into “store address” and
“store data” micro-operations

 “Store address” execute writes tag

 “Store data” execute writes data

 Store commits when oldest instruction
and both address and data available:

– clear speculative bit and eventually move
data to cache

 On store abort:
– clear valid bit

19

DataTags

Store Commit
Path

Speculative
Store Buffer

L1 Data Cache

Tag DataSV
Tag DataSV
Tag DataSV
Tag DataSV
Tag DataSV
Tag DataSV

Store
Address

Store
Data

3/9/2016 CS152, Spring 2016

Load bypass from speculative store buffer

20

 If data in both store buffer and cache, which should we use?

Speculative store buffer

 If same address in store buffer twice, which should we use?

Youngest store older than load

Data

Load Address

Tags

Speculative
Store Buffer

L1 Data Cache

Load Data

Tag DataSV
Tag DataSV
Tag DataSV
Tag DataSV
Tag DataSV
Tag DataSV

3/9/2016 CS152, Spring 2016

Memory Dependencies

sd x1, (x2)

ld x3, (x4)

When can we execute the load?

21

3/9/2016 CS152, Spring 2016

In-Order Memory Queue

 Execute all loads and stores in program order

=> Load and store cannot leave ROB for execution until all
previous loads and stores have completed execution

 Can still execute loads and stores speculatively, and out-of-
order with respect to other instructions

 Need a structure to handle memory ordering…

22

3/9/2016 CS152, Spring 2016

Conservative O-o-O Load Execution

sd x1, (x2)

ld x3, (x4)

 Can execute load before store, if addresses known and x4 != x2

 Each load address compared with addresses of all previous
uncommitted stores

– can use partial conservative check i.e., bottom 12 bits of address, to save
hardware

 Don’t execute load if any previous store address not known

(MIPS R10K, 16-entry address queue)

23

3/9/2016 CS152, Spring 2016

Address Speculation

 Guess that x4 != x2

 Execute load before store address known

 Need to hold all completed but uncommitted load/store
addresses in program order

 If subsequently find x4==x2, squash load and all
following instructions

=> Large penalty for inaccurate address speculation

24

sd x1, (x2)

ld x3, (x4)

3/9/2016 CS152, Spring 2016

Memory Dependence Prediction
(Alpha 21264)

sd x1, (x2)

ld x3, (x4)

 Guess that x4 != x2 and execute load before store

 If later find x4==x2, squash load and all following
instructions, but mark load instruction as store-wait

 Subsequent executions of the same load instruction will
wait for all previous stores to complete

 Periodically clear store-wait bits

25

3/9/2016 CS152, Spring 2016 26

Fetch
Decode &

Rename
Reorder BufferPC

Branch

Prediction

Commit

Datapath: Branch Prediction
and Speculative Execution

Branch

Resolution

Branch

Unit
ALU

Reg. File

MEM
Store

Buffer
D$

Execute

kill

kill

kill
kill

3/9/2016 CS152, Spring 2016

Instruction Flow in Unified Physical
Register File Pipeline

 Fetch
– Get instruction bits from current guess at PC, place in fetch buffer

– Update PC using sequential address or branch predictor (BTB)

 Decode/Rename
– Take instruction from fetch buffer

– Allocate resources to execute instruction:

• Destination physical register, if instruction writes a register

• Entry in reorder buffer to provide in-order commit

• Entry in issue window to wait for execution

• Entry in memory buffer, if load or store

– Decode will stall if resources not available

– Rename source and destination registers

– Check source registers for readiness

– Insert instruction into issue window+reorder buffer+memory buffer

27

3/9/2016 CS152, Spring 2016

Memory Instructions

 Split store instruction into two pieces during decode:
– Address calculation, store-address

– Data movement, store-data

 Allocate space in program order in memory buffers during
decode

 Store instructions:
– Store-address calculates address and places in store buffer

– Store-data copies store value into store buffer

– Store-address and store-data execute independently out of issue window

– Stores only commit to data cache at commit point

 Load instructions:
– Load address calculation executes from window

– Load with completed effective address searches memory buffer

– Load instruction may have to wait in memory buffer for earlier store ops to
resolve

28

3/9/2016 CS152, Spring 2016

Issue Stage

 Writebacks from completion phase “wakeup” some
instructions by causing their source operands to become
ready in issue window

– In more speculative machines, might wake up waiting loads in memory
buffer

 Need to “select” some instructions for issue
– Arbiter picks a subset of ready instructions for execution

– Example policies: random, lower-first, oldest-first, critical-first

 Instructions read out from issue window and sent to
execution

29

3/9/2016 CS152, Spring 2016

Execute Stage

 Read operands from physical register file and/or bypass
network from other functional units

 Execute on functional unit

 Write result value to physical register file (or store buffer
if store)

 Produce exception status, write to reorder buffer

 Free slot in instruction window

30

3/9/2016 CS152, Spring 2016

Commit Stage

 Read completed instructions in-order from reorder
buffer

– (may need to wait for next oldest instruction to complete)

 If exception raised
– flush pipeline, jump to exception handler

 Otherwise, release resources:
– Free physical register used by last writer to same architectural

register

– Free reorder buffer slot

– Free memory reorder buffer slot

31

3/9/2016 CS152, Spring 2016

Question of the Day

 How many in-order cores do you think take up the same
area as an out-of-order core?

32

3/9/2016 CS152, Spring 2016

How Many In-Order In The Same Area?

33

3/9/2016 CS152, Spring 2016

Performance?

34

3/9/2016 CS152, Spring 2016

Acknowledgements

 These slides contain material developed and copyright by:
– Arvind (MIT)

– Krste Asanovic (MIT/UCB)

– Joel Emer (Intel/MIT)

– James Hoe (CMU)

– John Kubiatowicz (UCB)

– David Patterson (UCB)

 MIT material derived from course 6.823

 UCB material derived from course CS252

35

