
3/2/2016	 CS152,	Spring	2016	

CS	152	Computer	Architecture	and	
Engineering	

	
	Lecture	11	-	Out-of-Order	Issue,	

Register	Renaming,		
&	Branch	PredicBon	
Dr.	George	Michelogiannakis	

EECS,	University	of	California	at	Berkeley	
CRD,	Lawrence	Berkeley	NaHonal	Laboratory	

	
http://inst.eecs.berkeley.edu/~cs152!

	
	

3/2/2016	 CS152,	Spring	2016	

Administrivia	

§  Lab	2	and	PS	2	are	due	NOW	

§  Lab	3	release	and	overview	tomorrow	

§  Pick	up	PS	1	
–  If	you	can’t	find	your	submission	talk	to	me	

§ Quiz	on	module	2	next	Monday	(March	7th)	
–  Be	on	Hme	

2	

3/2/2016	 CS152,	Spring	2016	

Last	Bme	in	Lecture	10	
§  Pipelining	is	complicated	by	mulHple	and/or	variable	
latency	funcHonal	units	

§ Out-of-order	and/or	pipelined	execuHon	requires	tracking	
of	dependencies	
–  RAW	
–  WAR	
–  WAW	

§ Dynamic	issue	logic	can	support	out-of-order	execuHon	to	
improve	performance	
–  Last	Hme,	looked	at	simple	scoreboard	to	track	out-of-order	compleHon	

§ Hardware	register	renaming	can	further	improve	
performance	by	removing	WAW	and	WAR	hazards.	

3	

3/2/2016	 CS152,	Spring	2016	

Register	Renaming	

§  Decode	does	register	renaming	and	adds	instrucHons	to	the	
issue-stage	instrucHon	reorder	buffer	(ROB)	

	 		 	⇒	renaming	makes	WAR	or	WAW	hazards	impossible	

§  Any	instrucHon	in	ROB	whose	RAW	hazards	have		been	saHsfied	
can	be	issued.		
	 	⇒		Out-of-order	or	dataflow	execuHon	

4	

IF ID WB

ALU Mem

Fadd

Fmul

Issue

3/2/2016	 CS152,	Spring	2016	

Renaming	Structures	

5	

Renaming
table &
regfile

Reorder
buffer

Load
 Unit FU FU Store

 Unit

< t, result >

Ins# use exec op p1 src1 p2 src2 t1
t2
.
.
tn

•  Instruction template (i.e., tag t) is allocated by the
 Decode stage, which also associates tag with register in regfile
•  When an instruction completes, its tag is deallocated

Replacing the
tag by its value
is an expensive
operation

3/2/2016	 CS152,	Spring	2016	

Reorder	Buffer	Management	

6	

Instruction slot is candidate for execution when:
•  It holds a valid instruction (“use” bit is set)
•  It has not already started execution (“exec” bit is clear)
•  Both operands are available (p1 and p2 are set)

t1
t2
.
.
.

tn

ptr2
next to

deallocate

 ptr1
next

available

Ins# use exec op p1 src1 p2 src2

Destination registers
are renamed to the
instruction’s slot tag

ROB managed circularly
• “exec” bit is set when instruction begins execution
• When an instruction completes its “use” bit is marked free
•  ptr2 is incremented only if the “use” bit is marked free

3/2/2016	 CS152,	Spring	2016	

Renaming	&	Out-of-order	Issue	
An	example	

7	

•  When are tags in sources
 replaced by data?

•  When can a name be reused?

1	FLD 	 	f2,	 	34(x2)	
2	FLD 	 	f4, 	45(x3)	
3	FMULT.D 	f6, 	f4, 	f2	
4	FSUB.D 	f8, 	f2, 	f2	
5	FDIV.D	 	f4, 	f2, 	f8	
6	FADD.D 	f10, 	f6, 	f4	

Renaming table Reorder buffer
Ins# use exec op p1 src1 p2 src2

t1
t2
t3
t4
t5
.
.

data / ti

 p data
f1
f2
f3
f4
f5
f6
f7
f8

Whenever an FU produces data

Whenever an instruction completes

t1
 1 1 0 LD

t2

 2 1 0 LD

 5 1 0 DIV 1 v1 0 t4
 4 1 0 SUB 1 v1 1 v1

t4

 3 1 0 MUL 0 t2 1 v1

t3

t5

v1
 1 1 1 LD 0

 4 1 1 SUB 1 v1 1 v1 4 0

v4

 5 1 0 DIV 1 v1 1 v4

 2 1 1 LD 2 0
 3 1 0 MUL 1 v2 1 v1

3/2/2016	 CS152,	Spring	2016	

In	Summary	

§ Register	indeces	the	compiler	emits	are	used	to	detect	
data	dependencies	

§  Tags	are	then	used	much	like	variable	names,	to	denote	
that	the	value	is	the	same	(an	instrucHon	creates	a	tag)	

§ When	an	instrucHon	writes	a	register,	that	updates	the	tag	
if	there	was	one	before	
–  WAW	was	a	reason	for	register	renaming	(see	previous	lecture)	

8	

3/2/2016	 CS152,	Spring	2016	

IBM	360/91	FloaBng-Point	Unit	
R.	M.	Tomasulo,	1967	

9	

Mult	

1	

1	
2	
3	
4	
5	
6	

load	
buffers	
(from		
memory)	

1	
2	
3	
4	

Adder	

1	
2	
3	
	

FloaHng-Point	
Regfile	

store	buffers	
(to	memory)	

...	

instrucHons	

Common	bus	ensures	that	data	is	made	available	
immediately	to	all	the	instruc:ons	wai:ng	for	it.	
Match	tag,	if	equal,	copy	value	&	set	presence	“p”.	

Distribute		
instruc:on		
templates	
by		
func:onal	
units	

<	tag,	result	>	

p	 tag/data	
p	 tag/data	
p	 tag/data	

p	 tag/data	
p	 tag/data	
p	 tag/data	

p	 tag/data	
p	 tag/data	
p	 tag/data	

p	 tag/data	
p	 tag/data	

p	 tag/data	
p	 tag/data	2	

p	 tag/data	
p	 tag/data	
p	 tag/data	

p	 tag/data	
p	 tag/data	
p	 tag/data	

p	 tag/data	
p	 tag/data	
p	 tag/data	
p	 tag/data	

3/2/2016	 CS152,	Spring	2016	

EffecBveness?	

10	

Renaming	and	Out-of-order	execuHon	was	first	
implemented	in	1969	in	IBM	360/91	but	did	not	show	
up	in	the	subsequent	models	unHl	mid-NineHes.	

	 	 	Why	?	
Reasons	

1.	EffecHve	on	a	very	small	class	of	programs	
2.	Memory	latency	a	much	bigger	problem	
3.	ExcepHons	not	precise!	
	

	One	more	problem	needed	to	be	solved	
Control transfers

3/2/2016	 CS152,	Spring	2016	

Precise	Interrupts	

11	

It must appear as if an interrupt is taken between
two instructions (say Ii and Ii+1)

•  the effect of all instructions up to and including Ii is
 totally complete
•  no effect of any instruction after Ii has taken place

The interrupt handler either aborts the program or
restarts it at Ii+1 .

3/2/2016	 CS152,	Spring	2016	

Effect	on	Interrupts	
Out-of-order	Comple=on	

12	

I1 DIVD f6, f6, f4
I2 LD f2, 45(r3)
I3 MULTD f0, f2, f4
I4 DIVD f8, f6, f2
I5 SUBD f10, f0, f6
I6 ADDD f6, f8, f2

out-of-order comp 1 2 2 3 1 4 3 5 5 4 6 6
 restore f2 restore f10

Consider interrupts

Precise interrupts are difficult to implement at high speed

 - want to start execution of later instructions before
 exception checks finished on earlier instructions

3/2/2016	 CS152,	Spring	2016	

ExcepBon	Handling	
(In-Order	Five-Stage	Pipeline)	

13	

•  Hold exception flags in pipeline until commit point (M stage)
•  Exceptions in earlier pipe stages override later exceptions
•  Inject external interrupts at commit point (override others)
•  If exception at commit: update Cause and EPC registers, kill
 all stages, inject handler PC into fetch stage

Asynchronous
Interrupts

Exc
D

PC
D

PC
Inst.
Mem D Decode E M

Data
Mem W +

Exc
E

PC
E

Exc
M

PC
M

Cause

EPC
Kill D
Stage

Kill F
Stage

Kill E
Stage

Illegal
Opcode Overflow

Data Addr
Except

PC Address
Exceptions

Kill
Writeback

Select
Handler

PC

Commit
Point

3/2/2016	 CS152,	Spring	2016	

Phases	of	InstrucBon	ExecuBon	

14	

Fetch: Instruction bits retrieved
from cache. I-cache

Fetch Buffer

Issue Buffer

Functional Units

Architectural
State

Execute: Instructions and operands issued
to execution units.
When execution completes, all results and
exception flags are available.

Decode: Instructions dispatched to
appropriate issue-stage buffer

Result Buffer

Commit: Instruction irrevocably updates
architectural state (aka “graduation”).

PC

Commit

Decode/Rename

3/2/2016	 CS152,	Spring	2016	

In-Order	Commit	for	Precise	ExcepBons	

15	

•  Instructions fetched and decoded into instruction
 reorder buffer in-order
•  Execution is out-of-order (⇒ out-of-order completion)
•  Commit (write-back to architectural state, i.e., regfile &
 memory, is in-order

Temporary storage needed to hold results before commit
(shadow registers and store buffers)

Fetch Decode

Execute

Commit Reorder Buffer

In-order In-order Out-of-order

Exception?

Kill
Kill Kill

Inject handler PC

3/2/2016	 CS152,	Spring	2016	

Extensions	for	Precise	ExcepBons	

16	

Reorder buffer

ptr2
next to
commit

ptr1
next

available

•  add <pd, dest, data, cause> fields in the instruction template
•  commit instructions to reg file and memory in program
 order ⇒ buffers can be maintained circularly
•  on exception, clear reorder buffer by resetting ptr1=ptr2

 (stores must wait for commit before updating memory)

Inst# use exec op p1 src1 p2 src2 pd dest data cause

3/2/2016	 CS152,	Spring	2016	

Rollback	and	Renaming	

17	

Register file does not contain renaming tags any more.
How does the decode stage find the tag of a source register?

Search the “dest” field in the reorder buffer

Register File
(now holds only
committed state)

Reorder
buffer

Load
 Unit FU FU FU Store

 Unit

< t, result >

t1
t2
.
.
tn

Ins# use exec op p1 src1 p2 src2 pd dest data

Commit

3/2/2016	 CS152,	Spring	2016	

Renaming	Table	

18	

Register
File

Reorder
buffer

Load
 Unit FU FU FU Store

 Unit

< t, result >

t1
t2
.
.
tn

Ins# use exec op p1 src1 p2 src2 pd dest data

Commit

Rename
Table

Renaming table is a cache to speed up register name look up.
It needs to be cleared after each exception taken.
When else are valid bits cleared? Control transfers

r1 t v
r2

tag
valid bit

3/2/2016	 CS152,	Spring	2016	

Control	Flow	Penalty	

19	

I-cache

Fetch
Buffer

Issue
Buffer

Func.
Units

Arch.
State

Execute

Decode

Result
Buffer Commit

PC

Fetch

Branch
executed

Next fetch
started

Modern processors may have
> 10 pipeline stages between
next PC calculation and branch
resolution !

How much work is lost if
pipeline doesn’t follow
correct instruction flow?

~ Loop length x pipeline width

3/2/2016	 CS152,	Spring	2016	

Mispredict	Recovery	

In-order	execuHon	machines:	
–  Assume	no	instrucHon	issued	ajer	branch	can	write-back	before	branch	
resolves	

–  Kill	all	instrucHons	in	pipeline	behind	mispredicted	branch	

20	

– Multiple instructions following branch in program
order can complete before branch resolves

Out-of-order execution?

3/2/2016	 CS152,	Spring	2016	

In-Order	Commit	for	Precise	ExcepBons	

21	

•  Instructions fetched and decoded into instruction
 reorder buffer in-order
•  Execution is out-of-order (⇒ out-of-order completion)
•  Commit (write-back to architectural state, i.e., regfile &
 memory, is in-order

Temporary storage needed in ROB to hold results before commit

Fetch Decode

Execute

Commit Reorder Buffer

In-order In-order Out-of-order

Kill
Kill Kill

Exception? Inject handler PC

3/2/2016	 CS152,	Spring	2016	

Branch	MispredicBon	in	Pipeline	

22	

Fetch Decode

Execute

Commit Reorder Buffer

Kill

Kill Kill

Branch
Resolution

Inject correct PC

•  Can have multiple unresolved branches in ROB
•  Can resolve branches out-of-order by killing all the
 instructions in ROB that follow a mispredicted branch

Branch
Prediction

PC

Complete

3/2/2016	 CS152,	Spring	2016	

Recovering	ROB/Renaming	Table	

23	

t v t v t v
Register

File

Reorder
buffer Load

 Unit FU FU FU Store
 Unit

< t, result >

t1
t2
.
.
tn

Ins# use exec op p1 src1 p2 src2 pd dest data

Commit

Rename
Table r1

t v

r2

Take snapshot of register rename table at each predicted
branch, recover earlier snapshot if branch mispredicted

Rename
Snapshots

Ptr2
next to commit

Ptr1
next available

rollback
next available

3/2/2016	 CS152,	Spring	2016	

“Data-in-ROB”	Design	
(HP	PA8000,	PenBum	Pro,	Core2Duo,	Nehalem)	

24	

•  On dispatch into ROB, ready sources can be in regfile or in ROB
dest (copied into src1/src2 if ready before dispatch)
•  On completion, write to dest field and broadcast to src fields.
•  On issue, read from ROB src fields

Register File
holds only
committed state

Reorder
buffer

Load
 Unit FU FU FU Store

 Unit

< t, result >

t1
t2
.
.
tn

Ins# use exec op p1 src1 p2 src2 pd dest data

Commit

3/2/2016	 CS152,	Spring	2016	

ROB

Data	Movement	in	Data-in-ROB	Design	

25	

Architectural Register
File Read operands

during decode

Src Operands

Write sources
after decode

Read
operands at

issue

Functional Units

Write results
at completion

Read
results at

commit

Bypass newer
values at
decode

Result
Data

3/2/2016	 CS152,	Spring	2016	

Unified	Physical	Register	File	
(MIPS	R10K,	Alpha	21264,	Intel	Pen=um	4	&	Sandy	Bridge)	

§ Rename	all	architectural	registers	into	a	single	physical	register	
file	during	decode,	no	register	values	read	
–  x1	->	P1	

§  FuncHonal	units	read	and	write	from	single	unified	register	file	
holding	commiled	and	temporary	registers	in	execute	

§ Commit	only	updates	mapping	of	architectural	register	to	
physical	register,	no	data	movement	

26	

Unified Physical
Register File

Read operands at issue

Functional Units

Write results at completion

Committed
Register
Mapping

Decode Stage
Register
Mapping

3/2/2016	 CS152,	Spring	2016	 27	

Pipeline Design with Physical Regfile

Fetch Decode &
Rename Reorder Buffer PC

Branch
Prediction

Commit

Branch
Resolution

Branch
Unit ALU MEM Store

Buffer D$

Execute

In-Order

In-Order Out-of-Order

Physical Reg. File

kill

kill
kill

kill

3/2/2016	 CS152,	Spring	2016	

LifeBme	of	Physical	Registers	

28	

ld x1, (x3)
addi x3, x1, #4
sub x6, x7, x9
add x3, x3, x6
ld x6, (x1)
add x6, x6, x3
sd x6, (x1)
ld x6, (x11)

ld P1, (Px)
addi P2, P1, #4
sub P3, Py, Pz
add P4, P2, P3
ld P5, (P1)
add P6, P5, P4
sd P6, (P1)
ld P7, (Pw)

Rename

When can we reuse a physical register?
 When next write of same architectural register commits

•  Physical regfile holds committed and speculative values
•  Physical registers decoupled from ROB entries (no data in ROB)

3/2/2016	 CS152,	Spring	2016	

Physical	Register	Management	

29	

op p1 PR1 p2 PR2 ex use Rd PRd LPRd

<x6> P5
<x7> P6
<x3> P7

P0

Pn

P1
P2
P3
P4

x5
P5 x6
P6 x7

x0
P8 x1

x2
P7 x3

x4

ROB

Rename
Table

Physical Regs Free List

ld x1, 0(x3)
addi x3, x1, #4
sub x6, x7, x6
add x3, x3, x6
ld x6, 0(x1)

p
p
p

P0
P1
P3
P2
P4

(LPRd requires
third read port

on Rename
Table for each

instruction)

<x1> P8 p

3/2/2016	 CS152,	Spring	2016	

Physical	Register	Management	

30	

op p1 PR1 p2 PR2 ex use Rd PRd LPRd
ROB

ld x1, 0(x3)
addi x3, x1, #4
sub x6, x7, x6
add x3, x3, x6
ld x6, 0(x1)

Free List
P0
P1
P3
P2
P4

<x6> P5
<x7> P6
<x3> P7

P0

Pn

P1
P2
P3
P4

Physical Regs

p
p
p

<x1> P8 p

x ld p P7 x1 P0

x5
P5 x6
P6 x7

x0
P8 x1

x2
P7 x3

x4

Rename
Table

P0

P8

3/2/2016	 CS152,	Spring	2016	

Physical	Register	Management	

31	

op p1 PR1 p2 PR2 ex use Rd PRd LPRd
ROB

ld x1, 0(x3)
addi x3, x1, #4
sub x6, x7, x6
add x3, x3, x6
ld x6, 0(x1)

Free List
P0
P1
P3
P2
P4

<x6> P5
<x7> P6
<x3> P7

P0

Pn

P1
P2
P3
P4

Physical Regs

p
p
p

<R1> P8 p

x ld p P7 x1 P0

x5
P5 x6
P6 x7

x0
P8 x1

x2
P7 x3

x4

Rename
Table

P0

P8
P7

P1

x addi P0 x3 P1

3/2/2016	 CS152,	Spring	2016	

Physical	Register	Management	

32	

op p1 PR1 p2 PR2 ex use Rd PRd LPRd
ROB

ld x1, 0(x3)
addi x3, x1, #4
sub x6, x7, x6
add x3, x3, x6
ld x6, 0(x1)

Free List
P0
P1
P3
P2
P4

<x6> P5
<x7> P6
<x3> P7

P0

Pn

P1
P2
P3
P4

Physical Regs

p
p
p

<R1> P8 p

x ld p P7 x1 P0

x5
P5 x6
P6 x7

x0
P8 x1

x2
P7 x3

x4

Rename
Table

P0

P8
P7

P1

x addi P0 x3 P1
P5

P3

x sub p P6 p P5 x6 P3

3/2/2016	 CS152,	Spring	2016	

Physical	Register	Management	

33	

op p1 PR1 p2 PR2 ex use Rd PRd LPRd
ROB

ld x1, 0(x3)
addi x3, x1, #4
sub x6, x7, x6
add x3, x3, x6
ld x6, 0(x1)

Free List
P0
P1
P3
P2
P4

<x6> P5
<x7> P6
<x3> P7

P0

Pn

P1
P2
P3
P4

Physical Regs

p
p
p

<x1> P8 p

x ld p P7 x1 P0

x5
P5 x6
P6 x7

x0
P8 x1

x2
P7 x3

x4

Rename
Table

P0

P8
P7

P1

x addi P0 x3 P1
P5

P3

x sub p P6 p P5 x6 P3
P1

P2

x add P1 P3 x3 P2

3/2/2016	 CS152,	Spring	2016	

Physical	Register	Management	

34	

op p1 PR1 p2 PR2 ex use Rd PRd LPRd
ROB

ld x1, 0(x3)
addi x3, x1, #4
sub x6, x7, x6
add x3, x3, x6
ld x6, 0(x1)

Free List
P0
P1
P3
P2
P4

<x6> P5
<x7> P6
<x3> P7

P0

Pn

P1
P2
P3
P4

Physical Regs

p
p
p

<x1> P8 p

x ld p P7 x1 P0

x5
P5 x6
P6 x7

x0
P8 x1

x2
P7 x3

x4

Rename
Table

P0

P8
P7

P1

x addi P0 x3 P1
P5

P3

x sub p P6 p P5 x6 P3
P1

P2

x add P1 P3 x3 P2
x ld P0 x6 P4 P3

P4

3/2/2016	 CS152,	Spring	2016	

Physical	Register	Management	

35	

op p1 PR1 p2 PR2 ex use Rd PRd LPRd
ROB

x ld p P7 x1 P0
x addi P0 x3 P1
x sub p P6 p P5 x6 P3

x ld p P7 x1 P0

ld x1, 0(x3)
addi x3, x1, #4
sub x6, x7, x6
add x3, x3, x6
ld x6, 0(x1)

Free List
P0
P1
P3
P2
P4

<x6> P5
<x7> P6
<x3> P7

P0

Pn

P1
P2
P3
P4

Physical Regs

p
p
p

<x1> P8 p

x5
P5 x6
P6 x7

x0
P8 x1

x2
P7 x3

x4

Rename
Table

P0

P8
P7

P1

P5

P3

P1

P2

x add P1 P3 x3 P2
x ld P0 x6 P4 P3

P4

Execute &
Commit p

p

p <x1>

P8

x

3/2/2016	 CS152,	Spring	2016	

Physical	Register	Management	

36	

op p1 PR1 p2 PR2 ex use Rd PRd LPRd
ROB

x sub p P6 p P5 x6 P3
x addi P0 x3 P1 x addi P0 x3 P1

ld x1, 0(x3)
addi x3, x1, #4
sub x6, x7, x6
add x3, x3, x6
ld x6, 0(x1)

Free List
P0
P1
P3
P2
P4

<x6> P5
<x7> P6
<x3> P7

P0

Pn

P1
P2
P3
P4

Physical Regs

p
p
p

P8

x x ld p P7 x1 P0

x5
P5 x6
P6 x7

x0
P8 x1

x2
P7 x3

x4

Rename
Table

P0

P8
P7

P1

P5

P3

P1

P2

x add P1 P3 x3 P2
x ld P0 x6 P4 P3

P4

Execute &
Commit p

p

p <x1>

P8

x

p

p <x3>

P7

3/2/2016	 CS152,	Spring	2016	

Acknowledgements	

§  These	slides	contain	material	developed	and	copyright	by:	
–  Arvind	(MIT)	
–  Krste	Asanovic	(MIT/UCB)	
–  Joel	Emer	(Intel/MIT)	
–  James	Hoe	(CMU)	
–  John	Kubiatowicz	(UCB)	
–  David	Palerson	(UCB)	

§ MIT	material	derived	from	course	6.823	
§ UCB	material	derived	from	course	CS252	

37	

