
2/29/2016 CS152, Spring 2016

CS 152 Computer Architecture and

Engineering

Lecture 10 - Complex Pipelines,

Out-of-Order Issue, Register Renaming

Dr. George Michelogiannakis
EECS, University of California at Berkeley

CRD, Lawrence Berkeley National Laboratory

http://inst.eecs.berkeley.edu/~cs152

2/29/2016 CS152, Spring 2016

Administrivia

 Graded PS 1 is back

 PS 2 and lab 2 are due Wednesday
– During class

– Unless you use a two-day lab extension

 Quiz 2 on module 2 (until last lecture) Monday in a week
from now

2

2/29/2016 CS152, Spring 2016

Last Time in Lecture 9 (End of Module 2)

 Modern page-based virtual memory systems provide:
– Translation, Protection, Virtual memory.

 Translation and protection information stored in page
tables, held in main memory

 Translation and protection information cached in
“translation-lookaside buffer” (TLB) to provide single-cycle
translation+protection check in common case

 Virtual memory interacts with cache design
– Physical cache tags require address translation before tag lookup, or use

untranslated offset bits to index cache.

– Virtual tags do not require translation before cache hit/miss
determination, but need to be flushed or extended with ASID to cope
with context swaps. Also, must deal with virtual address aliases (usually
by disallowing copies in cache).

3

2/29/2016 CS152, Spring 2016

Complex Pipelining: Motivation

4

 Why would we want more than our in-order pipeline?

PC
Inst.

Cache D Decode E M
Data

Cache W+

Main Memory (DRAM)

Memory Controller

Physical
Address

Physical
Address

Physical
Address

Physical
Address

Physical Address

2/29/2016 CS152, Spring 2016

Complex Pipelining: Motivation

Pipelining becomes complex when we want
high performance in the presence of:

 Long latency or partially pipelined floating-
point units

– Not all instructions are floating point

 Memory systems with variable access time
– For example cache misses

 Multiple arithmetic and memory units

5

2/29/2016 CS152, Spring 2016

Floating Point Representation

 IEEE standard 754

6

Value = (-1)s * 1.mantissa * 2(exp-127)

Exponent = 0 has special meaning

2/29/2016 CS152, Spring 2016

Floating-Point Unit (FPU)

 Much more hardware than an integer unit
– Single-cycle FPU is a bad idea – why?

– A simple FPU takes 150,000 gates. Verification complex. Some
exceptions specific to floating point.

– Integer FU to the order of thousands

 Common to have several FPU’s
– Some integer, some floating point

 Common to have different types of FPU’s: Fadd, Fmul,
Fdiv, …

 An FPU may be pipelined, partially pipelined or not
pipelined

 To operate several FPU’s concurrently the FP register file
needs to have more read and write ports

7

2/29/2016 CS152, Spring 2016

Functional Unit Characteristics

8

fully
pipelined

partially
pipelined

Functional units have internal pipeline registers

 operands are latched when an instruction
enters a functional unit

 following instructions are able to write register file
during a long-latency operation

1cyc1cyc1cyc

2 cyc 2 cyc

2/29/2016 CS152, Spring 2016

Floating-Point ISA

 Interaction between floating-point datapath
and integer datapath is determined by ISA

RISC-V ISA
– separate register files for FP and Integer instructions

• the only interaction is via a set of move/convert
instructions (some ISA’s don’t even permit this)

– separate load/store for FPR’s and GPR’s (general purpose
registers) but both use GPR’s for address calculation

– FP compares write integer registers, then use integer
branch

9

2/29/2016 CS152, Spring 2016

Realistic Memory Systems

Common approaches to improving memory performance:

 Caches - single cycle except in case of a miss

=>stall

 Banked memory - multiple memory accesses

=> bank conflicts

 split-phase memory operations (separate memory request
from response), many in flight

=> out-of-order responses

10

Latency of access to the main memory is usually much greater
than one cycle and often unpredictable

Solving this problem is a central issue in computer architecture

2/29/2016 CS152, Spring 2016

Issues in Complex Pipeline Control

11

IF ID WB

ALU Mem

Fadd

Fmul

Fdiv

Issue

GPRs
FPRs

• Structural conflicts at the execution stage
•If some FPU or memory unit is not pipelined and takes more than one cycle

• Structural conflicts at the write-back stage
• Due to variable latencies of different functional units

• Out-of-order write hazards
• Due to variable latencies of different functional units

• How to handle exceptions?

2/29/2016 CS152, Spring 2016

Question

 If we issue one instruction per cycle, how can we avoid
structural hazards at the writeback stage and out-of-order
writeback issues?

12

2/29/2016 CS152, Spring 2016

Complex In-Order Pipeline

 Delay writeback so all
operations have same
latency to W stage

– Write ports never oversubscribed
(one inst. in & one inst. out every
cycle)

– Stall pipeline on long latency
operations, e.g., divides, cache
misses

– Handle exceptions in-order at
commit point

13

Commit
Point

PC
Inst.
Mem D Decode X1 X2

Data
Mem W+GPRs

X2 WFAdd X3

X3

FPRs X1

X2 FMul X3

X2FDiv X3

Unpipelined
divider

How to prevent increased writeback latency
from slowing down single cycle integer
operations? Bypassing

2/29/2016 CS152, Spring 2016

Question

 How can we decrease CPI to less than 1?

14

2/29/2016 CS152, Spring 2016

In-Order Superscalar Pipeline

 Fetch two instructions per cycle; issue both
simultaneously if one is integer/memory
and other is floating point

 Inexpensive way of increasing throughput,
examples include Alpha 21064 (1992) &
MIPS R5000 series (1996)

 Same idea can be extended to wider issue
by duplicating functional units (e.g. 4-issue
UltraSPARC & Alpha 21164) but regfile ports
and bypassing costs grow quickly

15

Commit

Point

2
PC

Inst.

Mem
D

Dual

Decode X1 X2
Data

Mem W+GPRs

X2 WFAdd X3

X3

FPRs X1

X2 FMul X3

X2FDiv X3

Unpipelined

divider

2/29/2016 CS152, Spring 2016

Types of Data Hazards

16

Consider executing a sequence of
rk <= ri op rj

type of instructions
Data-dependence

r3 <= r1 op r2 Read-after-Write
r5 <= r3 op r4 (RAW) hazard

Anti-dependence
r3 <= r1 op r2 Write-after-Read
r1 <= r4 op r5 (WAR) hazard

Output-dependence
r3 <= r1 op r2 Write-after-Write
r3 <= r6 op r7 (WAW) hazard

2/29/2016 CS152, Spring 2016

Register vs. Memory Dependence

Data hazards due to register operands can be
determined at the decode stage, but data hazards
due to memory operands can be determined only
after computing the effective address

Store: M[r1 + disp1] <= r2

Load: r3 <= M[r4 + disp2]

Does (r1 + disp1) = (r4 + disp2) ?

17

2/29/2016 CS152, Spring 2016

Data Hazards: An Example

18

I1 FDIV.D f6, f6, f4

I2 FLD f2, 45(x3)

I3 FMUL.D f0, f2, f4

I4 FDIV.D f8, f6, f2

I5 FSUB.D f10, f0, f6

I6 FADD.D f6, f8, f2

RAW Hazards
WAR Hazards
WAW Hazards

2/29/2016 CS152, Spring 2016

Instruction Scheduling

19

I6

I2

I4

I1

I5

I3

Valid orderings:
in-order I1 I2 I3 I4 I5 I6

out-of-order

out-of-order

I1 FDIV.D f6, f6, f4

I2 FLD f2, 45(x3)

I3 FMULT.D f0, f2, f4

I4 FDIV.D f8, f6, f2

I5 FSUB.D f10, f0, f6

I6 FADD.D f6, f8, f2

I2 I1 I3 I4 I5 I6

I1 I2 I3 I5 I4 I6

2/29/2016 CS152, Spring 2016

Out-of-order Completion
In-order Issue

20

Latency
I1 FDIV.D f6, f6, f4 4

I2 FLD f2, 45(x3) 1

I3 FMULT.Df0, f2, f4 3

I4 FDIV.D f8, f6, f2 4

I5 FSUB.D f10, f0, f6 1

I6 FADD.D f6, f8, f2 1

in-order comp 1 2

out-of-order comp 1 2

1 2 3 4 3 5 4 6 5 6

2 3 1 4 3 5 5 4 6 6

Underlines are completes

2/29/2016 CS152, Spring 2016

Complex Pipeline

21

IF ID WB

ALU Mem

Fadd

Fmul

Fdiv

Issue

GPR’s
FPR’s

Can we solve write
hazards without
equalizing all pipeline
depths and without
bypassing?

2/29/2016 CS152, Spring 2016

When is it Safe to Issue an Instruction?

Suppose a data structure keeps track of all the
instructions in all the functional units

The following checks need to be made before the Issue
stage can dispatch an instruction

 Is the required function unit available?

 Is the input data available? => RAW?

 Is it safe to write the destination? => WAR? WAW?

 Is there a structural conflict at the WB stage?

22

2/29/2016 CS152, Spring 2016

A Data Structure for Correct Issues
Keeps track of the status of Functional Units

23

The instruction i at the Issue stage consults this table

FU available? check the busy column
RAW? search the dest column for i’s sources
WAR? search the source columns for i’s destination
WAW? search the dest column for i’s destination

An entry is added to the table if no hazard is detected;
An entry is removed from the table after Write-Back

Name Busy Op Dest Src1 Src2
Int
Mem
Add1
Add2
Add3
Mult1
Mult2
Div

2/29/2016 CS152, Spring 2016

Simplifying the Data Structure
Assuming In-order Issue

24

Suppose the instruction is not dispatched by the Issue stage if a
RAW hazard exists or the required FU is busy, and that operands
are latched by the appropriate functional unit on issue:

Can the dispatched instruction cause a
WAR hazard ?

WAW hazard ?

NO: Operands read at issue

YES: Out-of-order completion

2/29/2016 CS152, Spring 2016

Simplifying the Data Structure

 No WAR hazard
=> no need to keep src1 and src2

 The Issue stage does not dispatch an instruction
in case of a WAW hazard

=> a register name can occur at most once in the dest column

 WP[reg#] : a bit-vector to record the registers for
which writes are pending

– These bits are set by the Issue stage and cleared by the WB stage

=> Each pipeline stage in the FU's must carry the dest field and a
flag to indicate if it is valid “the (we, ws) pair”

25

2/29/2016 CS152, Spring 2016

Scoreboard for In-order Issues

26

Busy[FU#] : a bit-vector to indicate FU’s availability.
(FU = Int, Add, Mult, Div)

These bits are hardwired to FU's.

WP[reg#] : a bit-vector to record the registers for which writes
are pending.

These bits are set by Issue stage and cleared by WB stage

Issue checks the instruction (opcode dest src1 src2)
against the scoreboard (Busy & WP) to dispatch

FU available?
RAW?
WAR?

WAW?

Busy[FU#]
WP[src1] or WP[src2]
cannot arise
WP[dest]

2/29/2016 CS152, Spring 2016

Scoreboard Dynamics

27

I1 FDIV.D f6, f6, f4
I2 FLD f2, 45(x3)
I3 FMULT.D f0, f2, f4
I4 FDIV.D f8, f6, f2
I5 FSUB.D f10, f0, f6
I6 FADD.D f6, f8, f2

Functional Unit Status Registers Reserved
Int(1) Add(1) Mult(3) Div(4) WB for Writes

t0 I1 f6 f6

t1 I2 f2 f6 f6, f2

t2 f6 f2 f6, f2 I2

t3 I3 f0 f6 f6, f0

t4 f0 f6 f6, f0 I1

t5 I4 f0 f8 f0, f8

t6 f8 f0 f0, f8 I3

t7 I5 f10 f8 f8, f10

t8 f8 f10 f8, f10 I5

t9 f8 f8 I4

t10 I6 f6 f6

t11 f6 f6 I6

2/29/2016 CS152, Spring 2016

In-Order Issue Limitations: an example

28

latency
1 FLD f2, 34(x2) 1

2 FLD f4, 45(x3) long

3 FMULT.D f6, f4, f2 3

4 FSUB.D f8, f2, f2 1

5 FDIV.D f4, f2, f8 4

6 FADD.D f10, f6, f4 1

In-order: 1 (2,1) 2 3 4 4 3 5 . . . 5 6 6

1 2

34

5

6

In-order issue restriction prevents
instruction 4 from being dispatched

2/29/2016 CS152, Spring 2016

Out-of-Order Issue

 Issue stage buffer holds multiple instructions waiting to issue.

 Decode adds next instruction to buffer if there is space and the
instruction does not cause a WAR or WAW hazard.

– Note: WAR possible again because issue is out-of-order (WAR not possible
with in-order issue and latching of input operands at functional unit)

 Any instruction in buffer whose RAW hazards are satisfied can
be issued (for now at most one dispatch per cycle). On a write
back (WB), new instructions may get enabled.

29

IF ID WB

ALU Mem

Fadd

Fmul

Issue

2/29/2016 CS152, Spring 2016

Issue Limitations: In-Order and Out-of-Order

30

latency
1 FLD f2, 34(x2) 1

2 FLD f4, 45(x3) long

3 FMULT.D f6, f4, f2 3

4 FSUB.D f8, f2, f2 1

5 FDIV.D f4, f2, f8 4

6 FADD.D f10, f6, f4 1

In-order: 1 (2,1) 2 3 4 4 3 5 . . . 5 6 6

1 2

34

5

6

Out-of-order: 1 (2,1) 4 4 2 3 . . 3 5 . . . 5 6 6

Out-of-order execution did not allow any significant improvement!

2/29/2016 CS152, Spring 2016

How many instructions can be in the
pipeline?

31

Which features of an ISA limit the number of
instructions in the pipeline?

Out-of-order dispatch by itself does not provide any
significant performance improvement!

Number of Registers

2/29/2016 CS152, Spring 2016

Overcoming the Lack of Register Names

32

Floating Point pipelines often cannot be kept filled with
small number of registers.

IBM 360 had only 4 floating-point registers

Can a microarchitecture use more registers than
specified by the ISA without loss of ISA compatibility ?

Robert Tomasulo of IBM suggested an ingenious solution
in 1967 using on-the-fly register renaming

2/29/2016 CS152, Spring 2016

Issue Limitations: In-Order and Out-of-Order

33

latency
1 FLD f2, 34(x2) 1

2 FLD f4, 45(x3) long

3 FMULT.Df6, f4, f2 3

4 FSUB.D f8, f2, f2 1

5 FDIV.D f4’, f2, f8 4

6 FADD.D f10, f6, f4’ 1

1 2

34

5

6

Any antidependence can be eliminated by renaming.
(renaming => additional storage)
Can it be done in hardware? yes!

X

In-order: 1 (2,1) 2 3 4 4 3 5 . . . 5 6 6
Out-of-order: 1 (2,1) 4 4 5 . . . 2 (3,5) 3 6 6

2/29/2016 CS152, Spring 2016

Register Renaming

 Decode does register renaming and adds instructions to the
issue-stage instruction reorder buffer (ROB)

=> renaming makes WAR or WAW hazards impossible

 Any instruction in ROB whose RAW hazards have been satisfied
can be dispatched.

=> Out-of-order or dataflow execution

34

IF ID WB

ALU Mem

Fadd

Fmul

Issue

2/29/2016 CS152, Spring 2016

Acknowledgements

 These slides contain material developed and copyright by:
– Arvind (MIT)

– Krste Asanovic (MIT/UCB)

– Joel Emer (Intel/MIT)

– James Hoe (CMU)

– John Kubiatowicz (UCB)

– David Patterson (UCB)

 MIT material derived from course 6.823

 UCB material derived from course CS252

35

