
2/24/2016 CS152, Spring 2016

CS 152 Computer Architecture and Engineering

Lecture 9 - Virtual Memory

Dr. George Michelogiannakis
EECS, University of California at Berkeley

CRD, Lawrence Berkeley National Laboratory

http://inst.eecs.berkeley.edu/~cs152

2/24/2016 CS152, Spring 2016

Administrivia

 PS2 and lab 2 due Wednesday next week (March 2nd)

 Quiz 2 is on Monday March 7th

2

2/24/2016 CS152, Spring 2016

Last time in Lecture 9

 Protection and translation required for multiprogramming
– Base and bounds was early simple scheme

 Page-based translation and protection avoids need for
memory compaction, easy allocation by OS

– But need to indirect in large page table on every access

 Can use multi-level page table to hold
translation/protection information, but implies multiple
memory accesses per reference

 Can use “translation lookaside buffer” (TLB) to cache
address translations (sometimes known as address
translation cache)

– Still have to walk page tables on TLB miss, can be hardware or software
talk

 Virtual memory uses DRAM as a “cache” of disk memory,
allows very cheap main memory

3

2/24/2016 CS152, Spring 2016

Question of the Day

 How would you design a TLB prefetcher?

4

2/24/2016 CS152, Spring 2016

Memory Management

 Can separate into orthogonal functions:
– Translation (mapping of virtual address to physical address)

– Protection (permission to access word in memory)

– Virtual memory (transparent extension of memory space using slower
disk or flash storage)

 But most modern systems provide support for all the
above functions with a single page-based system

5

2/24/2016 CS152, Spring 2016

Modern Virtual Memory Systems
Illusion of a large, private, uniform store

6

Protection & Privacy
several users, each with their private address
space and one or more shared address spaces

page table <-> name space

Demand Paging
Provides the ability to run programs larger
than the primary memory

Hides differences in machine configurations

The price is address translation on
each memory reference

OS

useri

Primary
Memory

Secondary
Storage

VA PAmapping

TLB

2/24/2016 CS152, Spring 2016

Hierarchical Page Table

7

Level 1
Page Table

Level 2

Page Tables

Data Pages

page in primary memory
page in secondary memory

Root of Current
Page Table

p1

offset

p2

Virtual Address

(Processor Register)

PTE of a nonexistent page

p1 p2 offset

01112212231

10-bit
L1 index

10-bit
L2 index

P
h

ys
ic

al
 M

em
o

ry

2/24/2016 CS152, Spring 2016

Page-Based Virtual-Memory Machine
(Hardware Page-Table Walk)

 Assumes page tables held in untranslated physical memory

8

PC
Inst.
TLB

Inst.
Cache D Decode E M

Data
Cache W+

Page Fault?

Protection violation?

Page Fault?

Protection violation?

Data
TLB

Main Memory (DRAM)

Memory Controller
Physical
Address

Physical
Address

Physical Address

Physical
Address

Page-Table Base
Register

Virtual
Address Physical

Address

Virtual
Address

Hardware Page
Table Walker

Miss? Miss?

2/24/2016 CS152, Spring 2016

Address Translation:
putting it all together

9

Virtual Address

TLB
Lookup

Page Table
Walk

Update TLBPage Fault
(OS loads page)

Protection
Check

Physical
Address
(to cache)

miss hit

the page is

 memory  memory denied permitted

Protection
Fault

hardware
hardware or software
software

SEGFAULTWhere?

2/24/2016 CS152, Spring 2016

Page Fault Handler

 When the referenced page is not in DRAM:
– The missing page is located (or created)

– It is brought in from disk, and page table is updated

• Another job may be run on the CPU while the first job waits
for the requested page to be read from disk

• Could be different thread of the same address space

– If no free pages are left, a page is swapped out

• Pseudo-LRU replacement policy, implemented in software

 Since it takes a long time to transfer a page
(msecs), page faults are handled completely in
software by the OS

– Untranslated addressing mode is essential to allow kernel to
access page tables

10

2/24/2016 CS152, Spring 2016

Handling VM-related exceptions

 Handling a TLB miss needs a hardware or software mechanism
to refill TLB

 Handling a page fault (e.g., page is on disk) needs a restartable
exception so software handler can resume after retrieving page

– Precise exceptions are easy to restart

– Can be imprecise but restartable, but this complicates OS software

 Handling protection violation may abort process
– But often handled the same as a page fault

11

PC
Inst
TLB

Inst.
Cache D Decode E M

Data
TLB

Data
Cache W+

TLB miss? Page Fault?
Protection violation?

TLB miss? Page Fault?
Protection violation?

2/24/2016 CS152, Spring 2016

Address Translation in CPU Pipeline

 Need to cope with additional latency of TLB:
– slow down the clock?

– pipeline the TLB and cache access?

– virtual address caches

– parallel TLB/cache access

12

PC
Inst
TLB

Inst.
Cache D Decode E M

Data
TLB

Data
Cache W+

TLB miss? Page Fault?
Protection violation?

TLB miss? Page Fault?
Protection violation?

2/24/2016 CS152, Spring 2016

Virtual-Address Caches

 one-step process in case of a hit (+)

 cache needs to be flushed on a context switch unless address space
identifiers (ASIDs) included in tags (-)

 aliasing problems due to the sharing of pages (-)

 maintaining cache coherence (-) (see later in course)

13

CPU
Physical
Cache

TLB
Primary
Memory

VA PA PA

Alternative: place the cache before the TLB

CPU
VA (StrongARM)Virtual

Cache

PA
TLB

Primary
Memory

VA

2/24/2016 CS152, Spring 2016

Virtually Addressed Cache
(Virtual Index/Virtual Tag)

14

PC

Inst.
TLB

Inst.
Cache D Decode E M

Data
Cache W+

Data
TLB

Main Memory (DRAM)

Memory Controller

Physical
Address

Instruction data
Physical Address

Physical
Address

Page-Table Base
Register

Virtual
Address

Virtual
Address

Hardware Page
Table Walker

Miss?Miss?

Translate on miss

2/24/2016 CS152, Spring 2016

Question

 What is the benefit of separating instruction and data
TLBs?

 And the downside?

15

2/24/2016 CS152, Spring 2016

Aliasing in Virtual-Address Caches

16

VA1

VA2

Page Table

Data Pages

PA

VA1

VA2

1st Copy of Data at PA

2nd Copy of Data at PA

Tag Data

Two virtual pages share
one physical page

Virtual cache can have two copies of
same physical data. Writes to one
copy not visible to reads of other!

General Solution: Prevent aliases coexisting in cache

Software (i.e., OS) solution for direct-mapped cache

VAs of shared pages must agree in cache index bits; this ensures
all VAs accessing same PA will conflict in direct-mapped cache
(early SPARCs)

2/24/2016 CS152, Spring 2016

Question

 How can we parallelize TLB and cache access?

17

Cache

TLB

2/24/2016 CS152, Spring 2016

Concurrent Access to TLB & Cache
(Virtual Index/Physical Tag)

18

Index L is available without consulting the TLB
=>cache and TLB accesses can begin simultaneously!

Tag comparison is made after both accesses are completed

Cases: L + b = k, L + b < k, L + b > k

VPN L b

TLB
Direct-map Cache

2L blocks
2b-byte blockPPN Page Offset

=
hit?

DataPhysical Tag
Tag

VA

PA

Virtual
Index

k

2/24/2016 CS152, Spring 2016

Virtual-Index Physical-Tag Caches:
Associative Organization

19

How does this scheme scale to larger caches?

VPN a L = k-b b

TLB
Direct-map

2L blocks

PPN Page Offset

=
hit?

Data

Phy.
Tag

Tag

VA

PA

Virtual
Index

k
Direct-map

2L blocks

2a

=
2a

After the PPN is known, 2a physical tags are compared

What about fully-set associative?

2/24/2016 CS152, Spring 2016

Question

 Does virtual tag, physical index make sense?

20

2/24/2016 CS152, Spring 2016

Concurrent Access to TLB & Large L1
The problem with L1 > Page size

21

Can VA1 and VA2 both map to PA ?

VPN a Page Offset b

TLB

PPN Page Offset b

Tag

VA

PA

Virtual Index
L1 PA cache
Direct-map

= hit?

PPNa Data

PPNa Data

VA1

VA2

If they differ in the lower ‘a’ bits alone, and share a physical page.

2/24/2016 CS152, Spring 2016

A solution via Second Level Cache

22

Usually a common L2 cache backs up both Instruction
and Data L1 caches

L2 is “inclusive” of both Instruction and Data caches
• Inclusive means L2 has copy of any line in either L1

CPU

L1 Data
Cache

L1
Instruction

Cache Unified L2
Cache

RF Memory

Memory

Memory

Memory

2/24/2016 CS152, Spring 2016

Anti-Aliasing Using L2 [MIPS R10000,1996]

 Suppose VA1 and VA2 both map to PA and

VA1 is already in L1, L2 (VA1  VA2)

 After VA2 is resolved to PA, a collision will be
detected in L2 (L2 is in physical space).

 VA1 will be purged from L1 and L2, and VA2
will be loaded  no aliasing !

23

VPN a Page Offset b

TLB

PPN Page Offset b

Tag

VA

PA

Virtual Index
L1 PA cache
Direct-map

= hit?

PPNa Data

PPNa Data

VA1

VA2

Direct-Mapped L2

PA a1 Data

PPN

into L2 tag

2/24/2016 CS152, Spring 2016

Anti-Aliasing using L2 for a Virtually
Addressed L1

24

VPN Page Offset b

TLB

PPN Page Offset b

Tag

VA

PA

Virtual
Index & Tag

Physical
Index & Tag

L1 VA Cache

L2 PA Cache
L2 “contains” L1

PA VA1 Data

VA1 Data

VA2 Data

“Virtual Tag”

Physically-addressed L2 can also be
used to avoid aliases in virtually-
addressed L1

2/24/2016 CS152, Spring 2016

Atlas Revisited

 One PAR for each physical page

 PAR’s contain the VPN’s of the pages
resident in primary memory

 Advantage: The size is proportional to the
size of the primary memory

 What is the disadvantage ?

 How does this work with caches?
– Is a TLB necessary?

25

VPN

PAR’s

PPN

2/24/2016 CS152, Spring 2016

Hashed Page Table:
Approximating Associative Addressing

 Hashed Page Table is typically 2 to 3 times larger
than the number of PPN’s to reduce collision
probability. What does this mean?

 It can also contain DPN’s for some non-resident
pages (not common)

 If a translation cannot be resolved in this table then
the software consults a data structure that has an
entry for every existing page (e.g., full page table)

26

hash
Offset

Base of Table

+
PA of PTE

Primary
Memory

VPN PID PPN

Page Table

VPN d Virtual Address

VPN PID DPN

VPN PID

PID

2/24/2016 CS152, Spring 2016

Power PC: Hashed Page Table

27

 Each hash table slot has 8 PTE's <VPN,PPN> that
are searched sequentially

 If the first hash slot fails, an alternate hash
function is used to look in another slot

All these steps are done in hardware!

 Hashed Table is typically 2 to 3 times larger than
the number of physical pages

 The full backup Page Table is managed in software

Base of Table

hash
Offset +

PA of Slot

Primary
Memory

VPN PPN

Page Table
VPN d 80-bit VA

VPN

2/24/2016 CS152, Spring 2016

VM features track historical uses:
 Bare machine, only physical addresses

– One program owned entire machine

 Batch-style multiprogramming
– Several programs sharing CPU while waiting for I/O
– Base & bound: translation and protection between programs (supports

swapping entire programs but not demand-paged virtual memory)
– Problem with external fragmentation (holes in memory), needed occasional

memory defragmentation as new jobs arrived

 Time sharing
– More interactive programs, waiting for user. Also, more jobs/second.
– Motivated move to fixed-size page translation and protection, no external

fragmentation (but now internal fragmentation, wasted bytes in page)
– Motivated adoption of virtual memory to allow more jobs to share limited

physical memory resources while holding working set in memory

 Virtual Machine Monitors
– Run multiple operating systems on one machine
– Idea from 1970s IBM mainframes, now common on laptops

• e.g., run Windows on top of Mac OS X
– Hardware support for two levels of translation/protection

• Guest OS virtual -> Guest OS physical -> Host machine physical

28

2/24/2016 CS152, Spring 2016

Virtual Memory Use Today - 1

 Servers/desktops/laptops/smartphones have full demand-
paged virtual memory

– Portability between machines with different memory sizes

– Protection between multiple users or multiple tasks

– Share small physical memory among active tasks

– Simplifies implementation of some OS features

 Vector supercomputers have translation and protection but
rarely complete demand-paging

 (Older Crays: base&bound, Japanese & Cray X1/X2: pages)
– Don’t waste expensive CPU time thrashing to disk (make jobs fit in memory)

– Mostly run in batch mode (run set of jobs that fits in memory)

– Difficult to implement restartable vector instructions

29

2/24/2016 CS152, Spring 2016

Virtual Memory Use Today - 2

 Most embedded processors and DSPs provide physical
addressing only

– Can’t afford area/speed/power budget for virtual memory support

– Often there is no secondary storage to swap to!

– Programs custom written for particular memory configuration in product

– Difficult to implement restartable instructions for exposed architectures

30

2/24/2016 CS152, Spring 2016

Question of the Day

 How would you design a TLB prefetcher?

31

2/24/2016 CS152, Spring 2016

Acknowledgements

 These slides contain material developed and copyright by:
– Arvind (MIT)

– Krste Asanovic (MIT/UCB)

– Joel Emer (Intel/MIT)

– James Hoe (CMU)

– John Kubiatowicz (UCB)

– David Patterson (UCB)

 MIT material derived from course 6.823

 UCB material derived from course CS252

32

