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Administrivia

 PS2 and lab 2 due Wednesday next week (March 2nd)

 Quiz 2 is on Monday March 7th
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Last time in Lecture 9

 Protection and translation required for multiprogramming
– Base and bounds was early simple scheme

 Page-based translation and protection avoids need for 
memory compaction, easy allocation by OS

– But need to indirect in large page table on every access

 Can use multi-level page table to hold 
translation/protection information, but implies multiple 
memory accesses per reference

 Can use “translation lookaside buffer” (TLB) to cache 
address translations (sometimes known as address 
translation cache)

– Still have to walk page tables on TLB miss, can be hardware or software 
talk

 Virtual memory uses DRAM as a “cache” of disk memory, 
allows very cheap main memory
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Question of the Day

 How would you design a TLB prefetcher?

4



2/24/2016 CS152, Spring 2016

Memory Management

 Can separate into orthogonal functions:
– Translation (mapping of virtual address to physical address)

– Protection (permission to access word in memory)

– Virtual memory (transparent extension of memory space using slower 
disk or flash storage)

 But most modern systems provide support for all the 
above functions with a single page-based system
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Modern Virtual Memory Systems
Illusion of a large, private, uniform store
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Hierarchical Page Table
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Page-Based Virtual-Memory Machine
(Hardware Page-Table Walk)

 Assumes page tables held in untranslated physical memory
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Address Translation:
putting it all together
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Page Fault Handler

 When the referenced page is not in DRAM:
– The missing page is located (or created)

– It is brought in from disk, and page table is updated

• Another job may be run on the CPU while the first job waits 
for the requested page to be read from disk

• Could be different thread of the same address space

– If no free pages are left, a page is swapped out

• Pseudo-LRU replacement policy, implemented in software

 Since it takes a long time to transfer a page 
(msecs), page faults are handled completely in 
software by the OS

– Untranslated addressing mode is essential to allow kernel to 
access page tables
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Handling VM-related exceptions

 Handling a TLB miss needs a hardware or software mechanism 
to refill TLB 

 Handling a page fault (e.g., page is on disk) needs a restartable
exception so software handler can resume after retrieving page

– Precise exceptions are easy to restart

– Can be imprecise but restartable, but this complicates OS software

 Handling protection violation may abort process
– But often handled the same as a page fault
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Address Translation in CPU Pipeline

 Need to cope with additional latency of TLB:
– slow down the clock?

– pipeline the TLB and cache access?

– virtual address caches

– parallel TLB/cache access
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Virtual-Address Caches

 one-step process in case of a hit (+)

 cache needs to be flushed on a context switch unless address space 
identifiers (ASIDs) included in tags (-)

 aliasing problems due to the sharing of pages (-)

 maintaining cache coherence (-)   (see later in course)
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Virtually Addressed Cache
(Virtual Index/Virtual Tag)
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Question

 What is the benefit of separating instruction and data 
TLBs?

 And the downside?
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Aliasing in Virtual-Address Caches
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Question

 How can we parallelize TLB and cache access?
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Concurrent Access to TLB & Cache
(Virtual Index/Physical Tag)
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=>cache and TLB accesses can begin simultaneously!

Tag comparison is made after both accesses are completed

Cases: L + b = k,  L + b < k,  L + b > k

VPN                          L           b

TLB
Direct-map Cache 

2L blocks
2b-byte blockPPN                      Page Offset

=
hit?

DataPhysical Tag
Tag

VA

PA

Virtual
Index

k



2/24/2016 CS152, Spring 2016

Virtual-Index Physical-Tag Caches: 
Associative Organization
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How does this scheme scale to larger caches?
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Question

 Does virtual tag, physical index make sense?
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Concurrent Access to TLB & Large L1
The problem with L1 > Page size

21

Can VA1 and VA2 both map to PA ? 

VPN a         Page Offset b

TLB

PPN Page Offset   b

Tag

VA

PA

Virtual Index
L1 PA cache
Direct-map

= hit?

PPNa Data

PPNa Data

VA1

VA2

If they differ in the lower ‘a’ bits alone, and share a physical page.



2/24/2016 CS152, Spring 2016

A solution via Second Level Cache
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Usually a  common L2 cache backs up both Instruction 
and Data L1 caches
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Anti-Aliasing Using L2 [MIPS R10000,1996]

 Suppose VA1 and VA2 both map to PA and 

VA1 is already in L1, L2 (VA1  VA2)

 After VA2 is resolved to PA, a collision will be 
detected in L2 (L2 is in physical space).

 VA1 will be purged from L1 and L2, and VA2 
will be loaded   no aliasing !
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Anti-Aliasing using L2 for a Virtually
Addressed L1
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Atlas Revisited

 One PAR for each physical page

 PAR’s contain the VPN’s of the pages 
resident in primary memory

 Advantage:  The size is proportional to the 
size of the primary memory

 What is the disadvantage ?

 How does this work with caches?
– Is a TLB necessary?
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Hashed Page Table:
Approximating Associative Addressing

 Hashed Page Table is typically 2 to 3 times larger 
than the number of PPN’s to reduce collision 
probability. What does this mean?

 It can also contain DPN’s for some non-resident 
pages (not common)

 If a translation cannot be resolved in this table then 
the software consults a data structure that has an 
entry for every existing page (e.g., full page table)
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Power PC: Hashed Page Table
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 Each hash table slot has 8 PTE's <VPN,PPN> that 
are searched sequentially

 If the first hash slot fails, an alternate hash 
function is used to look in another slot

All these steps are done in hardware!

 Hashed Table is typically 2 to 3 times larger than 
the number of physical pages

 The full backup Page Table is managed in software
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VM features track historical uses:
 Bare machine, only physical addresses

– One program owned entire machine

 Batch-style multiprogramming
– Several programs sharing CPU while waiting for I/O
– Base & bound: translation and protection between programs (supports 

swapping entire programs but not demand-paged virtual memory)
– Problem with external fragmentation (holes in memory), needed occasional 

memory defragmentation as new jobs arrived

 Time sharing
– More interactive programs, waiting for user.  Also, more jobs/second.
– Motivated move to fixed-size page translation and protection, no external 

fragmentation (but now internal fragmentation, wasted bytes in page)
– Motivated adoption of virtual memory to allow more jobs to share limited 

physical memory resources while holding working set in memory

 Virtual Machine Monitors
– Run multiple operating systems on one machine
– Idea from 1970s IBM mainframes, now common on laptops

• e.g., run Windows on top of Mac OS X
– Hardware support for two levels of translation/protection

• Guest OS virtual -> Guest OS physical -> Host machine physical
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Virtual Memory Use Today - 1

 Servers/desktops/laptops/smartphones have full demand-
paged virtual memory

– Portability between machines with different memory sizes

– Protection between multiple users or multiple tasks

– Share small physical memory among active tasks

– Simplifies implementation of some OS features

 Vector supercomputers have translation and protection but
rarely complete demand-paging

 (Older Crays: base&bound, Japanese & Cray X1/X2: pages)
– Don’t waste expensive CPU time thrashing to disk (make jobs fit in memory)

– Mostly run in batch mode (run set of jobs that fits in memory)

– Difficult to implement restartable vector instructions
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Virtual Memory Use Today - 2

 Most embedded processors and DSPs provide physical 
addressing only

– Can’t afford area/speed/power budget for virtual memory support

– Often there is no secondary storage to swap to!

– Programs custom written for particular memory configuration in product

– Difficult to implement restartable instructions for exposed architectures
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Question of the Day

 How would you design a TLB prefetcher?
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