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Logis?cs	

§  PS	1	is	due	NOW	

§  Lab	1	also	due	now	unless	you	are	using	one	of	your	two	
extensions	

§  PS	2	is	out	

§  Lab	2	will	be	out	

§ Quiz	Wednesday	next	week	this	room	and	Gme	
–  SHOW	UP	ON	TIME	
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Last	?me	in	Lecture	6	

§ Dynamic	RAM	(DRAM)	is	main	form	of	main	memory	
storage	in	use	today	
–  Holds	values	on	small	capacitors,	need	refreshing	(hence	dynamic)	
–  Slow	mulG-step	access:	precharge,	read	row,	read	column	

§  StaGc	RAM	(SRAM)	is	faster	but	more	expensive	
–  Used	to	build	on-chip	memory	for	caches	

§ Cache	holds	small	set	of	values	in	fast	memory	(SRAM)	
close	to	processor	
–  Need	to	develop	search	scheme	to	find	values	in	cache,	and	replacement	
policy	to	make	space	for	newly	accessed	locaGons	

§ Caches	exploit	two	forms	of	predictability	in	memory	
reference	streams	
–  Temporal	locality,	same	locaGon	likely	to	be	accessed	again	soon	
–  SpaGal	locality,	neighboring	locaGon	likely	to	be	accessed	soon	

3	

Miss	rate1	x	Miss	penalty1	 
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Ques?on	of	the	Day	

§  If	you	had	a	limited	area/power	budget,	would	you	invest	
it	in	larger	caches	or	a	prefetcher?	

4	
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Line	Size	and	Spa?al	Locality	

5	

Word3	Word0	 Word1	 Word2	

Larger	line	size	has	disGnct	hardware	advantages	
• 	less	tag	overhead	
• 	exploit	fast	burst	transfers	from	DRAM	
• 	exploit	fast	burst	transfers	over	wide	busses	
	

What	are	the	disadvantages	of	increasing	line	size?	

Line	Address	

2b	=	line	size	a.k.a	line	size	(in	bytes)	

Split	CPU	
address	

b	bits	32-b	bits	

Tag	

A	line	is	unit	of	transfer	between	the	cache	and	memory	

4	word	line,	b=2	

Fewer	lines	=>	more	conflicts.		Can	waste	bandwidth.	

Offset	
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Direct-Mapped	Cache	
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2-Way	Set-Associa?ve	Cache	
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Fully	Associa?ve	Cache	
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Replacement	Policy	

9	

In	an	associaGve	cache,	which	line	from	a	set	should	be	
evicted	when	the	set	becomes	full?	
• 	Random	

• 	Least-Recently	Used	(LRU)	
• 	LRU	cache	state	must	be	updated	on	every	access	
• 	True	implementaGon	only	feasible	for	small	sets	(2-way)	
• 	Pseudo-LRU	binary	tree	ocen	used	for	4-8	way	

• 	First-In,	First-Out	(FIFO)	a.k.a.	Round-Robin	
• 	Used	in	highly	associaGve	caches	

• 	Not-Most-Recently	Used	(NMRU)	
• 	FIFO	with	excepGon	for	most-recently	used	line	or	lines	
	



2/10/2016	 CS152,	Spring	2016	

CPU-Cache	Interac?on	
Caches	instead	of	memory	blocks	

(5-stage	pipeline)	

10	
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AMAT	

11	

Average	memory	access	Gme	(AMAT)	=	
	 	Hit	Gme	+	Miss	rate	x	Miss	penalty	

	

Average	memory	access	Gme	(AMAT)	=	
	Hit	Gme	+	Miss	rate1	x	Miss	penalty1	+	
		Miss	rate2	x	Miss	penalty2		
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Improving	Cache	Performance	

12	

Average	memory	access	Gme	(AMAT)	=	
	 	Hit	Gme	+	Miss	rate	x	Miss	penalty	

	
To	improve	performance:	
•  reduce	the	hit	Gme	
•  reduce	the	miss	rate	
•  reduce	the	miss	penalty	

What	is	best	cache	design	for	5-stage	pipeline?	

Biggest	cache	that	doesn’t	increase	hit	Fme	past	1	cycle	
(approx	8-32KB	in	modern	technology)	

[	design	issues	more	complex	with	deeper	pipelines	and/or	out-of-
order	superscalar	processors]	
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Causes	of	Cache	Misses:	The	3	C’s	

Compulsory:	
first	reference	to	a	line	(a.k.a.	cold	start	misses)	

– misses	that	would	occur	even	with	infinite	cache	

Capacity:	
cache	is	too	small	to	hold	all	data	needed	by	the	
program	

– misses	that	would	occur	even	under	perfect	
replacement	policy	

Conflict:	
misses	that	occur	because	of	collisions	due	to	line-
placement	strategy	

– misses	that	would	not	occur	with	ideal	full	associaFvity	

13	
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Effect	of	Cache	Parameters	on	
Performance	

14	

§ Larger	cache	size	
+ reduces	capacity	and	conflict	misses			
-  hit	Gme	will	increase	

§ Higher	associaGvity	
+ reduces	conflict	misses	
- may	increase	hit	Gme	
	

§ Larger	line	size	
+ reduces	compulsory	and	capacity	(reload)	misses	
-  increases	conflict	misses	and	miss	penalty	
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What	About	Writes?	
§ If	a	write	enters	the	cache,	what	happens	if	

–  There	is	a	cache	miss	
•  Does	the	cache	need	to	bring	in	the	cache	line?	

–  There	is	a	cache	hit	
•  Does	the	cache	need	to	write	back	to	memory?	

15	
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Write	Policy	Choices		
§ Cache	hit:	

–  write	through:	write	both	cache	&	memory	
•  Generally	higher	traffic	but	simpler	pipeline	&	cache	design	

–  write	back:	write	cache	only,	memory	is	wriken	only	when	the	
entry	is	evicted	

•  A	dirty	bit	per	line	further	reduces	write-back	traffic	
•  Must	handle	0,	1,	or	2	accesses	to	memory	for	each	load/
store	

§ Cache	miss:	
–  no	write	allocate:		only	write	to	main	memory	
–  write	allocate	(aka	fetch	on	write):		fetch	into	cache	
	

§ Common	combinaGons:	
–  write	through	and	no	write	allocate	
–  write	back	with	write	allocate	

16	



2/10/2016	 CS152,	Spring	2016	

Write	Performance	

17	
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Reducing	Write	Hit	Time	

Problem:	Writes	take	two	cycles	in	memory	stage,	
one	cycle	for	tag	check	plus	one	cycle	for	data	write	
if	hit	

Solu?ons:	
§ Design	data	RAM	that	can	perform	read	and	write	in	one	
cycle,	restore	old	value	acer	tag	miss	

§  Fully-associaGve	(CAM	Tag)	caches:	Word	line	only	enabled	if	
hit	

§  Pipelined	writes:	Hold	write	data	for	store	in	single	buffer	
ahead	of	cache,	write	cache	data	during	next	store’s	tag	
check	

18	
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Pipelining	Cache	Writes	

19	

Tags	 Data	
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during	tag	access	of	subsequent	store	
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Write	Buffer	to	Reduce	Read	Miss	Penalty	

20	

Processor	is	not	stalled	on	writes,	and	read	misses	can	go	ahead	of	
write	to	main	memory	

Problem:	Write	buffer	may	hold	updated	value	of	locaGon	needed	by	a	read	miss	
Simple	solu?on:	on	a	read	miss,	wait	for	the	write	buffer	to	go	empty	
Faster	solu?on:	Check	write	buffer	addresses	against	read	miss	addresses,	if	no	
match,	allow	read	miss	to	go	ahead	of	writes,	else,	return	value	in	write	buffer	

Data	Cache	
Unified	
L2	Cache	

RF	

CPU	

Write	
buffer	

Evicted	dirty	lines	for	writeback	cache	
OR	

All	writes	in	writethrough	cache	
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Reducing	Tag	Overhead	with	Sub-Blocks	

§ Problem:	Tags	are	too	large,	i.e.,	too	much	overhead	
–  Simple	soluGon:	Larger	lines,	but	miss	penalty	could	be	large.	

§  Solu?on:	Sub-block	placement	(aka	sector	cache)	
–  A	valid	bit	added	to	units	smaller	than	full	line,	called	sub-blocks	
–  Only	read	a	sub-block	on	a	miss	
–  If	a	tag	matches,	is	the	word	in	the	cache?	

21	
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Mul?level	Caches	

Problem:	A	memory	cannot	be	large	and	fast	
Solu?on:	Increasing	sizes	of	cache	at	each	level	

22	

CPU	 L1$	 L2$	 DRAM	

Local miss rate = misses in cache / accesses to cache 

Global miss rate = misses in cache / CPU memory accesses 

Misses per instruction = misses in cache / number of instructions 
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Presence	of	L2	influences	L1	design	

§ Size?	
§ Use	smaller	L1	if	there	is	also	L2	

–  Trade	increased	L1	miss	rate	for	reduced	L1	hit	Gme	
–  Backup	L2	reduces	L1	miss	penalty	
–  Reduces	average	access	energy	

§ Write	through	versus	write	back?	
§ Use	simpler	write-through	L1	with	on-chip	L2	

– Write-back	L2	cache	absorbs	write	traffic,	doesn’t	go	off-chip	
–  At	most	one	L1	miss	request	per	L1	access	(no	dirty	vicGm	write	
back)	simplifies	pipeline	control	

–  Simplifies	coherence	issues	
–  Simplifies	error	recovery	in	L1	(can	use	just	parity	bits	in	L1	and	
reload	from	L2	when	parity	error	detected	on	L1	read)	

23	
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Inclusion	Policy	

§  Inclusive	mulGlevel	cache:		
–  Inner	cache	can	only	hold	lines	also	present	in	outer	
cache	

–  External	coherence	snoop	access	need	only	check	
outer	cache	

§  Exclusive	mulGlevel	caches:	
–  Inner	cache	may	hold	lines	not	in	outer	cache	
–  Swap	lines	between	inner/outer	caches	on	miss	
–  Used	in	AMD	Athlon	with	64KB	primary	and	256KB	
secondary	cache	

Why	choose	one	type	or	the	other?	
	

24	
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Itanium-2	On-Chip	Caches	
(Intel/HP,	2002)	

25	

Level	1:	16KB,	4-way	s.a.,	64B	
line,		quad-port	(2	load+2	
store),	single	cycle	latency	

	
Level	2:	256KB,	4-way	s.a,	128B	

line,	quad-port	(4	load	or	4	
store),	five	cycle	latency	

	
Level	3:	3MB,	12-way	s.a.,	128B	

line,	single	32B	port,	twelve	
cycle	latency	
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Power	7	On-Chip	Caches	[IBM	2009]	

26	

32KB	L1	I$/core	

32KB	L1	D$/core	

3-cycle	latency	

256KB	Unified	L2$/core	

8-cycle	latency	

32MB	Unified	Shared	L3$	

Embedded	DRAM	(eDRAM)	

25-cycle	latency	to	local	
slice	
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IBM	z196	Mainframe	Caches	2010	

§ 96	cores	(4	cores/chip,	24	chips/system)	
– Out-of-order,	3-way	superscalar	@	5.2GHz	

§ L1:	64KB	I-$/core	+	128KB	D-$/core	
§ L2:	1.5MB	private/core	(144MB	total)	
§ L3:	24MB	shared/chip	(eDRAM)	(576MB	total)	
§ L4:	768MB	shared/system	(eDRAM)	

27	
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Prefetching	

§ Speculate	on	future	instrucGon	and	data	accesses	
and	fetch	them	into	cache(s)	
–  InstrucGon	accesses	easier	to	predict	than	data	accesses	

§ VarieGes	of	prefetching	
–  Hardware	prefetching	
–  Socware	prefetching	
–  Mixed	schemes	

§ What	types	of	misses	does	prefetching	affect?	

28	
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Issues	in	Prefetching	

§ Usefulness	–	should	produce	hits	(i.e.,	what	data)	
§  Timeliness	–	not	late	and	not	too	early	(i.e.,	when)	
§ Cache	and	bandwidth	polluGon	

29	
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Hardware	Instruc?on	Prefetching	

30	
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Hardware	Instruc?on	Prefetching	
InstrucGon	prefetch	in	Alpha	AXP	21064	

–  Fetch	two	lines	on	a	miss;	the	requested	line	(i)	and	the	next	
consecuGve	line	(i+1)	

–  Requested	line	placed	in	cache,	and	next	line	in	instrucGon	stream	
buffer	

–  If	miss	in	cache	but	hit	in	stream	buffer,	move	stream	buffer	line	into	
cache	and	prefetch	next	line	(i+2)	

31	
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Hardware	Data	Prefetching	

§  Prefetch-on-miss:	
–  Prefetch	b	+	1	upon	miss	on	b	

§ One-Block	Lookahead	(OBL)	scheme		
–  IniGate	prefetch	for	block	b	+	1	when	block	b	is	accessed	
–  Why	is	this	different	from	doubling	block	size?	
–  Can	extend	to	N-block	lookahead	

§  Strided	prefetch	
–  If	observe	sequence	of	accesses	to	line	b,	b+N,	b+2N,	then	prefetch	b+3N	
etc.	

§  ProbablisGc	prefetching	(Markov	prefetching)	

§  Example:	IBM	Power	5	[2003]	supports	eight	independent	
streams	of	strided	prefetch	per	processor,	prefetching	12	
lines	ahead	of	current	access	

32	
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Where	to	Put	Prefetched	Data	

§  Inside	the	cache,	or	in	a	separate	prefetch	buffer	

§ Why	would	we	want	to	do	this?	

§ Also,	what	about	interacGon	of	prefetching	and	
replacement	policy?	

33	
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Socware	Prefetching	

  for(i=0; i < N; i++) { 
    prefetch( &a[i + 1] ); 
    prefetch( &b[i + 1] ); 
    SUM = SUM + a[i] * b[i]; 
 } 

34	
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Socware	Prefetching	Issues	

§  Timing	is	the	biggest	issue,	not	predictability	
–  If	you	prefetch	very	close	to	when	the	data	is	required,	you	might	be	

too	late	
–  Prefetch	too	early,	cause	polluGon	
–  EsGmate	how	long	it	will	take	for	the	data	to	come	into	L1,	so	we	

can	set	P	appropriately	
–  	Why	is	this	hard	to	do?	

	
  for(i=0; i < N; i++) { 
    prefetch( &a[i + P] ); 
    prefetch( &b[i + P] ); 
    SUM = SUM + a[i] * b[i]; 
 } 

35	

Must	consider	cost	of	prefetch	instruc6ons	
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Compiler	Op?miza?ons	

§ Restructuring	code	affects	the	data	access	sequence		
–  Group	data	accesses	together	to	improve	spaGal	locality	
–  Re-order	data	accesses	to	improve	temporal	locality	

§  Prevent	data	from	entering	the	cache	
–  Useful	for	variables	that	will	only	be	accessed	once	before	being	replaced	
–  Needs	mechanism	for	socware	to	tell	hardware	not	to	cache	data	(“no-
allocate”	instrucGon	hints	or	page	table	bits)	

§  Kill	data	that	will	never	be	used	again	
–  Streaming	data	exploits	spaGal	locality	but	not	temporal	locality	
–  Replace	into	dead	cache	locaGons	

36	
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Loop	Interchange	

  for(j=0; j < N; j++) { 
    for(i=0; i < M; i++) { 
       x[i][j] = 2 * x[i][j]; 
    } 
 } 

  for(i=0; i < M; i++) { 
    for(j=0; j < N; j++) { 
       x[i][j] = 2 * x[i][j]; 
    } 
 } 

 

What	type	of	locality	does	this	improve?	

37	
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Loop	Fusion	

for(i=0; i < N; i++) 
    a[i] = b[i] * c[i]; 
 

for(i=0; i < N; i++) 
     d[i] = a[i] * c[i];	

38	

  for(i=0; i < N; i++) 
{ 
       a[i] = b[i] * c[i];  
       d[i] = a[i] * c[i]; 

  } 

What	type	of	locality	does	this	improve?	
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Matrix	Mul?ply,	Naïve	Code	

 for(i=0; i < N; i++) 
    for(j=0; j < N; j++) { 
       r = 0; 
       for(k=0; k < N; k++)   
         r = r + y[i][k] * z[k][j]; 
       x[i][j] = r; 
    }	

39	
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Matrix	Mul?ply	with	Cache	Tiling	
 for(jj=0; jj < N; jj=jj+B) 

   for(kk=0; kk < N; kk=kk+B) 
      for(i=0; i < N; i++) 
          for(j=jj; j < min(jj+B,N); j++) { 
             r = 0; 
             for(k=kk; k < min(kk+B,N); k++)  
                r = r + y[i][k] * z[k][j]; 
             x[i][j] = x[i][j] + r; 
          }	

	

40	

What	type	of	locality	does	this	improve?	
Assuming	row-major	order	
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Ques?on	of	the	Day	

§  If	you	had	a	limited	area/power	budget,	would	you	invest	
it	in	larger	caches	or	a	prefetcher?	

41	
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