
2/8/2016 CS152, Spring 2016

CS 152 Computer Architecture and Engineering

Lecture 6 - Memory

Dr. George Michelogiannakis
EECS, University of California at Berkeley

CRD, Lawrence Berkeley National Laboratory

http://inst.eecs.berkeley.edu/~cs152

2/8/2016 CS152, Spring 2016

CS152 Administritivia

 PS 1 due on Wednesday’s class

 Lab 1 also due at the same time

 Hand paper reports or email

 PS 2 will be released on Wendesday

 Lab 2 Wednesday or Thursday

 Quiz next week Wednesday (17th)

 Discussion section on Thursday to cover lab 2 and PS 1

2

2/8/2016 CS152, Spring 2016

Question of the Day

 Can a cache worsen performance, latency, bandwidth
compared to a system with DRAM and no caches?

3

2/8/2016 CS152, Spring 2016

Last time in Lecture 5

 Control hazards (branches, interrupts) are most difficult to
handle as they change which instruction should be
executed next

 Branch delay slots make control hazard visible to
software, but not portable to more advanced µarchs

 Speculation commonly used to reduce effect of control
hazards (predict sequential fetch, predict no exceptions,
branch prediction)

 Precise exceptions: stop cleanly on one instruction, all
previous instructions completed, no following instructions
have changed architectural state

 To implement precise exceptions in pipeline, shift faulting
instructions down pipeline to “commit” point, where
exceptions are handled in program order

4

2/8/2016 CS152, Spring 2016

Early Read-Only Memory Technologies

5

Punched cards, From early
1700s through Jaquard Loom,
Babbage, and then IBM

Punched paper tape,
instruction stream in
Harvard Mk 1

IBM Card Capacitor ROS

IBM Balanced
Capacitor ROS

Diode Matrix, EDSAC-2
µcode store

2/8/2016 CS152, Spring 2016

Early Read/Write Main Memory Technologies

6

Williams Tube,
Manchester Mark 1, 1947

Babbage, 1800s: Digits
stored on mechanical wheels

Mercury Delay Line, Univac 1, 1951

Also, regenerative capacitor memory on
Atanasoff-Berry computer, and rotating
magnetic drum memory on IBM 650

2/8/2016 CS152, Spring 2016

MIT Whirlwind Core Memory

7

Magnetic: Each “donut” was magnetized or not to signify zero or 1

2/8/2016 CS152, Spring 2016

Core Memory
 Core memory was first large scale reliable main memory

– invented by Forrester in late 40s/early 50s at MIT for Whirlwind project

 Bits stored as magnetization polarity on small ferrite cores
threaded onto two-dimensional grid of wires

 Coincident current pulses on X and Y wires would write
cell and also sense original state (destructive reads)

8

DEC PDP-8/E Board,
4K words x 12 bits, (1968)

 Robust, non-volatile storage

 Used on space shuttle
computers

 Cores threaded onto wires by
hand (25 billion a year at peak
production)

 Core access time ~ 1µs

2/8/2016 CS152, Spring 2016

Semiconductor Memory

 Semiconductor memory began to be competitive in
early 1970s

– Intel formed to exploit market for semiconductor memory

– Early semiconductor memory was Static RAM (SRAM). SRAM cell
internals similar to a latch (cross-coupled inverters).

 First commercial Dynamic RAM (DRAM) was Intel
1103

– 1Kbit of storage on single chip

– charge on a capacitor used to hold value

Semiconductor memory quickly replaced core in ‘70s

9

2/8/2016 CS152, Spring 2016

One-Transistor Dynamic RAM
[Dennard, IBM]

10

TiN top electrode (VREF)

Ta2O5 dielectric

W bottom
electrode

poly
word
line access

transistor

1-T DRAM Cell

word

bit

access transistor

Storage
capacitor (FET gate,
trench, stack)

VREF

2/8/2016 CS152, Spring 2016

DRAM Architecture

12

R
o

w
 A

d
d

re
ss

D

ec
o

d
er

Col.
1

Col.
2M

Row 1

Row 2N

Column Decoder &
Sense Amplifiers

M

N

N+M

bit lines
word lines

Memory cell
(one bit)

DData

 Bits stored in 2-dimensional arrays on chip

 Modern chips have around 4-8 logical banks on each chip

 each logical bank physically implemented as many smaller arrays

2/8/2016 CS152, Spring 2016

DRAM Packaging
(Laptops/Desktops/Servers)

 DIMM (Dual Inline Memory Module) contains
multiple chips with clock/control/address signals
connected in parallel (sometimes need buffers to
drive signals to all chips)

 Data pins work together to return wide word (e.g.,
64-bit data bus using 16x4-bit parts)

13

Address lines multiplexed
row/column address

Clock and control signals

Data bus
(4b,8b,16b,32b)

DRAM
chip

~12

~7

2/8/2016 CS152, Spring 2016

DRAM Packaging, Mobile Devices

14

[Apple A4 package cross-section, iFixit 2010]

Two stacked
DRAM die
Processor
plus logic die

[Apple A4 package on circuit board]

2/8/2016 CS152, Spring 2016

3D Stacked Memory

15

2/8/2016 CS152, Spring 2016

DRAM Operation
 Three steps in read/write

access to a given bank
 Row access (RAS)
 Column access (CAS)
 Precharge

– charges bit lines to known value,
required before next row access

 Each step has a latency of
around 15-20ns in modern
DRAMs

 Various DRAM standards
(DDR, RDRAM) have different
ways of encoding the signals
for transmission to the DRAM,
but all share same core
architecture

16

r
o
w

d
e
c
o
d
e
r

row
address

Column Selector &
I/O Circuits

Column
Addressdata

RAM Cell
Array

2/8/2016 CS152, Spring 2016

DRAM Operation (Verbose)
 Row access (RAS)

– decode row address, enable addressed row (often multiple Kb in row)
– bitlines share charge with storage cell
– small change in voltage detected by sense amplifiers which latch whole row of bits
– sense amplifiers drive bitlines full rail to recharge storage cells

 Column access (CAS)

– decode column address to select small number of sense amplifier latches (4, 8, 16,
or 32 bits depending on DRAM package)

– on read, send latched bits out to chip pins
– on write, change sense amplifier latches which then charge storage cells to

required value
– can perform multiple column accesses on same row without another row access

(burst mode)

 Precharge
– charges bit lines to known value
– required before next row access
– reads are destructive!

17

1-T DRAM Cell

word

bit

access transistor

2/8/2016 CS152, Spring 2016

Double-Data Rate (DDR2) DRAM

 [Micron, 256Mb DDR2 SDRAM datasheet]

18

Row Column Precharge Row’

Data

200MHz
Clock

400Mb/s
Data Rate

2/8/2016 CS152, Spring 2016

CPU-Memory Bottleneck

Performance of high-speed computers is usually limited by
memory bandwidth & latency

 Latency (time for a single access)
– Memory access time >> Processor cycle time

 Bandwidth (number of accesses per unit time)
if fraction m of instructions access memory

=> 1+m memory references / instruction

=> CPI = 1 requires 1+m memory refs / cycle (assuming RISC-V ISA)

19

MemoryCPU

2/8/2016 CS152, Spring 2016

Processor-DRAM Gap (latency)

20

Time

µProc 60%/year

DRAM
7%/year

1

10

100

1000
1

9
8

0

1
9

8
1

1
9

8
3

1
9

8
4

1
9

8
5

1
9

8
6

1
9

8
7

1
9

8
8

1
9

8
9

1
9

9
0

1
9

9
1

1
9

9
2

1
9

9
3

1
9

9
4

1
9

9
5

1
9

9
6

1
9

9
7

1
9

9
8

1
9

9
9

2
0

0
0

DRAM

CPU

1
9

8
2

Processor-Memory
Performance Gap:
(growing 50%/yr)

Pe
rf

o
rm

an
ce

Four-issue 3GHz superscalar accessing 100ns DRAM could execute 1,200
instructions during time for one memory access!

2/8/2016 CS152, Spring 2016

Physical Size Affects Latency

21

Small
Memory

CPU

Big Memory

CPU

 Signals have further to travel

 Fan out to more locations

Motivates 3D stacking

2/8/2016 CS152, Spring 2016

Memory Bandwidth Growth

22

How to take advantage of all this bandwidth?

• Simple in-order cores

• Complex out of order cores

• ?

2/8/2016 CS152, Spring 2016

Relative Memory Cell Sizes

23

[Foss, “Implementing

Application-Specific

Memory”, ISSCC 1996]

DRAM on

memory chip
On-Chip

SRAM in

logic chip

2/8/2016 CS152, Spring 2016

SRAM Cell

24

2/8/2016 CS152, Spring 2016

Memory Hierarchy

25

Small,
Fast Memory

(RF, SRAM)

• capacity: Register << SRAM << DRAM
• latency: Register << SRAM << DRAM
• bandwidth: on-chip >> off-chip

On a data access:
if data  fast memory  low latency access (SRAM)
if data  fast memory  high latency access (DRAM)

CPU
Big, Slow Memory

(DRAM)

A B

holds frequently used data

2/8/2016 CS152, Spring 2016

Management of Memory Hierarchy

Small/fast storage, e.g., registers
– Address usually specified in instruction

– Generally implemented directly as a register file

• but hardware might do things behind software’s
back, e.g., stack management, register renaming

Larger/slower storage, e.g., main memory
– Address usually computed from values in register

– Generally implemented as a hardware-managed cache
hierarchy (hardware decides what is kept in fast
memory)

• but software may provide “hints”, e.g., don’t cache
or prefetch

26

2/8/2016 CS152, Spring 2016

Real Memory Reference Patterns

Donald J. Hatfield, Jeanette Gerald: Program Restructuring for Virtual Memory.

IBM Systems Journal 10(3): 168-192 (1971)

Time

M
e

m
o

ry
 A

d
d

re
ss

 (
o

n
e

 d
o

t
p

e
r

ac
ce

ss
)

2/8/2016 CS152, Spring 2016

Typical Memory Reference Patterns

Address

Time

Instruction
fetches

Stack
accesses

Data
accesses

n loop iterations

subroutine
call

subroutine
return

argument access

scalar accesses

2/8/2016 CS152, Spring 2016

Two predictable properties of memory references:

Temporal Locality: If a location is
referenced it is likely to be referenced again
in the near future.

Spatial Locality: If a location is referenced it
is likely that locations near it will be
referenced in the near future.

2/8/2016 CS152, Spring 2016

Memory Reference Patterns

Donald J. Hatfield, Jeanette Gerald: Program

Restructuring for Virtual Memory. IBM Systems Journal

10(3): 168-192 (1971)

Time

M
e

m
o

ry
 A

d
d

re
ss

 (
o

n
e

 d
o

t
p

e
r

ac
ce

ss
)

Spatial
Locality

Temporal
Locality

2/8/2016 CS152, Spring 2016

Caches exploit both types of predictability:

 Exploit temporal locality by remembering the
contents of recently accessed locations.

 Exploit spatial locality by fetching blocks of data
around recently accessed locations.

2/8/2016 CS152, Spring 2016

Inside a Cache

CACHEProcessor Main
Memory

Address Address

DataData

Address
Tag

Data Block

Data
Byte

Data
Byte

Data
Byte

Line100

304

6848

copy of main
memory
location 100

copy of main
memory
location 101

416

2/8/2016 CS152, Spring 2016

Multiple Cache Levels

33

2/8/2016 CS152, Spring 2016

Intel i7 (Nahelem)

34

 Private L1 and L2
– L2 is 256KB each. 10 cycle latency

 8MB shared L3. ~40 cycles latency

2/8/2016 CS152, Spring 2016

Area

35

2/8/2016 CS152, Spring 2016

Cache Algorithm (Read)

Look at Processor Address, search cache tags to
find match. Then either

Found in cache
a.k.a. HIT

Return copy
of data from
cache

Not in cache
a.k.a. MISS

Read block of data from
Main Memory

Wait …

Return data to processor
and update cache

Q: Which line do we replace?

2/8/2016 CS152, Spring 2016

Placement Policy

37

0 1 2 3 4 5 6 70 1 2 3Set Number

Cache

Fully (2-way) Set Direct
Associative Associative Mapped
anywhere anywhere in only into

set 0 block 4
(12 mod 4) (12 mod 8)

0 1 2 3 4 5 6 7 8 9

1 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9

2 2 2 2 2 2 2 2 2 2
0 1 2 3 4 5 6 7 8 9

3 3
0 1

Memory

Block Number

block 12
can be placed

2/8/2016 CS152, Spring 2016

Direct-Mapped Cache

Tag Data BlockV

=

Block
Offset

Tag Index

t
k b

t

HIT Data Word or Byte

2k

lines

2/8/2016 CS152, Spring 2016

Direct Map Address Selection
higher-order vs. lower-order address bits

Tag Data BlockV

=

Block
Offset

Index

tk

b

t

HIT Data Word or Byte

2k

lines

Tag

2/8/2016 CS152, Spring 2016

2-Way Set-Associative Cache

Tag Data BlockV

=

Block

Offset
Tag Index

t
k

b

HIT

Tag Data BlockV

Data

Word

or Byte

=

t

2/8/2016 CS152, Spring 2016

Fully Associative Cache

Tag Data BlockV

=

B
lo

ck
O

ff
se

t
Ta

g

t

b

HIT

Data
Word
or Byte

=

=

t

2/8/2016 CS152, Spring 2016

Replacement Policy

42

In an associative cache, which block from a set should
be evicted when the set becomes full?
• Random
• Least-Recently Used (LRU)

• LRU cache state must be updated on every access
• true implementation only feasible for small sets (2-way)
• pseudo-LRU binary tree often used for 4-8 way

• First-In, First-Out (FIFO) a.k.a. Round-Robin
• used in highly associative caches

• Not-Most-Recently Used (NMRU)
• FIFO with exception for most-recently used block or blocks

This is a second-order effect. Why?

Replacement only happens on misses

2/8/2016 CS152, Spring 2016

Block Size and Spatial Locality

43

Word3Word0 Word1 Word2

Larger block size has distinct hardware advantages
• less tag overhead
• exploit fast burst transfers from DRAM
• exploit fast burst transfers over wide busses

What are the disadvantages of increasing block size?

block address offsetb

2b = block size a.k.a line size (in bytes)

Split CPU
address

b bits32-b bits

Tag

E.g., define how many bytes a memory address references

Block is unit of transfer between the cache and memory
4 word block, b=2

Fewer blocks => more conflicts. Can waste bandwidth.

2/8/2016 CS152, Spring 2016

Question of the Day

 Can a cache worsen performance, latency, bandwidth
compared to a system with DRAM and no caches?

44

2/8/2016 CS152, Spring 2016

Acknowledgements

 These slides contain material developed and copyright by:
– Arvind (MIT)

– Krste Asanovic (MIT/UCB)

– Joel Emer (Intel/MIT)

– James Hoe (CMU)

– John Kubiatowicz (UCB)

– David Patterson (UCB)

 MIT material derived from course 6.823

 UCB material derived from course CS252

45

