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CS152 Administritivia

 PS 1 due on Wednesday’s class

 Lab 1 also due at the same time

 Hand paper reports or email

 PS 2 will be released on Wendesday

 Lab 2 Wednesday or Thursday

 Quiz next week Wednesday (17th)

 Discussion section on Thursday to cover lab 2 and PS 1

2



2/8/2016 CS152, Spring 2016

Question of the Day

 Can a cache worsen performance, latency, bandwidth 
compared to a system with DRAM and no caches?
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Last time in Lecture 5

 Control hazards (branches, interrupts) are most difficult to 
handle as they change which instruction should be 
executed next

 Branch delay slots make control hazard visible to 
software, but not portable to more advanced µarchs

 Speculation commonly used to reduce effect of control 
hazards (predict sequential fetch, predict no exceptions, 
branch prediction)

 Precise exceptions: stop cleanly on one instruction, all 
previous instructions completed, no following instructions 
have changed architectural state

 To implement precise exceptions in pipeline, shift faulting 
instructions down pipeline to “commit” point, where 
exceptions are handled in program order
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Early Read-Only Memory Technologies
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Punched cards, From early 
1700s through Jaquard Loom, 
Babbage, and then IBM

Punched paper tape, 
instruction stream in 
Harvard Mk 1

IBM Card Capacitor ROS

IBM Balanced 
Capacitor ROS

Diode Matrix, EDSAC-2 
µcode store
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Early Read/Write Main Memory Technologies
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Williams Tube, 
Manchester Mark 1, 1947

Babbage, 1800s: Digits 
stored on mechanical wheels

Mercury Delay Line, Univac 1, 1951

Also, regenerative capacitor memory on 
Atanasoff-Berry computer, and rotating 
magnetic drum memory on IBM 650
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MIT Whirlwind Core Memory
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Magnetic: Each “donut” was magnetized or not to signify zero or 1
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Core Memory
 Core memory was first large scale reliable main memory

– invented by Forrester in late 40s/early 50s at MIT for Whirlwind project

 Bits stored as magnetization polarity on small ferrite cores 
threaded onto two-dimensional grid of wires

 Coincident current pulses on X and Y wires would write 
cell and also sense original state (destructive reads)
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DEC PDP-8/E Board,  
4K words x 12 bits, (1968)

 Robust, non-volatile storage

 Used on space shuttle 
computers

 Cores threaded onto wires by 
hand (25 billion a year at peak 
production)

 Core access time ~ 1µs
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Semiconductor Memory

 Semiconductor memory began to be competitive in 
early 1970s

– Intel formed to exploit market for semiconductor memory

– Early semiconductor memory was Static RAM  (SRAM).  SRAM cell 
internals similar to a latch (cross-coupled inverters).

 First commercial Dynamic RAM (DRAM) was Intel 
1103

– 1Kbit of storage on single chip

– charge on a capacitor used to hold value

Semiconductor memory quickly replaced core in ‘70s
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One-Transistor Dynamic RAM 
[Dennard, IBM]
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DRAM Architecture
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 Bits stored in 2-dimensional arrays on chip

 Modern chips have around 4-8 logical banks on each chip

 each logical bank physically implemented as many smaller arrays
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DRAM Packaging
(Laptops/Desktops/Servers)

 DIMM (Dual Inline Memory Module) contains 
multiple chips with clock/control/address signals 
connected in parallel (sometimes need buffers to 
drive signals to all chips)

 Data pins work together to return wide word (e.g., 
64-bit data bus using 16x4-bit parts)
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Address lines multiplexed 
row/column address

Clock and control signals

Data bus
(4b,8b,16b,32b)

DRAM 
chip

~12

~7
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DRAM Packaging, Mobile Devices
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[ Apple A4 package cross-section, iFixit 2010 ]

Two stacked 
DRAM die
Processor 
plus logic die

[ Apple A4 package on circuit board]
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3D Stacked Memory
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DRAM Operation
 Three steps in read/write 

access to a given bank
 Row access (RAS)
 Column access (CAS)
 Precharge

– charges bit lines to known value, 
required before next row access

 Each step has a latency of 
around 15-20ns in modern 
DRAMs

 Various DRAM standards 
(DDR, RDRAM) have different 
ways of encoding the signals 
for transmission to the DRAM, 
but all share same core 
architecture
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DRAM Operation (Verbose)
 Row access (RAS)

– decode row address, enable addressed row (often multiple Kb in row)
– bitlines share charge with storage cell
– small change in voltage detected by sense amplifiers which latch whole row of bits
– sense amplifiers drive bitlines full rail to recharge storage cells

 Column access (CAS)

– decode column address to select small number of sense amplifier latches (4, 8, 16, 
or 32 bits depending on DRAM package)

– on read, send latched bits out to chip pins
– on write, change sense amplifier latches which then charge storage cells to 

required value
– can perform multiple column accesses on same row without another row access 

(burst mode)

 Precharge
– charges bit lines to known value
– required before next row access
– reads are destructive!
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1-T DRAM Cell

word

bit

access transistor
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Double-Data Rate (DDR2) DRAM

 [ Micron, 256Mb DDR2 SDRAM datasheet ]
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Row Column Precharge Row’

Data

200MHz 
Clock

400Mb/s 
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CPU-Memory Bottleneck

Performance of high-speed computers is usually limited by 
memory bandwidth & latency

 Latency (time for a single access)
– Memory access time >> Processor cycle time

 Bandwidth (number of accesses per unit time)
if fraction m of instructions access memory

=> 1+m memory references / instruction

=> CPI = 1 requires 1+m memory refs / cycle (assuming RISC-V ISA)

19

MemoryCPU
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Processor-DRAM Gap (latency)
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Physical Size Affects Latency
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Small 
Memory

CPU

Big Memory

CPU

 Signals have further to travel

 Fan out to more locations

Motivates 3D stacking
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Memory Bandwidth Growth
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How to take advantage of all this bandwidth?

• Simple in-order cores

• Complex out of order cores

• ?
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Relative Memory Cell Sizes
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[ Foss, “Implementing 

Application-Specific 

Memory”, ISSCC 1996 ]

DRAM on 

memory chip
On-Chip 

SRAM in 

logic chip
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SRAM Cell
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Memory Hierarchy
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Small,
Fast Memory

(RF, SRAM)

• capacity:  Register << SRAM << DRAM
• latency:   Register << SRAM << DRAM
• bandwidth: on-chip >> off-chip

On a data access:
if data  fast memory  low latency access (SRAM)
if data  fast memory  high latency access (DRAM)

CPU
Big, Slow Memory

(DRAM)

A B

holds frequently used data
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Management of Memory Hierarchy

Small/fast storage, e.g., registers
– Address usually specified in instruction

– Generally implemented directly as a register file

• but hardware might do things behind software’s 
back, e.g., stack management, register renaming

Larger/slower storage, e.g., main memory
– Address usually computed from values in register

– Generally implemented as a hardware-managed cache 
hierarchy (hardware decides what is kept in fast 
memory)

• but software may provide “hints”, e.g., don’t cache 
or prefetch
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Real Memory Reference Patterns

Donald J. Hatfield, Jeanette Gerald: Program Restructuring for Virtual Memory. 

IBM Systems Journal 10(3): 168-192 (1971)
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Typical Memory Reference Patterns

Address

Time

Instruction
fetches

Stack
accesses

Data
accesses

n loop iterations

subroutine 
call

subroutine 
return

argument access

scalar accesses
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Two predictable properties of memory references:

Temporal Locality: If a location is 
referenced it is likely to be referenced again 
in the near future.

Spatial Locality: If a location is referenced it 
is likely that locations near it will be 
referenced in the near future.
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Memory Reference Patterns

Donald J. Hatfield, Jeanette Gerald: Program 

Restructuring for Virtual Memory. IBM Systems Journal 

10(3): 168-192 (1971)
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Caches exploit both types of predictability:

 Exploit temporal locality by remembering the 
contents of recently accessed locations.

 Exploit spatial locality by fetching blocks of data 
around recently accessed locations.
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Inside a Cache

CACHEProcessor Main
Memory 

Address Address

DataData

Address
Tag

Data Block

Data
Byte

Data
Byte

Data
Byte

Line100

304

6848

copy of main
memory
location 100

copy of main
memory
location 101

416
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Multiple Cache Levels

33



2/8/2016 CS152, Spring 2016

Intel i7 (Nahelem)

34

 Private L1 and L2
– L2 is 256KB each. 10 cycle latency

 8MB shared L3. ~40 cycles latency
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Area

35
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Cache Algorithm (Read)

Look at Processor Address, search cache tags to 
find match.  Then either

Found in cache
a.k.a.  HIT

Return copy
of data from
cache

Not in cache
a.k.a. MISS

Read block of data from
Main Memory

Wait … 

Return data to processor
and update cache

Q: Which line do we replace?
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Placement Policy

37

0 1 2 3 4 5 6 70     1      2     3Set Number

Cache

Fully (2-way) Set        Direct
Associative Associative         Mapped
anywhere anywhere in        only into

set 0             block 4
(12 mod 4) (12 mod 8)

0 1 2 3 4 5 6 7 8 9

1 1 1 1 1 1 1 1 1 1 
0 1 2 3 4 5 6 7 8 9

2 2 2 2 2 2 2 2 2 2 
0 1 2 3 4 5 6 7 8 9

3 3
0 1

Memory

Block Number

block 12 
can be placed



2/8/2016 CS152, Spring 2016

Direct-Mapped Cache
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Direct Map Address Selection
higher-order vs. lower-order address bits
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2-Way Set-Associative Cache
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Fully Associative Cache
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Replacement Policy

42

In an associative cache, which block from a set should 
be evicted when the set becomes full?
• Random
• Least-Recently Used (LRU)

• LRU cache state must be updated on every access
• true implementation only feasible for small sets (2-way)
• pseudo-LRU binary tree often used for 4-8 way

• First-In, First-Out (FIFO) a.k.a. Round-Robin
• used in highly associative caches

• Not-Most-Recently Used (NMRU)
• FIFO with exception for most-recently used block or blocks

This is a second-order effect.  Why?

Replacement only happens on misses
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Block Size and Spatial Locality

43

Word3Word0 Word1 Word2

Larger block size has distinct hardware advantages
• less tag overhead
• exploit fast burst transfers from DRAM
• exploit fast burst transfers over wide busses

What are the disadvantages of increasing block size?

block address offsetb

2b = block size a.k.a line size (in bytes)

Split CPU 
address

b bits32-b bits

Tag

E.g., define how many bytes a memory address references

Block is unit of transfer between the cache and memory
4 word block, b=2

Fewer blocks => more conflicts.  Can waste bandwidth.
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Question of the Day

 Can a cache worsen performance, latency, bandwidth 
compared to a system with DRAM and no caches?
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