
1/28/2016 CS152, Spring 2016

CS 152 Computer Architecture and Engineering

Lecture 4 - Pipelining

Dr. George Michelogiannakis
EECS, University of California at Berkeley

CRD, Lawrence Berkeley National Laboratory

http://inst.eecs.berkeley.edu/~cs152

1/28/2016 CS152, Spring 2016

Last time in Lecture 3

 Microcoding became less attractive as gap between RAM
and ROM speeds reduced

 Complex instruction sets difficult to pipeline, so difficult to
increase performance as gate count grew

 Load-Store RISC ISAs designed for efficient pipelined
implementations

– Very similar to vertical microcode

– Inspired by earlier Cray machines (more on these later)

 Iron Law explains architecture design space
– Trade instructions/program, cycles/instruction, and time/cycle

2

1/28/2016 CS152, Spring 2016

Question of the Day

 Why a five stage pipeline?

3

1/28/2016 CS152, Spring 2016

An Ideal Pipeline

 All objects go through the same stages

 No sharing of resources between any two stages

 Propagation delay through all pipeline stages is equal

 The scheduling of an object entering the pipeline is not
affected by the objects in other stages

4

stage
1

stage
2

stage
3

stage
4

These conditions generally hold for industrial assembly
lines, but instructions depend on each other!

1/28/2016 CS152, Spring 2016

Pipelined RISC-V

 To pipeline RISC-V:

 First build RISC-V without pipelining with CPI=1

 Next, add pipeline registers to reduce cycle time while
maintaining CPI=1

5

1/28/2016 CS152, Spring 2016

Lecture 3: Unpipelined Datapath for RISC-V

6

0x4

RegWriteEn

Add

Add

clk

WBSelMemWrite

addr

wdata

rdata
Data

Memory

we

WASel Op2SelImmSelOpCode

clk

clk

addr
inst

Inst.

Memory

PC rd1

GPRs

rs1
rs2

wa
wd rd2

we

Imm

Select

ALU

ALU
Control

PCSel

br

rind
jabs

pc+4

Bcomp?Br Logic

1/28/2016 CS152, Spring 2016

Lecture 3: Hardwired Control Table

7

Opcode ImmSel Op2Sel FuncSel MemWr RFWen WBSel WASel PCSel

ALU

ALUi

LW

SW

BEQtrue

BEQfalse

JAL

JALR

Op2Sel= Reg / Imm WBSel = ALU / Mem / PC
PCSel = pc+4 / br / rind / jabs

* * *

no yes rindPC rd

jabs

* * * no

yes PC rd

pc+4BrType12 * * no no * *

brBrType12 * * no no * *

pc+4BsType12 Imm + yes no * *

pc+4* Reg Func no yes ALU rd

IType12 Imm Op pc+4no yes ALU rd

pc+4IType12 Imm + no yes Mem rd

Correction since L3: “J” has been removed

1/28/2016 CS152, Spring 2016

Pipelined Datapath

8

Clock period can be reduced by dividing the execution of an
instruction into multiple cycles

tC > max {tIM, tRF, tALU, tDM, tRW} (= tDM probably)

However, CPI will increase unless instructions are pipelined

write
-back
phase

fetch
phase

execute
phase

decode & Reg-fetch
phase

memory
phase

addr

wdata

rdata
Data
Memory

we
ALU

Imm
Select

0x4

Add

addr
rdata

Inst.
Memory

rd1

GPRs

rs1
rs2

wa
wd rd2

we

IR
PC

1/28/2016 CS152, Spring 2016

 Instructions per program depends on source code,
compiler technology, and ISA

 Cycles per instructions (CPI) depends on ISA and
µarchitecture

 Time per cycle depends upon the µarchitecture and base
technology

9

Time = Instructions Cycles Time
Program Program * Instruction * Cycle

“Iron Law” of Processor Performance

Microarchitecture CPI cycle time

Microcoded >1 short

Single-cycle unpipelined 1 long

Pipelined 1 short

Lecture 2
Lecture 3
Lecture 4

1/28/2016 CS152, Spring 2016

CPI Examples

10

Time

Inst 3

7 cycles

Inst 1 Inst 2

5 cycles 10 cycles
Microcoded machine

3 instructions, 22 cycles, CPI=7.33

Unpipelined machine

3 instructions, 3 cycles, CPI=1

Inst 1 Inst 2 Inst 3

Pipelined machine

3 instructions, 3 cycles, CPI=1
Inst 1

Inst 2
Inst 3 5-stage pipeline CPI≠5!!!

1/28/2016 CS152, Spring 2016

Technology Assumptions

11

Thus, the following timing assumption is reasonable

• A small amount of very fast memory (caches)
backed up by a large, slower memory

• Fast ALU (at least for integers)

• Multiported Register files (slower!)

tIM ~= tRF ~= tALU ~= tDM ~= tRW

A 5-stage pipeline will be focus of our detailed design
- some commercial designs have over 30 pipeline

stages to do an integer add!

1/28/2016 CS152, Spring 2016

5-Stage Pipelined Execution

12

time t0 t1 t2 t3 t4 t5 t6 t7
instruction1 IF1 ID1 EX1 MA1 WB1

instruction2 IF2 ID2 EX2 MA2 WB2

instruction3 IF3 ID3 EX3 MA3 WB3

instruction4 IF4 ID4 EX4 MA4 WB4

instruction5 IF5 ID5 EX5 MA5 WB5

Write
-Back
(WB)

I-Fetch
(IF)

Execute
(EX)

Decode, Reg. Fetch
(ID)

Memory
(MA)

addr

wdata

rdata
Data
Memory

we
ALU

Imm
Select

0x4

Add

addr
rdata

Inst.
Memory

rd1

GPRs

rs1
rs2

wa
wdrd2

we

IR
PC

1/28/2016 CS152, Spring 2016

5-Stage Pipelined Execution
Resource Usage Diagram

13

time t0 t1 t2 t3 t4 t5 t6 t7
IF I1 I2 I3 I4 I5

ID I1 I2 I3 I4 I5

EX I1 I2 I3 I4 I5

MA I1 I2 I3 I4 I5

WB I1 I2 I3 I4 I5

R
es

o
u

rc
es

Write
-Back
(WB)

I-Fetch
(IF)

Execute
(EX)

Decode, Reg. Fetch
(ID)

Memory
(MA)

addr

wdata

rdata
Data
Memory

we
ALU

0x4

Add

addr
rdata

Inst.
Memory

rd1

GPRs

rs1
rs2

ws
wdrd2

we

IR
PC

Imm
Select

1/28/2016 CS152, Spring 2016

Pipelined Execution:
ALU Instructions

14

IRIR IR

PC
A

B

Y

R

MD1 MD2

addr
inst

Inst
Memory

0x4
Add

IR

Imm
Select

ALU

rd1

GPRs

rs1
rs2

wa
wd rd2

we

wdata

addr

wdata

rdata
Data
Memory

we

Not quite correct!
We need an Instruction Reg (IR) for each stage

1/28/2016 CS152, Spring 2016

Pipelined RISC-V Datapath
without jumps

15

IRIR IR

PC
A

B

Y

R

MD1 MD2

addr
inst

Inst
Memory

0x4
Add

IR

Imm
Select

ALU

rd1

GPRs

rs1
rs2

wa
wd rd2

we

Data
Memorywdata

addr

wdata

rdata

we

ImmSel Op2Sel

WBSel
MemWrite

RegWriteEn

F D E M W

Control Points Need to
Be Connected

ALU
Control

1/28/2016 CS152, Spring 2016

Instructions interact with each other in pipeline

 An instruction in the pipeline may need a resource
being used by another instruction in the pipeline
 structural hazard

 An instruction may depend on something
produced by an earlier instruction

– Dependence may be for a data value

 data hazard
– Dependence may be for the next instruction’s address

 control hazard (branches, exceptions)

16

1/28/2016 CS152, Spring 2016

Resolving Structural Hazards

 Structural hazard occurs when two instructions need same
hardware resource at same time

– Can resolve in hardware by stalling newer instruction till older
instruction finished with resource

 A structural hazard can always be avoided by adding more
hardware to design

– E.g., if two instructions both need a port to memory at same time, could
avoid hazard by adding second port to memory

 Our 5-stage pipeline has no structural hazards by design
– Thanks to RISC-V ISA, which was designed for pipelining

17

1/28/2016 CS152, Spring 2016

Data Hazards

18

...
x1 x0 + 10
x4 x1 + 17
...

x1 is stale. Oops!

x1 …x4 x1 …

IRIR IR

PC
A

B

Y

R

MD1 MD2

addr
inst

Inst
Memory

0x4

Add

IR

Imm
Select

ALU

rd1

GPRs

rs1
rs2

wa
wd rd2

we

wdata

addr

wdata

rdata
Data
Memory

we

1/28/2016 CS152, Spring 2016

How Would You Resolve This?

 What can you do if your project buddy has not completed
their part, which you need to start?

 Three options
– Wait (stall)

– Speculate on the value of the deliverable

– Bypass: ask them for what you need before his/her final deliverable

– (ask him/her to work harder?)

19

1/28/2016 CS152, Spring 2016

Resolving Data Hazards (1)

20

Strategy 1:

Wait for the result to be available by freezing
earlier pipeline stages interlocks

1/28/2016 CS152, Spring 2016

Feedback to Resolve Hazards

 Later stages provide dependence information to
earlier stages which can stall (or kill) instructions

21

FB1

stage
1

stage
2

stage
3

stage
4

FB2 FB3 FB4

• Controlling a pipeline in this manner works provided
the instruction at stage i+1 can complete without
any interference from instructions in stages 1 to i

(otherwise deadlocks may occur)

1/28/2016 CS152, Spring 2016

Interlocks to resolve Data Hazards

22

IRIR IR

PC
A

B

Y

R

MD1 MD2

addr
inst

Inst
Memory

0x4

Add

IR

Imm
Select

ALU

rd1

GPRs

rs1
rs2

wa
wd rd2

we

wdata

addr

wdata

rdata
Data
Memory

we

bubble

...
x1 x0 + 10
x4 x1 + 17
...

Stall Condition

1/28/2016 CS152, Spring 2016

Stalled Stages and Pipeline Bubbles

23

stalled stages

time
t0 t1 t2 t3 t4 t5 t6 t7

IF I1 I2 I3 I3 I3 I3 I4 I5

ID I1 I2 I2 I2 I2 I3 I4 I5

EX I1 - - - I2 I3 I4 I5

MA I1 - - - I2 I3 I4 I5

WB I1 - - - I2 I3 I4 I5

time
t0 t1 t2 t3 t4 t5 t6 t7

(I1) x1 (x0) + 10IF1 ID1 EX1 MA1 WB1

(I2) x4 (x1) + 17 IF2 ID2 ID2 ID2 ID2 EX2 MA2 WB2

(I3) IF3 IF3 IF3 IF3 ID3 EX3 MA3 WB3

(I4) IF4 ID4 EX4 MA4 WB4

(I5) IF5 ID5 EX5 MA5 WB5

Resource
Usage

- pipeline bubble

1/28/2016 CS152, Spring 2016

Interlock Control Logic

24

IRIR IR

PC
A

B

Y

R

MD1 MD2

addr
inst

Inst
Memory

0x4

Add

IR

Imm
Select

ALU

rd1

GPRs

rs1
rs2

wa
wd rd2

we

wdata

addr

wdata

rdata
Data
Memory

we

bubble

Compare the source registers of the instruction in the decode
stage with the destination register of the uncommitted
instructions.

stall
Cstall

wa

rs2
rs1

?

1/28/2016 CS152, Spring 2016

Interlock Control Logic
ignoring jumps & branches

25

Should we always stall if an rs field matches some rd?

IRIR IR

PC
A

B

Y

R

MD1 MD2

addr
inst

Inst
Memory

0x4
Add

IR ALU

rd1

GPRs

rs1
rs2

wa
wd rd2

we

wdata

addr

wdata

rdata
Data
Memory

we

bubble

stall
Cstall

wa

rs1
rs2 ?

we

re1 re2

Cre

wa we wa
Cdest Cdest

we

not every instruction writes a register => we
not every instruction reads a register => re

Imm
Select

1/28/2016 CS152, Spring 2016

Source & Destination Registers

26

source(s) destination
ALU rd <= rs1 func10 rs2 rs1, rs2 rd
ALUI rd <= rs1 op imm rs1 rd
LW rd <= M [rs1 + imm] rs1 rd
SW M [rs1 + imm] <= rs2 rs1, rs2 -
Bcond rs1,rs2 rs1, rs2 -

true: PC <= PC + imm
false: PC <= PC + 4

JAL x1 <= PC, PC <= PC + imm - rd
JALR rd <= PC, PC <= rs1 + imm rs1 rd

ALUI/LW/JALR

ALU

SW/Bcond

func7 rs2 rs1 func3 rd opcode

immediate12 rs1 func3 rd opcode

imm rs2 rs1 func3 imm

0
Jump Offset[19:0]

opcode

rd opcode

1/28/2016 CS152, Spring 2016

Deriving the Stall Signal

27

Cdest

ws = rd

we = Case opcode
ALU, ALUi, LW, JALR =>on
... =>off

Cre

re1 = Case opcode
ALU, ALUi,

=>on
=>off

re2 = Case opcode
=>on
->off

LW, SW, Bcond,
JALR
JAL

ALU, SW, Bcond
...

Cstall stall = ((rs1D =wsE).weE +
(rs1D =wsM).weM +
(rs1D =wsW).weW) . re1D +
((rs2D =wsE).weE +
(rs2D =wsM).weM +
(rs2D =wsW).weW) . re2D

1/28/2016 CS152, Spring 2016

Hazards due to Loads & Stores

28

...
M[x1+7] <= x2
x4 <= M[x3+5]
...

IRIR IR

PC
A

B

Y

R

MD1 MD2

addr
inst

Inst
Memory

0x4
Add

IR

Imm
Select

ALU

rd1

GPRs

rs1
rs2

wa
wd rd2

we

wdata

addr

wdata

rdata
Data
Memory

we

bubble

Stall Condition

Is there any possible data hazard
in this instruction sequence?

What if
x1+7 = x3+5 ?

1/28/2016 CS152, Spring 2016

Load & Store Hazards

29

However, the hazard is avoided because our memory
system completes writes in one cycle !

Load/Store hazards are sometimes resolved in the
pipeline and sometimes in the memory system itself.

More on this later in the course.

...
M[x1+7] <= x2
x4 <= M[x3+5]
...

x1+7 = x3+5 => data hazard

1/28/2016 CS152, Spring 2016

CS152 Administrivia

 Quiz 1 on Feb 17 will cover PS1, Lab1, lectures 1-5, and
associated readings.

30

1/28/2016 CS152, Spring 2016

Resolving Data Hazards (2)

31

Strategy 2:

Route data as soon as possible after it is calculated
to the earlier pipeline stage bypass

1/28/2016 CS152, Spring 2016

Bypassing

32

Each stall or kill introduces a bubble in the pipeline
=> CPI > 1

time t0 t1 t2 t3 t4 t5 t6 t7
(I1) x1 x0 + 10 IF1 ID1 EX1 MA1 WB1

(I2) x4 x1 + 17 IF2 ID2 ID2 ID2 ID2 EX2 MA2 WB2

(I3) IF3 IF3 IF3 IF3 ID3 EX3 MA3

(I4) stalled stages IF4 ID4 EX4

(I5) IF5 ID5

time t0 t1 t2 t3 t4 t5 t6 t7
(I1) x1 x0 + 10 IF1 ID1 EX1 MA1 WB1

(I2) x4 x1 + 17 IF2 ID2 EX2 MA2 WB2

(I3) IF3 ID3 EX3 MA3 WB3

(I4) IF4 ID4 EX4 MA4 WB4

(I5) IF5 ID5 EX5 MA5 WB5

A new datapath, i.e., a bypass, can get the data from
the output of the ALU to its input

1/28/2016 CS152, Spring 2016

Adding a Bypass

33

ASrc

...
(I1) x1 <= x0 + 10
(I2) x4 <= x1 + 17

x4 <= x1... x1 <= ...

IRIR IR

PC
A

B

Y

R

MD1 MD2

addr
inst

Inst
Memory

0x4
Add

IR

Imm
Select

ALU

rd1

GPRs

rs1
rs2

wa
wd rd2

we

wdata

addr

wdata

rdata
Data
Memory

we

bubble

stall

D

E M W

When does this bypass help?

x1 <= M[x0 + 10]
x4 <= x1 + 17

JAL 500
x4 <= x1 + 17

yes no no

1/28/2016 CS152, Spring 2016

The Bypass Signal
Deriving it from the Stall Signal

34

ASrc = (rs1D=wsE).weE.re1D

we = Case opcode
ALU, ALUi, LW,, JAL JALR => on
... => off

No because only ALU and ALUi instructions can benefit from this
bypass

Is this correct?

Split weE into two components: we-bypass, we-stall

stall = (((rs1D =wsE).weE + (rs1D =wsM).weM + (rs1D =wsW).weW).re1D

+((rs2D =wsE).weE + (rs2D =wsM).weM + (rs2D =wsW).weW).re2D)

ws = rd

1/28/2016 CS152, Spring 2016

Bypass and Stall Signals

35

we-bypassE = Case opcodeE

ALU, ALUi => on
... => off

ASrc = (rs1D =wsE).we-bypassE . re1D

Split weE into two components: we-bypass, we-stall

stall = ((rs1D =wsE).we-stallE +

(rs1D=wsM).weM + (rs1D=wsW).weW). re1D

+((rs2D = wsE).weE + (rs2D = wsM).weM + (rs2D = wsW).weW). re2D

we-stallE = Case opcodeE

LW, JAL, JALR=> on
JAL => on
... => off

1/28/2016 CS152, Spring 2016

Fully Bypassed Datapath

36

ASrc
IRIR IR

PC
A

B

Y

R

MD1 MD2

addr
inst

Inst
Memory

0x4
Add

IR ALU

Imm
Select

rd1

GPRs

rs1
rs2

wa
wd rd2

we

wdata

addr

wdata

rdata
Data
Memory

we

bubble

stall

D

E M W

PC for JAL, ...

BSrc

Is there still
a need for the
stall signal ? stall = (rs1D=wsE). (opcodeE=LWE).(wsE!=0).re1D

+ (rs2D=wsE). (opcodeE=LWE).(wsE!=0).re2D

1/28/2016 CS152, Spring 2016

Pipeline CPI Examples

37

Time

3 instructions finish in 3 cycles

CPI = 3/3 =1

Inst 1
Inst 2

Inst 3

3 instructions finish in 4 cycles

CPI = 4/3 = 1.33

Inst 1
Inst 2

Inst 3
Bubble

Inst 1

Inst 2
Inst 3

Bubble 1

Bubble 2

Measure from when first instruction finishes
to when last instruction in sequence finishes.

3 instructions finish in 5cycles

CPI = 5/3 = 1.67

Inst 3

1/28/2016 CS152, Spring 2016

Resolving Data Hazards (3)

38

Strategy 3: Speculate on the dependence!

Two cases:

Guessed correctly do nothing

Guessed incorrectly kill and restart

…. We’ll later see examples of this approach in
more complex processors.

1/28/2016 CS152, Spring 2016

Speculation that load value=zero

39

ASrc
IRIR IR

PC
A

B

Y

R

MD1 MD2

addr
inst

Inst
Memory

0x4
Add

IR ALU

Imm
Select

rd1

GPRs

rs1
rs2

wa
wd rd2

we

wdata

addr

wdata

rdata
Data
Memory

we

bubble

stall

D

E M W

PC for JAL, ...

BSrc

Guess_zero

Guess_zero= (rs1D=wsE). (opcodeE=LWE).(wsE!=0).re1D

0

Also need to add circuitry to remember that this was a guess and
flush pipeline if load not zero!
Not worth doing in practice – why?

1/28/2016 CS152, Spring 2016

Control Hazards

What do we need to calculate next PC?

 For Jumps
– Opcode, PC and offset

 For Jump Register
– Opcode, Register value, and PC

 For Conditional Branches
– Opcode, Register (for condition), PC and offset

 For all other instructions
– Opcode and PC (and have to know it’s not one of above)

40

1/28/2016 CS152, Spring 2016

PC Calculation Bubbles

41

time
t0 t1 t2 t3 t4 t5 t6 t7

(I1) x1 x0 + 10 IF1 ID1 EX1 MA1 WB1

(I2) x3 x2 + 17 IF2 IF2 ID2 EX2 MA2 WB2

(I3) IF3 IF3 ID3 EX3 MA3 WB3

(I4) IF4 IF4 ID4 EX4 MA4 WB4

time
t0 t1 t2 t3 t4 t5 t6 t7

IF I1 - I2 - I3 - I4

ID I1 - I2 - I3 - I4

EX I1 - I2 - I3 - I4

MA I1 - I2 - I3 - I4

WB I1 - I2 - I3 - I4

Resource
Usage

- pipeline bubble

1/28/2016 CS152, Spring 2016

Speculate next address is PC+4

42

I1 096 ADD
I2 100 J 304
I3 104 ADD
I4 304 ADD

kill

A jump instruction kills (not stalls)
the following instruction

stall

How?

I2

I1

104

IR IR

PC addr
inst

Inst
Memory

0x4

Add

bubble

IR

E M
Add

Jump?

PCSrc (pc+4 / jabs / rind/ br)

1/28/2016 CS152, Spring 2016

Pipelining Jumps

43

I1 096 ADD
I2 100 J 304
I3 104 ADD
I4 304 ADD

kill

I2

I1

104

stall

IR IR

PC addr
inst

Inst
Memory

0x4

Add

bubble

IR

E M
Add

Jump?

PCSrc (pc+4 / jabs / rind/ br)

IRSrcD = Case opcodeD

JAL bubble
... IM

To kill a fetched
instruction -- Insert
a mux before IR

Any
interaction
between
stall and
jump?

bubble

IRSrcD

I2 I1

304
bubble

1/28/2016 CS152, Spring 2016

Jump Pipeline Diagrams

44

time
t0 t1 t2 t3 t4 t5 t6 t7

IF I1 I2 I3 I4 I5

ID I1 I2 - I4 I5

EX I1 I2 - I4 I5

MA I1 I2 - I4 I5

WB I1 I2 - I4 I5

time
t0 t1 t2 t3 t4 t5 t6 t7

(I1) 096: ADD IF1 ID1 EX1 MA1 WB1

(I2) 100: J 304 IF2 ID2 EX2 MA2 WB2

(I3) 104: ADD IF3 - - - -
(I4) 304: ADD IF4 ID4 EX4 MA4 WB4

Resource
Usage

- pipeline bubble

1/28/2016 CS152, Spring 2016

Pipelining Conditional Branches

45

I1 096 ADD
I2 100 BEQ x1,x2 +200
I3 104 ADD
I4 304 ADD

BEQ?

I2

I1

104

stall

IR IR

PC addr
inst

Inst
Memory

0x4
Add

bubble

IR

E M
Add

PCSrc (pc+4 / jabs / rind / br)

bubble

IRSrcD

Branch condition is not known until the
execute stage

what action should be taken in the
decode stage ?

A

YALU

Taken?

1/28/2016 CS152, Spring 2016

Pipelining Conditional Branches

46

I1 096 ADD
I2 100 BEQ x1,x2 +200
I3 104 ADD
I4 304 ADD

stall

IR IR

PC addr
inst

Inst
Memory

0x4
Add

bubble

IR

E M
Add

PCSrc (pc+4 / jabs / rind / br)

bubble

IRSrcD

A

YALU

Taken?

If the branch is taken
- kill the two following instructions
- the instruction at the decode stage is

not valid stall signal is not valid

I2 I1

108
I3

Bcond?

?

1/28/2016 CS152, Spring 2016

Pipelining Conditional Branches

47

I1: 096 ADD
I2: 100 BEQ x1,x2 +200
I3: 104 ADD
I4: 304 ADD

stall

IR IR

PC addr
inst

Inst
Memory

0x4
Add

bubble

IR

E M

PCSrc (pc+4/jabs/rind/br)

bubble A

YALU

Taken?

I2 I1

108
I3

Bcond?

Jump?

IRSrcD

IRSrcE

If the branch is taken
- kill the two following instructions
- the instruction at the decode stage is

not valid stall signal is not valid

A
d

d

PC

1/28/2016 CS152, Spring 2016

Branch Pipeline Diagrams
(resolved in execute stage)

48

time
t0 t1 t2 t3 t4 t5 t6 t7

IF I1 I2 I3 I4 I5

ID I1 I2 I3 - I5

EX I1 I2 - - I5

MA I1 I2 - - I5

WB I1 I2 - - I5

time
t0 t1 t2 t3 t4 t5 t6 t7

(I1) 096: ADD IF1 ID1 EX1 MA1 WB1

(I2) 100: BEQ +200 IF2 ID2 EX2 MA2 WB2

(I3) 104: ADD IF3 ID3 - - -
(I4) 108: IF4 - - - -
(I5) 304: ADD IF5 ID5 EX5 MA5 WB5

Resource
Usage

- pipeline bubble

1/28/2016 CS152, Spring 2016

Question of the Day

 Why a five stage pipeline?

49

1/28/2016 CS152, Spring 2016

Acknowledgements

 These slides contain material developed and copyright by:
– Arvind (MIT)

– Krste Asanovic (MIT/UCB)

– Joel Emer (Intel/MIT)

– James Hoe (CMU)

– John Kubiatowicz (UCB)

– David Patterson (UCB)

 MIT material derived from course 6.823

 UCB material derived from course CS252

50

