CS 152 Computer Architecture and Engineering

Lecture 3 - From CISC to RISC

Dr. George Michelogiannakis
EECS, University of California at Berkeley
CRD, Lawrence Berkeley National Laboratory

http://inst.eecs.berkeley.edu/~csl52

1/27/2016 CS152, Spring 2016

Last Time in Lecture 2

= |SA is the hardware/software interface

— Defines set of programmer visible state

— Defines instruction format (bit encoding) and instruction semantics
— Examples: IBM 360, MIPS, RISC-V, x86, JVM

= Many possible implementations of one ISA
— 360 implementations: model 30 (c. 1964), z12 (c. 2012)

— x86 implementations: 8086 (c. 1978), 80186, 286, 386, 486, Pentium,
Pentium Pro, Pentium-4 (c. 2000), Core 2 Duo, Nehalem, Sandy Bridge,
lvy Bridge, Atom, AMD Athlon, Transmeta Crusoe, SoftPC

— MIPS implementations: R2000, R4000, R10000, R18K, ...
— JVM: HotSpot, Picolava, ARM Jazelle, ...

* Microcoding: straightforward methodical way to
implement machines with low logic gate count and
complex instructions

1/27/2016 CS152, Spring 2016

Question of the Day

" Do you think a CISC or RISC single-cycle processor would
be faster?

1/27/2016 CS152, Spring 2016

“lron Law” of Processor Performance

Time = Instructions Cycles Time
Program Program * Instruction * Cycle

" |Instructions per program depends on source code,
compiler technology, and ISA

= Cycles per instructions (CPI) depends on ISA and
uarchitecture

" Time per cycle depends upon the parchitecture and base
technology

1/27/2016 CS152, Spring 2016

CPI for Microcoded Machine

7 cycles 5 cycles 10 cycles
A A A
(Inst 1 Y'onst2 Y Inst 3)

(LI TITTTTITITTTTTITTIT]

Total clock cycles = 74+5+10 = 22
Total instructions = 3
CPI=22/3=7.33

CPl is always an average over a large

number of instructions

1/27/2016 CS152, Spring 2016

Technology Influence

=" When microcode appeared in 50s, different
technologies for:

— Logic: Vacuum Tubes
— Main Memory: Magnetic cores

— Read-Only Memory: Diode matrix, punched metal
cards,...

" Logic very expensive compared to ROM or RAM
" ROM cheaper than RAM
" ROM much faster than RAM

But seventies brought advances in integrated circuit
technology and semiconductor memory...

1/27/2016 CS152, Spring 2016

First Microprocessor
Intel 4004, 1971

= 4-bit
accumulator
architecture

= 8um pMOS
2,300 transistors
3x4 mm2
750kHz clock
8-16 cycles/inst.

Made possible by new integrated circuit technology

1/27/2016 CS152, Spring 2016

Microprocessors in the Seventies

" |[nitial target was embedded control

— First micro, 4-bit 4004 from Intel, designed for a desktop printing
calculator

— Constrained by what could fit on single chip
— Accumulator architectures, similar to earliest computers
— Hardwired state machine control

= 8-bit micros (8085, 6800, 6502) used in hobbyist
personal computers
— Micral, Altair, TRS-80, Apple-ll

— Usually had 16-bit address space (up to 64KB directly
addressable)

— Often came with simple BASIC language interpreter built into
ROM or loaded from cassette tape.

1/27/2016 CS152, Spring 2016

VisiCalc — the first “killer”
app for micros

* Microprocessors had little
impact on conventional
computer market until
VisiCalc spreadsheet for
Apple-II

* Apple-Il used Mostek 6502
microprocessor running at
1MHz

Floppy disks were originally
invented by IBM as a way of

Solve

personal energy crisis.

Let VisiCalc"Power do the work.

With a calculator, pencil and paper you can spend hours plan-
ning, projecting, writing, estimating, calculating, revising, erasing
and recalculating as you work toward a decision.

Or with VisiCalc and your Apple* II you can explore many
more options with a fraction of the time and effort you’ve spent
before.

VisiCalc is a new breed of problem-solving software. Unlike
prepackaged software that forces you into a computerized
straight jacket, VisiCalc adapts itself to any numerical problem
you have. You enter numbers, alphabetic titles and formu-
las on your keyboard. VisiCalc organizes and displays this
information on the screen. You don’t have to spend your
time programming.

Your energy is better spent using the results than
getting them.

Say you're a business manager and want to project
your annual sales. Using the calculator, pencil and
paper method, you'd lay out 12 months across a
sheet and fill in lines and columns of figures
products, outlets, salespeople etc. You'd

als and summary

shipping IBM 360 microcode
patches to customers!

[Personal Com pu tin g Ad 1979 }Jf; e e

1/27/2016 CS152, S¢

VYT VISTCATS, you simply
fill in the same figures on an electronic
“sheet of paper” and let the computer do
the work.

Once your first projection is complete,
you're ready to use VisiCalc’s unique, ™
pawerful recalculation feature. It lets you
ask “What if?’] examining new options and '
planning for contingencies. “What if” sales

r
drop 20 percent in March? Just type in the

CIRCLE 2

Or say you're an engineer working on a design problem and are
wondering “What if that oscillation were damped by another 10
percent?” Or you're working on your family’s expenses and
wonder “What will happen to our entertainment budget if the
heating bill goes up 15 percent this winter?”” VisiCalc responds
instantly to show you all the consequences of any change.

Once you see VisiCalc in action, you'll think of many more
uses for its power. Ask your dealer for a demonstration and dis-
cover how VisiCalc can help you in your professional work and
personal life.

You might find that VisiCalc alone is reason enough to
own a personal computer.

VisiCalc is available now for Apple I computers, with
versions forother personal computers comingsoon.The Apple

11 version costs just $99.50 and requires a 32k disk system.
For the name and address of your nearest VisiCalc
dealer, call (408) 745-7841 or write to Personal
Software, Inc., Dept. P, 592 Weddell Dr,
Sunnyvale, CA 94086. If your favorite
dealer doesn’t already carry Personal
Software products, ask him to
give us a call.

onNAL
- sors—\vl\ a=

TM—VisiCalc is a trademark of
Personal Software, Inc.
*Apple is a registered trademark

of Apple Computer, Inc

DRAM in the Seventies

®* Dramatic progress in semiconductor memory technology

= 1970, Intel introduces first DRAM, 1Kbit 1103

= 1979, Fujitsu introduces 64Kbit DRAM

=> By mid-Seventies, obvious that PCs would soon have
>64KBytes physical memory

1/27/2016 CS152, Spring 2016

10

Microprocessor Evolution

= Rapid progress in 70s, fueled by advances in MOSFET
technology and expanding markets

= Intel i432

— Most ambitious seventies’ micro; started in 1975 - released 1981
— 32-bit capability-based object-oriented architecture

— Instructions variable number of bits long

— Severe performance, complexity, and usability problems

= Motorola 68000 (1979, 8MHz, 68,000 transistors)

— Heavily microcoded (and nanocoded)
— 32-bit general-purpose register architecture (24 address pins)
— 8 address registers, 8 data registers

" Intel 8086 (1978, 8MHz, 29,000 transistors)

— “Stopgap” 16-bit processor, architected in 10 weeks
— Extended accumulator architecture, assembly-compatible with 8080
— 20-bit addressing through segmented addressing scheme

1/27/2016 CS152, Spring 2016 11

Microprogramming: early Eighties

= Evolution bred more complex micro-machines

— Complex instruction sets led to need for subroutine and call stacks in
pncode

— Need for fixing bugs in control programs was in conflict with read-only
nature of uLROM

— =»Wsritable Control Store (WCS) (B1700, QMachine, Intel i432, ...)

= With the advent of VLSI technology assumptions about
ROM & RAM speed became invalid >more complexity

= Better compilers made complex instructions less
important.

= Use of numerous micro-architectural innovations, e.g.,
pipelining, caches and buffers, made multiple-cycle
execution of reg-reg instructions unattractive

1/27/2016 CS152, Spring 2016 14

Analyzing Microcoded Machines

= John Cocke and group at IBM

— Working on a simple pipelined processor, 801, and advanced compilers
inside IBM

— Ported experimental PL.8 compiler to IBM 370, and only used simple
register-register and load/store instructions similar to 801

— Code ran faster than other existing compilers that used all 370
instructions! (up to 6MIPS whereas 2MIPS considered good before)

= Emer, Clark, at DEC

— Measured VAX-11/780 using external hardware

— Found it was actually a 0.5MIPS machine, although usually assumed to
be a 1MIPS machine

— Found 20% of VAX instructions responsible for 60% of microcode, but
only account for 0.2% of execution time!

= VAX8800

— Control Store: 16K*147b RAM, Unified Cache: 64K*8b RAM
— 4.5x more microstore RAM than cache RAM!

1/27/2016 CS152, Spring 2016

15

IC Technology Changes Tradeoffs

» Logic, RAM, ROM all implemented using MOS transistors
= Semiconductor RAM ~ same speed as ROM

1/27/2016 CS152, Spring 2016

16

Nanocoding

s®

Exploits .ecurring control Logecate)] ucode
signal patterns in pcode, I e next-state
e.g. : C’a(;\"\] ‘
“ 1\
ALU, A <=Reg[rs1] ‘\5 qe
oV -

ALUi, A Reg|rs1]

W,
WO T

= MC68000 had 17-bit pcode containing either 10-bit pjump or 9-bit
nanoinstruction pointer

— Nanoinstructions were 68 bits wide, decoded to give 196
control signals

1/27/2016 CS5152, Spring 2016

From CISC to RISC

= Use fast RAM to build fast instruction cache of user-visible
instructions, not fixed hardware microroutines

— Contents of fast instruction memory change to fit what application needs
right now

= Use simple ISA to enable hardwired pipelined
implementation

— Most compiled code only used a few of the available CISC instructions
— Simpler encoding allowed pipelined implementations

" Further benefit with integration

— In early ‘80s, could finally fit 32-bit datapath + small caches on a single
chip
— No chip crossings in common case allows faster operation

1/27/2016 CS152, Spring 2016

18

Berkeley RISC Chips

RISC-1 (1982) Contains 44,420
transistors, fabbed in 5 um NMOS,
with a die area of 77 mm?, ran at
1 MHz. This chip is probably the
first VLSI RISC.

& |5 RISC-I (1983) contains 40,760

% VB ATEVERIS T ROAEET W SHERRURNE

2 - I-I-I--I I | R
73 174 _z YA T wrwmmmﬁ]

1/27/2016 CS152, Spring 2016

& transistors, was fabbed in 3
& 3\ um NMOS, ran at 3 MHz, and
2 the size is 60 mm?2.

Stanford built some too...
19

“lron Law” of Processor Performance

Time = Instructions

Cycles

Time

Program Program * Instruction * Cycle

" |Instructions per program depends on source code,

compiler technology, and ISA

= Cycles per instructions (CPI) depends on ISA and

uarchitecture

" Time per cycle depends upon the parchitecture and base

technology

Microarchitecture

CPI

cycle time

Microcoded

This lecture » | Single-cycle unpipelined

Pipelined

1/27/2016 CS152, Spring 2016

20

“lron Law” of Processor Performance

Time
Program

= |nstructions

Cycles

Time

Program * Instruction * Cycle

" |Instructions per program depends on source code,
compiler technology, and ISA

= Cycles per instructions (CPI) depends on ISA and
uarchitecture

" Time per cycle depends upon the parchitecture and base

technology
Microarchitecture CPI cycle time
Microcoded >1 short
This Iecwre_, Single-cycle unpipelined 1 long
Pipelined 1 short

1/27/2016

CS152, Spring 2016

21

Hardware Elements

= Combinational circuits
— Mux, Decoder, ALU, ...

OpSelect

- Add, Sub, ...
- And, Or, Xor, Not, ...

Sel - GT, LT, EQ, Zero, ...
Ig(n) o A
A — 0] A ©] 0, — Result
. .] L » Comp?
A —> o 0] B —
n-1 F—» “'n-1 /

e Synchronous state elements
— Flipflop, Register, Register file, SRAM, DRAM

D Clk
}

En— En —_/_ -

C'k—'Lif_ D_/ \

Q Q /

Edge-triggered: Data is sampled at the rising edge
1/27/2016 CS152, Spring 2016

Register Files

= Reads are combinational

1/27/2016

En
Clk

ReadSell
ReadSel2

WriteSel
WriteData

register
D, D, D, D,
Nl N NG b ff
6 a a - a,
Cloclzk V\iE

v we

file
2R+1W

—
—|s2 Register
— 1 \\/ S

—

wd

rdl
rd2

—> ReadDatal
——— ReadData2

CS152, Spring 2016

23

Register File Implementation

5

we —

rd

clk

v

A 4

rsl
wdata rdatal rdata2
32 4 32Y 32
—
reg O
—3 Pl R |
reg 1
— E « |
reg 31 i—
| | R

5 [IS2
5

= RISC-V integer instructions have at most 2 register source

operands

1/27/2016

CS152, Spring 2016

24

1/27/2016

A Simple Memory Model

WriteEnable

CIock l

V

Address ——
MAGIC — ReadData

RAM
WriteData ~——

Reads and writes are always completed in one cycle
* 3 Read can be done any time (i.e. combinational)
e a Write is performed at the rising clock edge
if it is enabled
=> the write address and data
must be stable at the clock edge

Later in the course we will present a more realistic model of memory

CS152, Spring 2016

25

1/27/2016

Implementing RISC-V
Without a bus

Single-cycle per instruction
datapath & control logic
(Should be review of CS61C)

CS152, Spring 2016

26

Instruction Execution

Execution of an instruction involves

1. Instruction fetch

2. Decode and register fetch

3. ALU operation

4. Memory operation (optional)
5. Write back (optional)

and compute address of next instruction

1/27/2016 CS152, Spring 2016

27

Datapath: Reg-Reg ALU Instructions

RegWrite Timing?

RegWriteEn
Ox4
clk
Inst<19:15> |V we
nst<24:20> _Jrs1
N J|add |rs2
g (¢ g A inst Inst<11:7> S rd1 U
A _[wa o
I 7lwd rd2 g
ok Inst. GPRs
Memory
Inst<14:12> _JALU
" LCaontrol
v
OpCode
5 S 3 S
func7| rs2 | rsl Ifunc3 rd |opcode rd < (rsl) func (rs2)
31 25 24 2019 1514 1211 76 0

1/27/2016

CS152, Spring 2016

28

Datapath: Reg-Imm ALU Instructions

RegWriteEn
Ox4 a
clk
Inst<19:15> we
»rsl
rs2 .
:IP > addr] rdl -
Inst Inst<11:7> Jwa LU
'|‘ »wd rd2 o1
olk Inst. GPRs
Memory
Inst<31:20> Imm
Select
Inst<14:12> 1 yNEE
Control
12 o) 3 o) /
immediatel2 | rsi Ifunc3 rd |opcode rd < (rsl) op immediate
31 2019 1514 12 11 76 0

1/27/2016 CS152, Spring 2016 29

Conflicts in Merging Datapath

RegWrite
Ox4 Introduce
clk
a Muxes

Inst<19:15> 1we

Inst<24:20> |35 ‘
Wpg—>|addr Inst<11:7> rd1 . Ii

Inst »wa LU
4 Mwd rd2
clk Inst. GPRs 1
Memory
Inst<31:20> Imm
Select
Inst<14:12> LU
Control
v
OpCode ImmSel
/ 5 5 3 5 7/
func7| rs2 | rsl Ifunc3 rd |opcode rd <~ (rsl) func (rs2)
immediatel2 | rsl Jfunc3] rd |opcode rd rsl) op immediate
31 2019 1514 1211 76 0

1/27/2016 CS152, Spring 2016 30

Datapath for ALU Instructions

1/27/2016

CS152, Spring 2016

Oxd RegWriteEn
a clk
<19:15> |7 we
<24:20> =
:lP > addr st <11:7> " rd1
4 »wd rd2
K |nst GPRs
Memory
Inst<31:20> Imm
Select
<14:12> 1 ALU
Control
<6:0>
OpCode ImmSel (R?EZ??rlnm
/ 5 S 3 S / ¥
func7| rs2 | rsl Ifunc3 rd |opcode rd < (rsl) func (rs2)
immediatel2 | rsi Ifunc3 rd |opcode rd < (rsl) op immediate
31 2019 1514 12 11 76 0

31

Load/Store Instructions

RegWriteEn MemWrite
OX4 clk WBSel
| ALU / Mem
“base” Y we
»1rsl
»11s2
1
L |pH—>|addr L Jwa rd .
A S - »lwd rd2 Py >
[.
ok Inst. GPRs >
Memory disp Imm
"| Select
A
o] ALU
Control
v
OpCode ImmSel Op2Sel
7 5 5 3 5 7

imm rs2 | rsi Ifunc3 imm opcode| Store (rsl1) + displacement

immediatel?2 rsll funcy rd |opcodq Load
31 _ 2019 1514 1211 76 0
rsl is the base register

rd is the destination of a Load, rs2 is the data source for a Store
1/27/2016 CS152, Spring 2016 32

RISC-V Conditional Branches

7 5 5 3 5 7 BEQ/BNE
31 25 24 20 19 15 14 12 11 7 6 0
BLTU/BGEU

= Compare two integer registers for equality (BEQ/BNE) or
signed magnitude (BLT/BGE) or unsigned magnitude
(BLTU/BGEU)

= 12-bit immediate encodes branch target address as a
signed offset from PC, in units of 16-bits (i.e., shift left by 1
then add to PC).

1/27/2016 CS152, Spring 2016 33

Conditional Branches (Beq/BNE/BLT/BGE/BLTU/BGEU)

RegWrEn
MemWrite WBSel

v

clk

1/27/2016

addr
inst

Inst.
Memory

v
\Il we Br Logic |- Bcomp?
Prsl clk
»Irs2 |
rd1 > v we
’ wa —e—>| addr
> wd rd?2 LU v
GPRs x rdata
¢ Data
T mm Memory
e Se"fCt » wdata
| ALU
~ |Control
v
OpCode ImmSel Op2Sel
CS152, Spring 2016 34

RISC-V Unconditional Jumps

25 7

Jump Offset[19:0] rd | opcode | JAL
31 1211 76 0

= 20-bit immediate encodes jump target address as a signed
offset from PC, in units of 16-bits (i.e., shift left by 1 then
add to PC). (+/- 1MiB)

= JAL is a subroutine call that also saves return address
(PC+4) in register rd

1/27/2016 CS152, Spring 2016 35

RISC-V Register Indirect Jumps

12 5 3 5 7

rd rsl | func3 rd opcode | JALR

31 20 19 1514 311 7 6 0

" Jumps to target address given by adding 12-bit offset (not
shifted by 1 bit) to register rsl

" The return address (PC+4) is written to rd (can be x0 if
value not needed)

1/27/2016 CS152, Spring 2016

36

Full RISCV1Stage Datapath

pc+4
jalr
branch
Jjump
exception

Y

Y

Y

Y

pc_sel —

PC

Note: for simplicity, the CSR File
(control and status registers) and
associated datapath is not shown

-

1/27/2016

Sodor 1-Stage

RISC-V

rsl —»br_eq?
JumpReg > ¥ Branch br 2
TargGen |« —»CondGen br_Itu?
PC
" Branch
in31:25], »| TargGen
ir11:7]
" PC+4 |
) 71 Jump i
ir31:12] .| TargGen — g
z
o
. ir[31:20 i PC =
2 Instruction g| Inst [31:20] | IType Sign L[] &
g < Extend 3
= Mem © :
~ c
t if31:20] [sType Sign Op2Sel 2 50
> | g _ = |
IS Extend g o) =
: N t
ir31:12] g 2 i i
1w [
> sReg
ir[24:20] rs2 / > . HQFiIe
o1 & RS9 § -
if19:15] [Ejle [_rsl >\ A
—>]
i \
/r AluFun
OplSel
EEE—
d
> Decoder [—> .
— < > addr Data Mem
Control P wdata
Signals ? 4
g
Il
£ E
L QO
€ E
Execute Stage >

CS152, Spring 2016

37

Hardwired Control is pure Combinational Logic

1/27/2016

op code

Equal?

combinational
logic

CS152, Spring 2016

ImmSel
Op2Sel
FuncSel
MemWrite
WBSel
WASel
RegWriteEn
PCSel

38

ALU Control & Immediate Extension

Inst<14:12> (Func3)

Inst<6:0> (Opcode)

N

0?

ALUop

FuncSel

Decode Map

(Func, Op, +, 07?)

ImmSel

1/27/2016

CS152, Spring 2016

(ITypey,, STypey,,

UType,)

39

Hardwired Control Table

Opcode | ImmSel | Op2Sel | FuncSel | MemWr | RFWen | WBSel | WASel PCSel
ALU * Reg | Func no yes ALU rd pc+4
ALUI IType,,| Imm| Op no yes ALU rd pc+4
LW IType,,| Imm + no yes Mem rd pc+4
SW SType,| Imm + yes no * * pc+4
BEQ e SBType,, * * no no * * br
BEQfase | SBType,,| * * no no * * pc+4
3 * s * no no * * jabs
JAL * * * no yes PC X1 jabs
JALR * * * no yes PC rd rind

1/27/2016

Op2Sel=Reg / Imm

WASel =rd / X1

CS152, Spring 2016

WBSel = ALU / Mem / PC

PCSel = pc+4 / br / rind / jabs

40

Single-Cycle Hardwired Control

We will assume clock period is sufficiently long for all of the
following steps to be “completed”:

Instruction fetch

Decode and register fetch
ALU operation

Data fetch if required

A S

Register write-back setup time

=> tC > tlFetch + tRFetch + tALU+ tDMem+ tRWB

At the rising edge of the following clock, the PC, register file
and memory are updated

1/27/2016 CS152, Spring 2016 a1

Question of the Day

" Do you think a CISC or RISC single-cycle processor would
be faster?

1/27/2016 CS152, Spring 2016

42

Summary

" Microcoding became less attractive as gap between RAM
and ROM speeds reduced, and logic implemented in same
technology as memory

* Complex instruction sets difficult to pipeline, so difficult to
increase performance as gate count grew

" [ron Law explains architecture design space
— Trade instruction/program, cycles/instruction, and time/cycle

" Load-Store RISC ISAs designed for efficient pipelined
implementations

— Very similar to vertical microcode
— Inspired by earlier Cray machines (CDC 6600/7600)

= RISC-V ISA will be used in lectures, problems, and labs
— Berkeley RISC chips: RISC-I, RISC-II, SOAR (RISC-lI), SPUR (RISC-1V)

1/27/2016 CS152, Spring 2016 43

Acknowledgements

= These slides contain material developed and copyright by:

— Arvind (MIT)

— Krste Asanovic (MIT/UCB)
— Joel Emer (Intel/MIT)

— James Hoe (CMU)

— John Kubiatowicz (UCB)
— David Patterson (UCB)

= MIT material derived from course 6.823
= UCB material derived from course CS252

1/27/2016 CS152, Spring 2016

44

