
1/27/2016 CS152, Spring 2016

CS 152 Computer Architecture and Engineering

Lecture 3 - From CISC to RISC

Dr. George Michelogiannakis
EECS, University of California at Berkeley

CRD, Lawrence Berkeley National Laboratory

http://inst.eecs.berkeley.edu/~cs152

1/27/2016 CS152, Spring 2016

Last Time in Lecture 2

 ISA is the hardware/software interface
– Defines set of programmer visible state

– Defines instruction format (bit encoding) and instruction semantics

– Examples: IBM 360, MIPS, RISC-V, x86, JVM

 Many possible implementations of one ISA
– 360 implementations: model 30 (c. 1964), z12 (c. 2012)

– x86 implementations: 8086 (c. 1978), 80186, 286, 386, 486, Pentium,
Pentium Pro, Pentium-4 (c. 2000), Core 2 Duo, Nehalem, Sandy Bridge,
Ivy Bridge, Atom, AMD Athlon, Transmeta Crusoe, SoftPC

– MIPS implementations: R2000, R4000, R10000, R18K, …

– JVM: HotSpot, PicoJava, ARM Jazelle, …

 Microcoding: straightforward methodical way to
implement machines with low logic gate count and
complex instructions

2

1/27/2016 CS152, Spring 2016

Question of the Day

 Do you think a CISC or RISC single-cycle processor would
be faster?

3

1/27/2016 CS152, Spring 2016

 Instructions per program depends on source code,
compiler technology, and ISA

 Cycles per instructions (CPI) depends on ISA and
µarchitecture

 Time per cycle depends upon the µarchitecture and base
technology

4

Time = Instructions Cycles Time
Program Program * Instruction * Cycle

“Iron Law” of Processor Performance

1/27/2016 CS152, Spring 2016

Inst 3

CPI for Microcoded Machine

5

7 cycles

Inst 1 Inst 2

5 cycles 10 cycles

Total clock cycles = 7+5+10 = 22

Total instructions = 3

CPI = 22/3 = 7.33

CPI is always an average over a large
number of instructions

Time

1/27/2016 CS152, Spring 2016

Technology Influence

When microcode appeared in 50s, different
technologies for:

– Logic: Vacuum Tubes

– Main Memory: Magnetic cores

– Read-Only Memory: Diode matrix, punched metal
cards,…

 Logic very expensive compared to ROM or RAM

 ROM cheaper than RAM

 ROM much faster than RAM

6

But seventies brought advances in integrated circuit
technology and semiconductor memory…

1/27/2016 CS152, Spring 2016

First Microprocessor
Intel 4004, 1971

 4-bit
accumulator
architecture

 8µm pMOS

 2,300 transistors

 3 x 4 mm2

 750kHz clock

 8-16 cycles/inst.

7

Made possible by new integrated circuit technology

1/27/2016 CS152, Spring 2016

Microprocessors in the Seventies

 Initial target was embedded control
– First micro, 4-bit 4004 from Intel, designed for a desktop printing

calculator

– Constrained by what could fit on single chip

– Accumulator architectures, similar to earliest computers

– Hardwired state machine control

 8-bit micros (8085, 6800, 6502) used in hobbyist
personal computers

– Micral, Altair, TRS-80, Apple-II

– Usually had 16-bit address space (up to 64KB directly
addressable)

– Often came with simple BASIC language interpreter built into
ROM or loaded from cassette tape.

8

1/27/2016 CS152, Spring 2016

VisiCalc – the first “killer”
app for micros

• Microprocessors had little
impact on conventional
computer market until
VisiCalc spreadsheet for
Apple-II

• Apple-II used Mostek 6502
microprocessor running at
1MHz

9
[Personal Computing Ad, 1979]

Floppy disks were originally
invented by IBM as a way of
shipping IBM 360 microcode
patches to customers!

1/27/2016 CS152, Spring 2016

DRAM in the Seventies

 Dramatic progress in semiconductor memory technology

 1970, Intel introduces first DRAM, 1Kbit 1103

 1979, Fujitsu introduces 64Kbit DRAM

=> By mid-Seventies, obvious that PCs would soon have
>64KBytes physical memory

10

1/27/2016 CS152, Spring 2016

Microprocessor Evolution

 Rapid progress in 70s, fueled by advances in MOSFET
technology and expanding markets

 Intel i432
– Most ambitious seventies’ micro; started in 1975 - released 1981

– 32-bit capability-based object-oriented architecture

– Instructions variable number of bits long

– Severe performance, complexity, and usability problems

 Motorola 68000 (1979, 8MHz, 68,000 transistors)
– Heavily microcoded (and nanocoded)

– 32-bit general-purpose register architecture (24 address pins)

– 8 address registers, 8 data registers

 Intel 8086 (1978, 8MHz, 29,000 transistors)
– “Stopgap” 16-bit processor, architected in 10 weeks

– Extended accumulator architecture, assembly-compatible with 8080

– 20-bit addressing through segmented addressing scheme

11

1/27/2016 CS152, Spring 2016

Microprogramming: early Eighties

 Evolution bred more complex micro-machines
– Complex instruction sets led to need for subroutine and call stacks in

µcode

– Need for fixing bugs in control programs was in conflict with read-only
nature of µROM

– Writable Control Store (WCS) (B1700, QMachine, Intel i432, …)

 With the advent of VLSI technology assumptions about
ROM & RAM speed became invalid more complexity

 Better compilers made complex instructions less
important.

 Use of numerous micro-architectural innovations, e.g.,
pipelining, caches and buffers, made multiple-cycle
execution of reg-reg instructions unattractive

14

1/27/2016 CS152, Spring 2016

Analyzing Microcoded Machines

 John Cocke and group at IBM
– Working on a simple pipelined processor, 801, and advanced compilers

inside IBM

– Ported experimental PL.8 compiler to IBM 370, and only used simple
register-register and load/store instructions similar to 801

– Code ran faster than other existing compilers that used all 370
instructions! (up to 6MIPS whereas 2MIPS considered good before)

 Emer, Clark, at DEC
– Measured VAX-11/780 using external hardware

– Found it was actually a 0.5MIPS machine, although usually assumed to
be a 1MIPS machine

– Found 20% of VAX instructions responsible for 60% of microcode, but
only account for 0.2% of execution time!

 VAX8800
– Control Store: 16K*147b RAM, Unified Cache: 64K*8b RAM

– 4.5x more microstore RAM than cache RAM!

15

1/27/2016 CS152, Spring 2016

IC Technology Changes Tradeoffs

 Logic, RAM, ROM all implemented using MOS transistors

 Semiconductor RAM ~ same speed as ROM

16

1/27/2016 CS152, Spring 2016

Nanocoding

17

 MC68000 had 17-bit µcode containing either 10-bit µjump or 9-bit
nanoinstruction pointer

– Nanoinstructions were 68 bits wide, decoded to give 196
control signals

µcode ROM

nanoaddress

µcode
next-state

µaddress

μPC (state)

nanoinstruction ROM
data

Exploits recurring control
signal patterns in µcode,
e.g.,

ALU0 A <= Reg[rs1]
...
ALUi0 A Reg[rs1]
...

1/27/2016 CS152, Spring 2016

From CISC to RISC

 Use fast RAM to build fast instruction cache of user-visible
instructions, not fixed hardware microroutines

– Contents of fast instruction memory change to fit what application needs
right now

 Use simple ISA to enable hardwired pipelined
implementation

– Most compiled code only used a few of the available CISC instructions

– Simpler encoding allowed pipelined implementations

 Further benefit with integration
– In early ‘80s, could finally fit 32-bit datapath + small caches on a single

chip

– No chip crossings in common case allows faster operation

18

1/27/2016 CS152, Spring 2016

Berkeley RISC Chips

19

RISC-I (1982) Contains 44,420
transistors, fabbed in 5 µm NMOS,
with a die area of 77 mm2, ran at
1 MHz. This chip is probably the
first VLSI RISC.

RISC-II (1983) contains 40,760
transistors, was fabbed in 3
µm NMOS, ran at 3 MHz, and
the size is 60 mm2.

Stanford built some too…

1/27/2016 CS152, Spring 2016

 Instructions per program depends on source code,
compiler technology, and ISA

 Cycles per instructions (CPI) depends on ISA and
µarchitecture

 Time per cycle depends upon the µarchitecture and base
technology

20

Time = Instructions Cycles Time
Program Program * Instruction * Cycle

“Iron Law” of Processor Performance

Microarchitecture CPI cycle time

Microcoded

Single-cycle unpipelined

Pipelined

This lecture

1/27/2016 CS152, Spring 2016

 Instructions per program depends on source code,
compiler technology, and ISA

 Cycles per instructions (CPI) depends on ISA and
µarchitecture

 Time per cycle depends upon the µarchitecture and base
technology

21

Time = Instructions Cycles Time
Program Program * Instruction * Cycle

“Iron Law” of Processor Performance

Microarchitecture CPI cycle time

Microcoded >1 short

Single-cycle unpipelined 1 long

Pipelined 1 short

This lecture

1/27/2016 CS152, Spring 2016

Hardware Elements

 Combinational circuits
– Mux, Decoder, ALU, ...

• Synchronous state elements
– Flipflop, Register, Register file, SRAM, DRAM

Edge-triggered: Data is sampled at the rising edge

Clk

D

Q

En
ff

Q

D

Clk

En

OpSelect
- Add, Sub, ...
- And, Or, Xor, Not, ...
- GT, LT, EQ, Zero, ...

Result

Comp?

A

B

ALU

Sel

O

A0

A1

An-1

Mux...

lg(n)

A

D
ec

o
d

er ...

O0

O1

On-1

lg(n)

1/27/2016 CS152, Spring 2016

Register Files

 Reads are combinational

23

ReadData1ReadSel1

ReadSel2

WriteSel

Register
file

2R+1W

ReadData2

WriteData

WEClock

rd1rs1

rs2

ws

wd

rd2

we

ff

Q0

D0

Clk

En
ff

Q1

D1

ff

Q2

D2

ff

Qn-1

Dn-1

...

...

...

register

1/27/2016 CS152, Spring 2016

Register File Implementation

 RISC-V integer instructions have at most 2 register source
operands

24

reg 31

rd clk

reg 1

wdata

we

rs1
rdata1 rdata2

reg 0

…

32

…

5 32 32

…

rs25
5

1/27/2016 CS152, Spring 2016

A Simple Memory Model

25

MAGIC
RAM

ReadData

WriteData

Address

WriteEnable

Clock

Reads and writes are always completed in one cycle
• a Read can be done any time (i.e. combinational)
• a Write is performed at the rising clock edge

if it is enabled
=> the write address and data

must be stable at the clock edge

Later in the course we will present a more realistic model of memory

1/27/2016 CS152, Spring 2016

Implementing RISC-V
Without a bus

Single-cycle per instruction
datapath & control logic

(Should be review of CS61C)

26

1/27/2016 CS152, Spring 2016

Instruction Execution

Execution of an instruction involves

1. Instruction fetch

2. Decode and register fetch

3. ALU operation

4. Memory operation (optional)

5. Write back (optional)

and compute address of next instruction

27

1/27/2016 CS152, Spring 2016

Datapath: Reg-Reg ALU Instructions

28

RegWrite Timing?

0x4

Add

clk

addr
inst

Inst.

Memory

PC

Inst<19:15>
Inst<24:20>

Inst<11:7>

Inst<14:12>

OpCode

ALU

ALU

Control

RegWriteEn

clk

rd1

GPRs

rs1
rs2

wa
wd rd2

we

7 5 5 3 5 7
func7 rs2 rs1 func3 rd opcode rd (rs1) func (rs2)

31 25 24 20 19 15 14 12 11 7 6 0

1/27/2016 CS152, Spring 2016

Datapath: Reg-Imm ALU Instructions

29

Imm
Select

ImmSel

Inst<31:20>

OpCode

0x4

Add

clk

addr
inst

Inst.

Memory

PC
ALU

RegWriteEn

clk

rd1

GPRs

rs1
rs2

wa
wd rd2

weInst<19:15>

Inst<11:7>

Inst<14:12> ALU
Control

12 5 3 5 7
immediate12 rs1 func3 rd opcode rd (rs1) op immediate

31 20 19 15 14 12 11 7 6 0

1/27/2016 CS152, Spring 2016

Conflicts in Merging Datapath

30

Imm
Select

ImmSelOpCode

0x4

Add

clk

addr
inst

Inst.

Memory

PC
ALU

RegWrite

clk

rd1

GPRs

rs1
rs2

wa
wd rd2

weInst<19:15>

Inst<11:7>

Inst<31:20>

Inst<14:12> ALU
Control

Introduce
muxes

Inst<24:20>

7 5 5 3 5 7
func7 rs2 rs1 func3 rd opcode rd (rs1) func (rs2)

immediate12 rs1 func3 rd opcode rd (rs1) op immediate

31 20 19 15 14 12 11 7 6 0

1/27/2016 CS152, Spring 2016

Datapath for ALU Instructions

31

<14:12>

Op2Sel

Reg / Imm

Imm
Select

ImmSel
OpCode

0x4

Add

clk

addr
inst

Inst.

Memory

PC
ALU

RegWriteEn

clk

rd1

GPRs

rs1
rs2

wa
wd rd2

we<19:15>

<24:20>

ALU
Control

<11:7>

<6:0>

7 5 5 3 5 7
func7 rs2 rs1 func3 rd opcode rd (rs1) func (rs2)

immediate12 rs1 func3 rd opcode rd (rs1) op immediate

31 20 19 15 14 12 11 7 6 0

Inst<31:20>

1/27/2016 CS152, Spring 2016

Load/Store Instructions

32

WBSel

ALU / Mem

rs1 is the base register
rd is the destination of a Load, rs2 is the data source for a Store

Op2Sel

“base”

disp

ImmSelOpCode

ALU
Control

ALU

0x4

Add

clk

addr
inst

Inst.

Memory

PC

RegWriteEn

clk

rd1

GPRs

rs1
rs2

wa
wd rd2

we

Imm
Select

clk

MemWrite

addr

wdata

rdata
Data

Memory

we

7 5 5 3 5 7
imm rs2 rs1 func3 imm opcode Store (rs1) + displacement

immediate12 rs1 func3 rd opcode Load

31 20 19 15 14 12 11 7 6 0

1/27/2016 CS152, Spring 2016

RISC-V Conditional Branches

 Compare two integer registers for equality (BEQ/BNE) or
signed magnitude (BLT/BGE) or unsigned magnitude
(BLTU/BGEU)

 12-bit immediate encodes branch target address as a
signed offset from PC, in units of 16-bits (i.e., shift left by 1
then add to PC).

33

7

6 0

opcode

5

11 7

imm

3

14 12

func3

5

19 15

rs1

5

24 20

rs2

7

31 25

imm

BEQ/BNE

BLT/BGE

BLTU/BGEU

1/27/2016 CS152, Spring 2016

Conditional Branches (BEQ/BNE/BLT/BGE/BLTU/BGEU)

34

0x4

Add

PCSel

clk

WBSelMemWrite

addr

wdata

rdata
Data

Memory

we

Op2SelImmSelOpCode

Bcomp?

clk

clk

addr
inst

Inst.

Memory

PC rd1

GPRs

rs1
rs2

wa
wd rd2

we

Imm

Select

ALU

ALU
Control

Add

br

pc+4

RegWrEn

Br Logic

1/27/2016 CS152, Spring 2016

RISC-V Unconditional Jumps

 20-bit immediate encodes jump target address as a signed
offset from PC, in units of 16-bits (i.e., shift left by 1 then
add to PC). (+/- 1MiB)

 JAL is a subroutine call that also saves return address
(PC+4) in register rd

35

JAL
7

12 11 7 6 0

opcode

25

31

Jump Offset[19:0] rd

1/27/2016 CS152, Spring 2016

RISC-V Register Indirect Jumps

 Jumps to target address given by adding 12-bit offset (not
shifted by 1 bit) to register rs1

 The return address (PC+4) is written to rd (can be x0 if
value not needed)

36

7

6 0

opcode

5

11 7

rd

3

1
2

func3

5

19 15 14

rs1 JALR

12

31 20

rd

1/27/2016 CS152, Spring 2016

Full RISCV1Stage Datapath

37

+4

Instruction

Mem

Reg

File

IType Sign

Extend

Decoder
Data Mem

ir[24:20]

branch

pc+4

p
c
_

s
e
l

ir[31:20]

rs1

ALU

Control

Signals

w
b

_
s
e

l

Reg

File

rf
_

w
e
n

v
a
l

m
e
m

_
rw

PC

m
e
m

_
v
a

l

addr
wdata

rdata

Inst

Jump

TargGen

Branch

TargGen

ir[19:15]

ir[31:25],
ir[11:7]

PC+4
jalr

rs2

Branch

CondGen

br_eq?

br_lt?

c
o
-p

ro
c
e

s
s
o

r
(C

S
R

)
re

g
is

te
rs

ir
[1

1
:7

]

jump

ir[31:12]

Execute Stage

br_ltu?

PC

a
d

d
r

ir[31:12]

JumpReg

TargGen

Op2Sel

Op1Sel
AluFun

d
a
ta

wa

w
d

en

a
d
d

r d
a

ta

UType

Note: for simplicity, the CSR File

(control and status registers) and

associated datapath is not shown

RISC-V

Sodor 1-Stage

exception

SType Sign

Extend

ir[31:20]

PC

rs2

rs1

rs2

1/27/2016 CS152, Spring 2016

Hardwired Control is pure Combinational Logic

38

combinational
logic

op code

Equal?

ImmSel

Op2Sel

FuncSel

MemWrite

WBSel

WASel

RegWriteEn

PCSel

1/27/2016 CS152, Spring 2016

ALU Control & Immediate Extension

39

Inst<6:0> (Opcode)

Decode Map

Inst<14:12> (Func3)

ALUop

0?

+

FuncSel

(Func, Op, +, 0?)

ImmSel

(IType12, SType12,

UType20)

1/27/2016 CS152, Spring 2016

Hardwired Control Table

40

Opcode ImmSel Op2Sel FuncSel MemWr RFWen WBSel WASel PCSel

ALU

ALUi

LW

SW

BEQtrue

BEQfalse

J

JAL

JALR

Op2Sel= Reg / Imm WBSel = ALU / Mem / PC
WASel = rd / X1 PCSel = pc+4 / br / rind / jabs

* * * no yes rindPC rd

jabs* * * no yes PC X1

jabs* * * no no * *

pc+4SBType12 * * no no * *

brSBType12 * * no no * *

pc+4SType12 Imm + yes no * *

pc+4* Reg Func no yes ALU rd

IType12 Imm Op pc+4no yes ALU rd

pc+4IType12 Imm + no yes Mem rd

1/27/2016 CS152, Spring 2016

Single-Cycle Hardwired Control

We will assume clock period is sufficiently long for all of the
following steps to be “completed”:

1. Instruction fetch

2. Decode and register fetch

3. ALU operation

4. Data fetch if required

5. Register write-back setup time

=> tC > tIFetch + tRFetch + tALU+ tDMem+ tRWB

At the rising edge of the following clock, the PC, register file
and memory are updated

41

1/27/2016 CS152, Spring 2016

Question of the Day

 Do you think a CISC or RISC single-cycle processor would
be faster?

42

1/27/2016 CS152, Spring 2016

Summary

 Microcoding became less attractive as gap between RAM
and ROM speeds reduced, and logic implemented in same
technology as memory

 Complex instruction sets difficult to pipeline, so difficult to
increase performance as gate count grew

 Iron Law explains architecture design space
– Trade instruction/program, cycles/instruction, and time/cycle

 Load-Store RISC ISAs designed for efficient pipelined
implementations

– Very similar to vertical microcode

– Inspired by earlier Cray machines (CDC 6600/7600)

 RISC-V ISA will be used in lectures, problems, and labs
– Berkeley RISC chips: RISC-I, RISC-II, SOAR (RISC-III), SPUR (RISC-IV)

43

1/27/2016 CS152, Spring 2016

Acknowledgements

 These slides contain material developed and copyright by:
– Arvind (MIT)

– Krste Asanovic (MIT/UCB)

– Joel Emer (Intel/MIT)

– James Hoe (CMU)

– John Kubiatowicz (UCB)

– David Patterson (UCB)

 MIT material derived from course 6.823

 UCB material derived from course CS252

44

