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Last Time in Lecture 1

 Computer Architecture >> ISAs and RTL
– CS152 is about interaction of hardware and software, and design of 

appropriate abstraction layers

 The end of the uniprocessor era
– With simple and specialized cores due to power constraints

 Cost of software development becomes a large constraint on 
architecture (need compatibility)

 IBM 360 introduces notion of “family of machines” running 
same ISA but very different implementations

– Six different machines released on same day (April 7, 1964)

– “Future-proofing” for subsequent generations of machine
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Question of the Day

 What purpose does microcode serve today?
– Would we have it if designing ISAs from scatch?

– Why would we want a complex ISA?

– Why do you think motivated CISC and RISC?
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Instruction Set Architecture (ISA)

 The contract between software and hardware

 Typically described by giving all the programmer-visible 
state (registers + memory) plus the semantics of the 
instructions that operate on that state

 IBM 360 was first line of machines to separate ISA from 
implementation (aka. microarchitecture)

 Many implementations possible for a given ISA
– E.g., the Soviets build code-compatible clones of the IBM360, as did 

Amdahl after he left IBM.

– E.g.2., today you can buy AMD or Intel processors that run the x86-64 ISA.

– E.g.3: many cellphones use the ARM ISA with implementations from many 
different companies including TI, Qualcomm, Samsung, Marvell, etc.
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Name a Famous ISA!

 Intel’s x86 was initially deployed in 1978

 Is alive and well today, though larger

 Reference manual has 3883 pages!
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Implementations of the x86

 Hundreds of different processors implement x86
– Not just by Intel

 Some have extensions that compilers can use if available
– But software still compatible if not

 More than just intel develop x86
– X86-64 was first specified by AMD in 2000
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ISA to Microarchitecture Mapping

 ISA often designed with particular microarchitectural style 
in mind, e.g.,

– Accumulator  hardwired, unpipelined
– CISC microcoded
– RISC  hardwired, pipelined
– VLIW  fixed-latency in-order parallel pipelines
– JVM  software interpretation

 But can be implemented with any microarchitectural style
– Intel Ivy Bridge: hardwired pipelined CISC (x86) 

machine (with some microcode support)
– Simics: Software-interpreted SPARC RISC machine
– ARM Jazelle: A hardware JVM processor
– This lecture: a microcoded RISC-V machine

7



CS152, Spring 2016

Today, Microprogramming

To show how to build very small processors with complex ISAs

To help you understand where CISC* machines came from

Because still used in common machines (IBM360, x86, PowerPC)

As a gentle introduction into machine structures

To help understand how technology drove the move to RISC*

* “CISC”/”RISC” names much newer than style of machines they refer to.
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Problem Microprogramming Solves

 Complex ISA to ease programmer and assembler’s life
– With instructions that have multiple steps

 Simple processors such as in order to meet power 
constraints

– (refer to previous lecture)

 Turn complex architecture into simple microarchitecture 
with programmable control

 Can also patch microcode
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The Idea

 An ISA (assembly) instruction, is not what drives the 
processor’s datapath directly

 Instead, instructions are broken down to FSM states

 Each state is a microinstruction and outputs control 
signals
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Microarchitecture: Bus-Based Implementation of ISA

11

Structure: How components are connected.
Static

Behavior: How data moves between components
Dynamic

Controller

Data
path

Control
PointsStatus

lines
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Microcontrol Unit Maurice Wilkes, 1954
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Embed the 
control logic 
state table in a 
memory array

First used in EDSAC-2, 
completed 1958

Matrix A Matrix B

Decoder

Next state

op      conditional
code   flip-flop

µaddress

Control lines  to
ALU, MUXs, Registers

Memory
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Microcoded Microarchitecture
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Memory
(RAM)

Datapath

mcontroller
(ROM)

AddrData

zero?
busy?

opcode

enMem
MemWrt

holds fixed
microcode instructions 

holds user program 
written in macrocode

instructions (e.g., x86,  
RISC-V, etc.)



CS152, Spring 2016

RISC-V ISA

 RISC design from UC Berkeley

 Realistic & complete ISA, but open & simple

 Not over-architected for a certain implementation style

 Both 32-bit and 64-bit address space variants
– RV32 and RV64

 Easy to subset/extend for education/research
– RV32IM, RV32IMA, RV32IMAFD, RV32G

 Techreport with RISC-V spec available on class website or 
riscv.org

 We’ll be using 32-bit and 64-bit RISC-V this semester in lectures 
and labs. Similar to MIPS you saw in CS61C
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RV32 Processor State

15

Program counter (pc)

32x32-bit integer registers (x0-x31)
• x0 always contains a 0

32 floating-point (FP) registers (f0-f31)
• each can contain a single- or double-
precision FP value (32-bit or 64-bit 
IEEE FP)
•Is an extension

FP status register (fsr), used for FP
rounding mode & exception reporting
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RISC-V Instruction Encoding

 Base instruction set (RV32) always has fixed 32-bit 
instructions lowest two bits = 112

 All branches and jumps have targets at 16-bit granularity 
(even in base ISA where all instructions are fixed 32 bits)

– Still will cause a fault if fetching a 32-bit instruction
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Four Core RISC-V Instruction Formats
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Destination 
Reg.

Reg. 
Source 1

Reg. 
Source 2

7-bit opcode
field (but low 2 
bits =112)

Additional 
opcode
bits/immediate

Aligned on a four-byte boundary in memory. There are variants!

Sign bit of immediates always on bit 31 of instruction. Register fields never move
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With Variants
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Integer Computational Instructions
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 I-type

 ADDI: adds sign extended 12-bit immediate to rs1
– Actually, all immediates in all instructions are sign extended

 SLTI(U): set less than immediate

 Shift instructions, etc…
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Integer Computational Instructions

20

 R-type

 Rs1 and rs2 are the source registers. Rd the destination

 SLT, SLTU: set less than

 SRL, SLL, SRA: shift logical or arithmetic left or right
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S-Type
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12-bit signed immediate split across two fields

Branches, compare two registers, PC+(immediate<<1) target

(Signed offset in multiples of two).Branches do not have delay slot



CS152, Spring 2016

UJ-Type
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“J” Unconditional jump, PC+offset target

“JAL” Jump and link, also writes PC+4 to x1

Offset scaled by 1-bit left shift – can jump to 16-bit 
instruction boundary (Same for branches)

Also “JALR” where Imm (12 bits) + rd1 = target
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L-Type

23

Writes 20-bit immediate to top of destination register.

Used to build large immediates.

12-bit immediates are signed, so have to account for sign when 
building 32-bit immediates in 2-instruction sequence (LUI high-
20b, ADDI low-12b)
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Loads and Stores
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Store instructions (S-type). Loads (I-type).

(rs1 + immediate) addressing

Store only uses rs1 and rs2. Rd is only present when being written to
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Where is NOP?

25

addi x0, x0, 0
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Data Formats and Memory Addresses
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Data formats:
8-b Bytes, 16-b Half words, 32-b words and 64-b double words

Some issues

• Byte addressing

• Word alignment 
Suppose the memory is organized in 32-bit words.

Can a word address begin only at 0, 4, 8, .... ?

0         1           2          3          4           5           6          7 

Most Significant 

Byte

Least Significant 

Byte

Byte Addresses

3 2 1 0

0 1 2 3Big Endian

Little Endian 

(RISC-V)
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BACK TO MICROCODING
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A Bus-based Datapath for RISC-V
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Microinstruction: register to register transfer  (17 control signals)
MA <= PC means   RegSel = PC;   enReg=yes; ldMA= yes

B <= Reg[rs2] means

enMem

MA

addr

data

ldMA

Memory

busy

MemWrt

Bus 32

zero?

A B

ALUOp ldA ldB

ALU

enALU

RegWrt

enReg

addr

data

rs1
rs2
rd

32(PC)

RegSel

32 GPRs
+ PC ...

32-bit Reg

3

rs1
rs2
rd

ImmSel

IR

Opcode

ldIR

Immed
Select

enImm

3

RegSel = rs2;   enReg=yes;   ldB = yes
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Memory Module

29

Assumption: Memory operates independently
and is slow as compared to Reg-to-Reg transfers 
(multiple CPU clock cycles per access)

Enable

Write(1)/Read(0)
RAM

din dout

we

addr busy

bus
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Instruction Execution

30

Execution of a RISC-V instruction involves:

1. instruction fetch
2. decode and register fetch
3. ALU operation
4. memory operation (optional)
5. write back to register file (optional)

+ the computation of the 
next instruction address
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Microprogram Fragments

31

instr fetch: MA, A <= PC
PC <= A + 4
IR <= Memory
dispatch on Opcode

can be
treated as
a macro

ALU:  A <= Reg[rs1]
B <= Reg[rs2]
Reg[rd] <=  func(A,B)
do instruction fetch

ALUi:  A <= Reg[rs1]
B <= Imm sign extension
Reg[rd] <= Opcode(A,B)
do instruction fetch
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Microprogram Fragments (cont.)
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A <= Reg[rs1]
B <= Imm
MA <= A + B
Reg[rd] <= Memory
do instruction fetch 

A <= A - 4             Get original PC back in A
B <= IR
PC <= JumpTarg(A,B)
do instruction fetch 

A <= Reg[rs1]
B <= Reg[rs2]
If A==B then go to bz-taken
do instruction fetch 

A <= PC
A <= A - 4 Get original PC back in A
B <= BImm << 1 BImm = IR[31:27,16:10]
PC <= A + B
do instruction fetch 

JumpTarg(A,B) = 
{A + (B[31:7]<<1)}

LW:

J:
(JAL with rd=x0)

beq:

bz-taken:
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RISC-V Microcontroller: first attempt
pure ROM implementation

33

next 
state

PC (state)

Opcode
zero?

Busy (memory)

Control Signals (17)

s

s

7

Program ROM

addr

data

= 2(opcode+sbits) words

How big is 
“s”?

ROM size ?

Word size ?
= control+s bits



CS152, Spring 2016

Microprogram in the ROM worksheet

34

State  Op       zero?    busy     Control points next-state

fetch0 * * * MA,A <= PC fetch1

fetch1 * * yes .... fetch1

fetch1 * * no IR <= Memory fetch2

fetch2 * * * PC <= A + 4 ?

ALU0 * * * A <= Reg[rs1] ALU1

ALU1 * * * B <= Reg[rs2] ALU2

ALU2 * * * Reg[rd] <= func(A,B) fetch0

fetch2 ALU * * PC <= A + 4 ALU0
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Microprogram in the ROM
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State  Op    zero?   busy        Control points next-state

fetch0 * * * MA,A <= PC fetch1

fetch1 * * yes .... fetch1

fetch1 * * no IR <= Memory fetch2

fetch2 ALU * * PC <= A + 4 ALU0

fetch2 ALUi * * PC <= A + 4 ALUi0
fetch2 LW * * PC <= A + 4 LW0

fetch2 SW * * PC <= A + 4 SW0

fetch2 J * * PC <= A + 4 J0

fetch2 JAL * * PC <= A + 4 JAL0

fetch2 JR * * PC <= A + 4 JR0

fetch2 JALR * * PC <= A + 4 JALR0

fetch2 beq * * PC <= A + 4 beq0

...
ALU0 * * * A <= Reg[rs1] ALU1

ALU1 * * * B <= Reg[rs2] ALU2

ALU2 * * * Reg[rd] <= func(A,B) fetch0
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Microprogram in the ROM Cont.

36

State  Op zero?           busy        Control points next-state

ALUi0 * * * A <= Reg[rs1] ALUi1
ALUi1 * * * B <= Imm ALUi2
ALUi2 * * * Reg[rd]<= Op(A,B) fetch0

...
J0 * * * A <= A - 4 J1

J1 * * * B <= IR J2

J2 * * * PC <= JumpTarg(A,B) fetch0

...
beq0 * * * A <= Reg[rs1] beq1

beq1 * * * B <= Reg[rs2] beq2

beq2 * yes * A <= PC beq3

beq2 * no * .... fetch0

beq3 * * * A <=  A - 4 beq4

beq4 * * * B <= BImm beq5

beq5 * * * PC <= A+B fetch0

...
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Size of Control Store

37

RISC-V: w = 5+2  c = 17 s = ?
no. of steps per opcode = 4 to 6 + fetch-sequence
no. of states ~= (4 steps per op-group ) x op-groups 

+ common sequences
= 4 x 8 + 10 states = 42 states => s = 6

Control ROM = 2(5+6) x 23 bits approx. 24 Kbytes

size = 2(w+s) x (c + s) Control ROM

data

status & opcode

addr

next μPC

Control signals

μPC

/
w

/  s

/  c
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Reducing Control Store Size 
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• Reduce the ROM height (= address bits)
– reduce inputs by extra external logic

each input bit doubles the size of the 
control store

– reduce states by grouping opcodes
find common sequences of actions

– condense input status bits
combine all exceptions into one, i.e.,
exception/no-exception

• Reduce the ROM width
– restrict the next-state encoding

Next, Dispatch on opcode, Wait for memory, ...
– encode control signals (vertical microcode)

Control store has to be fast => expensive
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RISC-V Controller V2

39

μJumpType =
next  | spin

| fetch | dispatch
| ftrue | ffalse

Control Signals (17)

Control ROM

address

data

+1 

Opcode ext

μPC (state)

jump
logic

zero

μPC μPC+1

absolute

op-group

busy

μPCSrc
input encoding reduces 

ROM height 

next-state encoding 
reduces ROM width 
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Jump Logic

40

μPCSrc = Case  μJumpTypes

next=> μPC+1

spin => if (busy) then μPC else μPC+1

fetch => absolute

dispatch => op-group

ftrue => if (zero) then absolute else μPC+1

ffalse => if (zero) then μPC+1 else absolute
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Instruction Fetch & ALU: RISC-V-Controller-2
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State  Control points next-state

fetch0 MA,A <= PC 
fetch1 IR  <= Memory
fetch2 PC <= A + 4 
...
ALU0 A   <= Reg[rs1] 
ALU1 B   <= Reg[rs2] 
ALU2 Reg[rd]<=func(A,B)

ALUi0 A <= Reg[rs1] 
ALUi1 B <= Imm
ALUi2 Reg[rd]<= Op(A,B)

next
spin
dispatch

next
next
fetch

next
next
fetch
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Load & Store: RISC-V-Controller-2
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State  Control points next-state

LW0 A   <= Reg[rs1] next 
LW1 B   <= Imm next
LW2 MA <= A+B next
LW3 Reg[rd] <= Memory spin
LW4 fetch

SW0 A   <= Reg[rs1] next 
SW1 B   <= BImm next
SW2 MA <= A+B next
SW3 Memory <= Reg[rs2] spin
SW4 fetch
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Branches: RISC-V-Controller-2 
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State  Control points next-state

beq0 A <= Reg[rs1] next
beq1 B <= Reg[rs2] next
beq2 A <= PC ffalse
beq3 A <= A- 4 next
beq3 B <= BImm<<1 next
beq4 PC <= A+B fetch



CS152, Spring 2016

Jumps: RISC-V-Controller-2
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State  Control points next-state

JALR0 A   <=  Reg[rs1] next
JALR1 Reg[1] <= A next
JALR2 PC <= A fetch

JAL0 A   <= PC next 
JAL1 Reg[1] <= A next 
JAL2 A <= A-4 next 
JAL3 B   <= IR next
JAL4 PC <= JumpTarg(A,B) fetch

J and JR are special cases with rd = x0
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VAX 11-780 Microcode

45
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Implementing Complex Instructions
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enMem

MA

addr

data

ldMA

Memory

busy

MemWrt

Bus 32

zero?

A B

ALUOp ldA ldB

ALU

enALU

RegWrt

enReg

addr

data

rs1
rs2
rd

32(PC)

RegSel

32 GPRs
+ PC ...

32-bit Reg

3

rs1
rs2
rd

ImmSel

IR

Opcode

ldIR

Immed
Select

enImm

3

rd <= M[(rs1)] op (rs2) Reg-Memory-src ALU op
M[(rd)] <= (rs1) op (rs2) Reg-Memory-dst ALU op 
M[(rd)] <= M[(rs1)] op M[(rs2)] Mem-Mem ALU op
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Mem-Mem ALU Instructions: 
RISC-V-Controller-2

47

Mem-Mem ALU op          M[(rd)] <= M[(rs1)] op M[(rs2)]

ALUMM0 MA <= Reg[rs1] next
ALUMM1 A   <= Memory spin
ALUMM2 MA <= Reg[rs2] next
ALUMM3 B   <= Memory spin
ALUMM4 MA <=Reg[rd] next
ALUMM5 Memory <= func(A,B) spin
ALUMM6 fetch

Complex instructions usually do not require datapath modifications in a 
microprogrammed implementation 

-- only extra space for the control program

Implementing these instructions using a hardwired controller is difficult 
without datapath modifications
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Performance Issues

48

Microprogrammed control 
=>  multiple cycles per instruction

Cycle time ? 
tC > max(treg-reg, tALU, t ROM)

Suppose  10 * tμROM < tRAM

Good performance, relative to a single-cycle
hardwired implementation, can be achieved
even with a CPI of 10 
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Horizontal vs Vertical mCode

 Horizontal mcode has wider minstructions
– Multiple parallel operations per minstruction
– Fewer microcode steps per macroinstruction
– Sparser encoding more bits

 Vertical mcode has narrower minstructions
– Typically a single datapath operation per minstruction

– separate minstruction for branches

– More microcode steps per macroinstruction
– More compact   less bits

 Nanocoding
– Tries to combine best of horizontal and vertical mcode

49

# µInstructions

Bits per µInstruction
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Nanocoding

50

 MC68000 had 17-bit µcode containing either 10-bit µjump or 9-bit 
nanoinstruction pointer

– Nanoinstructions were 68 bits wide, decoded to give 196 
control signals

µcode ROM

nanoaddress

µcode 
next-state

µaddress

μPC (state)

nanoinstruction ROM
data

Exploits recurring control 
signal patterns in µcode, 
e.g., 

ALU0 A <= Reg[rs1] 
...
ALUi0 A <= Reg[rs1]
...
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Microprogramming thrived in the Seventies

 Significantly faster ROMs than DRAMs were available

 For complex instruction sets, datapath and controller were 
cheaper and simpler

 New instructions , e.g., floating point, could be supported 
without datapath modifications

 Fixing bugs in the controller was easier

 ISA compatibility across various models could be achieved 
easily and cheaply

54

Except for the cheapest and fastest machines, all 
computers were microprogrammed
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Writable Control Store (WCS)

 Implement control store in RAM not ROM
– MOS SRAM memories now almost as fast as control store (core 

memories/DRAMs were 2-10x slower)
– Bug-free microprograms difficult to write

 User-WCS provided as option on several minicomputers
– Allowed users to change microcode for each processor

 User-WCS failed
– Little or no programming tools support
– Difficult to fit software into small space
– Microcode control tailored to original ISA, less useful for others
– Large WCS part of processor state - expensive context switches
– Protection difficult if user can change microcode
– Virtual memory required restartable microcode
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Microprogramming is far from extinct

 Played a crucial role in micros of the Eighties
• DEC uVAX, Motorola 68K series, Intel 286/386

 Plays an assisting role in most modern micros
– e.g., AMD Bulldozer, Intel Ivy Bridge, Intel Atom, IBM PowerPC, …

– Most instructions executed directly, i.e., with hard-wired control

– Infrequently-used and/or complicated instructions invoke microcode

 Patchable microcode common for post-fabrication bug 
fixes, e.g. Intel processors load µcode patches at bootup

– Intel released microcode updates in 2014 and 2015
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Question of the Day

 What purpose does microcode serve today?
– Would we have it if designing ISAs from scatch?

– Why would we want a complex ISA?

– Why do you think motivated CISC and RISC?
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