
CS152, Spring 2016

CS 152 Computer Architecture and Engineering

Lecture 2 - Simple Machine Implementations,

Microcode

Dr. George Michelogiannakis
EECS, University of California at Berkeley

CRD, Lawrence Berkeley National Laboratory

http://inst.eecs.berkeley.edu/~cs152



CS152, Spring 2016

Last Time in Lecture 1

 Computer Architecture >> ISAs and RTL
– CS152 is about interaction of hardware and software, and design of 

appropriate abstraction layers

 The end of the uniprocessor era
– With simple and specialized cores due to power constraints

 Cost of software development becomes a large constraint on 
architecture (need compatibility)

 IBM 360 introduces notion of “family of machines” running 
same ISA but very different implementations

– Six different machines released on same day (April 7, 1964)

– “Future-proofing” for subsequent generations of machine

2



CS152, Spring 2016

Question of the Day

 What purpose does microcode serve today?
– Would we have it if designing ISAs from scatch?

– Why would we want a complex ISA?

– Why do you think motivated CISC and RISC?

3



CS152, Spring 2016

Instruction Set Architecture (ISA)

 The contract between software and hardware

 Typically described by giving all the programmer-visible 
state (registers + memory) plus the semantics of the 
instructions that operate on that state

 IBM 360 was first line of machines to separate ISA from 
implementation (aka. microarchitecture)

 Many implementations possible for a given ISA
– E.g., the Soviets build code-compatible clones of the IBM360, as did 

Amdahl after he left IBM.

– E.g.2., today you can buy AMD or Intel processors that run the x86-64 ISA.

– E.g.3: many cellphones use the ARM ISA with implementations from many 
different companies including TI, Qualcomm, Samsung, Marvell, etc.

4



CS152, Spring 2016

Name a Famous ISA!

 Intel’s x86 was initially deployed in 1978

 Is alive and well today, though larger

 Reference manual has 3883 pages!

5



CS152, Spring 2016

Implementations of the x86

 Hundreds of different processors implement x86
– Not just by Intel

 Some have extensions that compilers can use if available
– But software still compatible if not

 More than just intel develop x86
– X86-64 was first specified by AMD in 2000

6



CS152, Spring 2016

ISA to Microarchitecture Mapping

 ISA often designed with particular microarchitectural style 
in mind, e.g.,

– Accumulator  hardwired, unpipelined
– CISC microcoded
– RISC  hardwired, pipelined
– VLIW  fixed-latency in-order parallel pipelines
– JVM  software interpretation

 But can be implemented with any microarchitectural style
– Intel Ivy Bridge: hardwired pipelined CISC (x86) 

machine (with some microcode support)
– Simics: Software-interpreted SPARC RISC machine
– ARM Jazelle: A hardware JVM processor
– This lecture: a microcoded RISC-V machine

7



CS152, Spring 2016

Today, Microprogramming

To show how to build very small processors with complex ISAs

To help you understand where CISC* machines came from

Because still used in common machines (IBM360, x86, PowerPC)

As a gentle introduction into machine structures

To help understand how technology drove the move to RISC*

* “CISC”/”RISC” names much newer than style of machines they refer to.

8



CS152, Spring 2016

Problem Microprogramming Solves

 Complex ISA to ease programmer and assembler’s life
– With instructions that have multiple steps

 Simple processors such as in order to meet power 
constraints

– (refer to previous lecture)

 Turn complex architecture into simple microarchitecture 
with programmable control

 Can also patch microcode

9



CS152, Spring 2016

The Idea

 An ISA (assembly) instruction, is not what drives the 
processor’s datapath directly

 Instead, instructions are broken down to FSM states

 Each state is a microinstruction and outputs control 
signals

10



CS152, Spring 2016

Microarchitecture: Bus-Based Implementation of ISA

11

Structure: How components are connected.
Static

Behavior: How data moves between components
Dynamic

Controller

Data
path

Control
PointsStatus

lines



CS152, Spring 2016

Microcontrol Unit Maurice Wilkes, 1954

12

Embed the 
control logic 
state table in a 
memory array

First used in EDSAC-2, 
completed 1958

Matrix A Matrix B

Decoder

Next state

op      conditional
code   flip-flop

µaddress

Control lines  to
ALU, MUXs, Registers

Memory



CS152, Spring 2016

Microcoded Microarchitecture

13

Memory
(RAM)

Datapath

mcontroller
(ROM)

AddrData

zero?
busy?

opcode

enMem
MemWrt

holds fixed
microcode instructions 

holds user program 
written in macrocode

instructions (e.g., x86,  
RISC-V, etc.)



CS152, Spring 2016

RISC-V ISA

 RISC design from UC Berkeley

 Realistic & complete ISA, but open & simple

 Not over-architected for a certain implementation style

 Both 32-bit and 64-bit address space variants
– RV32 and RV64

 Easy to subset/extend for education/research
– RV32IM, RV32IMA, RV32IMAFD, RV32G

 Techreport with RISC-V spec available on class website or 
riscv.org

 We’ll be using 32-bit and 64-bit RISC-V this semester in lectures 
and labs. Similar to MIPS you saw in CS61C

14



CS152, Spring 2016

RV32 Processor State

15

Program counter (pc)

32x32-bit integer registers (x0-x31)
• x0 always contains a 0

32 floating-point (FP) registers (f0-f31)
• each can contain a single- or double-
precision FP value (32-bit or 64-bit 
IEEE FP)
•Is an extension

FP status register (fsr), used for FP
rounding mode & exception reporting



CS152, Spring 2016

RISC-V Instruction Encoding

 Base instruction set (RV32) always has fixed 32-bit 
instructions lowest two bits = 112

 All branches and jumps have targets at 16-bit granularity 
(even in base ISA where all instructions are fixed 32 bits)

– Still will cause a fault if fetching a 32-bit instruction

16



CS152, Spring 2016

Four Core RISC-V Instruction Formats

17

Destination 
Reg.

Reg. 
Source 1

Reg. 
Source 2

7-bit opcode
field (but low 2 
bits =112)

Additional 
opcode
bits/immediate

Aligned on a four-byte boundary in memory. There are variants!

Sign bit of immediates always on bit 31 of instruction. Register fields never move



CS152, Spring 2016

With Variants

18



CS152, Spring 2016

Integer Computational Instructions

19

 I-type

 ADDI: adds sign extended 12-bit immediate to rs1
– Actually, all immediates in all instructions are sign extended

 SLTI(U): set less than immediate

 Shift instructions, etc…



CS152, Spring 2016

Integer Computational Instructions

20

 R-type

 Rs1 and rs2 are the source registers. Rd the destination

 SLT, SLTU: set less than

 SRL, SLL, SRA: shift logical or arithmetic left or right



CS152, Spring 2016

S-Type

21

12-bit signed immediate split across two fields

Branches, compare two registers, PC+(immediate<<1) target

(Signed offset in multiples of two).Branches do not have delay slot



CS152, Spring 2016

UJ-Type

22

“J” Unconditional jump, PC+offset target

“JAL” Jump and link, also writes PC+4 to x1

Offset scaled by 1-bit left shift – can jump to 16-bit 
instruction boundary (Same for branches)

Also “JALR” where Imm (12 bits) + rd1 = target



CS152, Spring 2016

L-Type

23

Writes 20-bit immediate to top of destination register.

Used to build large immediates.

12-bit immediates are signed, so have to account for sign when 
building 32-bit immediates in 2-instruction sequence (LUI high-
20b, ADDI low-12b)



CS152, Spring 2016

Loads and Stores

24

Store instructions (S-type). Loads (I-type).

(rs1 + immediate) addressing

Store only uses rs1 and rs2. Rd is only present when being written to



CS152, Spring 2016

Where is NOP?

25

addi x0, x0, 0



CS152, Spring 2016

Data Formats and Memory Addresses

26

Data formats:
8-b Bytes, 16-b Half words, 32-b words and 64-b double words

Some issues

• Byte addressing

• Word alignment 
Suppose the memory is organized in 32-bit words.

Can a word address begin only at 0, 4, 8, .... ?

0         1           2          3          4           5           6          7 

Most Significant 

Byte

Least Significant 

Byte

Byte Addresses

3 2 1 0

0 1 2 3Big Endian

Little Endian 

(RISC-V)



CS152, Spring 2016

BACK TO MICROCODING

27



CS152, Spring 2016

A Bus-based Datapath for RISC-V

28

Microinstruction: register to register transfer  (17 control signals)
MA <= PC means   RegSel = PC;   enReg=yes; ldMA= yes

B <= Reg[rs2] means

enMem

MA

addr

data

ldMA

Memory

busy

MemWrt

Bus 32

zero?

A B

ALUOp ldA ldB

ALU

enALU

RegWrt

enReg

addr

data

rs1
rs2
rd

32(PC)

RegSel

32 GPRs
+ PC ...

32-bit Reg

3

rs1
rs2
rd

ImmSel

IR

Opcode

ldIR

Immed
Select

enImm

3

RegSel = rs2;   enReg=yes;   ldB = yes



CS152, Spring 2016

Memory Module

29

Assumption: Memory operates independently
and is slow as compared to Reg-to-Reg transfers 
(multiple CPU clock cycles per access)

Enable

Write(1)/Read(0)
RAM

din dout

we

addr busy

bus



CS152, Spring 2016

Instruction Execution

30

Execution of a RISC-V instruction involves:

1. instruction fetch
2. decode and register fetch
3. ALU operation
4. memory operation (optional)
5. write back to register file (optional)

+ the computation of the 
next instruction address



CS152, Spring 2016

Microprogram Fragments

31

instr fetch: MA, A <= PC
PC <= A + 4
IR <= Memory
dispatch on Opcode

can be
treated as
a macro

ALU:  A <= Reg[rs1]
B <= Reg[rs2]
Reg[rd] <=  func(A,B)
do instruction fetch

ALUi:  A <= Reg[rs1]
B <= Imm sign extension
Reg[rd] <= Opcode(A,B)
do instruction fetch



CS152, Spring 2016

Microprogram Fragments (cont.)

32

A <= Reg[rs1]
B <= Imm
MA <= A + B
Reg[rd] <= Memory
do instruction fetch 

A <= A - 4             Get original PC back in A
B <= IR
PC <= JumpTarg(A,B)
do instruction fetch 

A <= Reg[rs1]
B <= Reg[rs2]
If A==B then go to bz-taken
do instruction fetch 

A <= PC
A <= A - 4 Get original PC back in A
B <= BImm << 1 BImm = IR[31:27,16:10]
PC <= A + B
do instruction fetch 

JumpTarg(A,B) = 
{A + (B[31:7]<<1)}

LW:

J:
(JAL with rd=x0)

beq:

bz-taken:



CS152, Spring 2016

RISC-V Microcontroller: first attempt
pure ROM implementation

33

next 
state

PC (state)

Opcode
zero?

Busy (memory)

Control Signals (17)

s

s

7

Program ROM

addr

data

= 2(opcode+sbits) words

How big is 
“s”?

ROM size ?

Word size ?
= control+s bits



CS152, Spring 2016

Microprogram in the ROM worksheet

34

State  Op       zero?    busy     Control points next-state

fetch0 * * * MA,A <= PC fetch1

fetch1 * * yes .... fetch1

fetch1 * * no IR <= Memory fetch2

fetch2 * * * PC <= A + 4 ?

ALU0 * * * A <= Reg[rs1] ALU1

ALU1 * * * B <= Reg[rs2] ALU2

ALU2 * * * Reg[rd] <= func(A,B) fetch0

fetch2 ALU * * PC <= A + 4 ALU0



CS152, Spring 2016

Microprogram in the ROM

35

State  Op    zero?   busy        Control points next-state

fetch0 * * * MA,A <= PC fetch1

fetch1 * * yes .... fetch1

fetch1 * * no IR <= Memory fetch2

fetch2 ALU * * PC <= A + 4 ALU0

fetch2 ALUi * * PC <= A + 4 ALUi0
fetch2 LW * * PC <= A + 4 LW0

fetch2 SW * * PC <= A + 4 SW0

fetch2 J * * PC <= A + 4 J0

fetch2 JAL * * PC <= A + 4 JAL0

fetch2 JR * * PC <= A + 4 JR0

fetch2 JALR * * PC <= A + 4 JALR0

fetch2 beq * * PC <= A + 4 beq0

...
ALU0 * * * A <= Reg[rs1] ALU1

ALU1 * * * B <= Reg[rs2] ALU2

ALU2 * * * Reg[rd] <= func(A,B) fetch0



CS152, Spring 2016

Microprogram in the ROM Cont.

36

State  Op zero?           busy        Control points next-state

ALUi0 * * * A <= Reg[rs1] ALUi1
ALUi1 * * * B <= Imm ALUi2
ALUi2 * * * Reg[rd]<= Op(A,B) fetch0

...
J0 * * * A <= A - 4 J1

J1 * * * B <= IR J2

J2 * * * PC <= JumpTarg(A,B) fetch0

...
beq0 * * * A <= Reg[rs1] beq1

beq1 * * * B <= Reg[rs2] beq2

beq2 * yes * A <= PC beq3

beq2 * no * .... fetch0

beq3 * * * A <=  A - 4 beq4

beq4 * * * B <= BImm beq5

beq5 * * * PC <= A+B fetch0

...



CS152, Spring 2016

Size of Control Store

37

RISC-V: w = 5+2  c = 17 s = ?
no. of steps per opcode = 4 to 6 + fetch-sequence
no. of states ~= (4 steps per op-group ) x op-groups 

+ common sequences
= 4 x 8 + 10 states = 42 states => s = 6

Control ROM = 2(5+6) x 23 bits approx. 24 Kbytes

size = 2(w+s) x (c + s) Control ROM

data

status & opcode

addr

next μPC

Control signals

μPC

/
w

/  s

/  c



CS152, Spring 2016

Reducing Control Store Size 

38

• Reduce the ROM height (= address bits)
– reduce inputs by extra external logic

each input bit doubles the size of the 
control store

– reduce states by grouping opcodes
find common sequences of actions

– condense input status bits
combine all exceptions into one, i.e.,
exception/no-exception

• Reduce the ROM width
– restrict the next-state encoding

Next, Dispatch on opcode, Wait for memory, ...
– encode control signals (vertical microcode)

Control store has to be fast => expensive



CS152, Spring 2016

RISC-V Controller V2

39

μJumpType =
next  | spin

| fetch | dispatch
| ftrue | ffalse

Control Signals (17)

Control ROM

address

data

+1 

Opcode ext

μPC (state)

jump
logic

zero

μPC μPC+1

absolute

op-group

busy

μPCSrc
input encoding reduces 

ROM height 

next-state encoding 
reduces ROM width 



CS152, Spring 2016

Jump Logic

40

μPCSrc = Case  μJumpTypes

next=> μPC+1

spin => if (busy) then μPC else μPC+1

fetch => absolute

dispatch => op-group

ftrue => if (zero) then absolute else μPC+1

ffalse => if (zero) then μPC+1 else absolute



CS152, Spring 2016

Instruction Fetch & ALU: RISC-V-Controller-2

41

State  Control points next-state

fetch0 MA,A <= PC 
fetch1 IR  <= Memory
fetch2 PC <= A + 4 
...
ALU0 A   <= Reg[rs1] 
ALU1 B   <= Reg[rs2] 
ALU2 Reg[rd]<=func(A,B)

ALUi0 A <= Reg[rs1] 
ALUi1 B <= Imm
ALUi2 Reg[rd]<= Op(A,B)

next
spin
dispatch

next
next
fetch

next
next
fetch



CS152, Spring 2016

Load & Store: RISC-V-Controller-2

42

State  Control points next-state

LW0 A   <= Reg[rs1] next 
LW1 B   <= Imm next
LW2 MA <= A+B next
LW3 Reg[rd] <= Memory spin
LW4 fetch

SW0 A   <= Reg[rs1] next 
SW1 B   <= BImm next
SW2 MA <= A+B next
SW3 Memory <= Reg[rs2] spin
SW4 fetch



CS152, Spring 2016

Branches: RISC-V-Controller-2 

43

State  Control points next-state

beq0 A <= Reg[rs1] next
beq1 B <= Reg[rs2] next
beq2 A <= PC ffalse
beq3 A <= A- 4 next
beq3 B <= BImm<<1 next
beq4 PC <= A+B fetch



CS152, Spring 2016

Jumps: RISC-V-Controller-2

44

State  Control points next-state

JALR0 A   <=  Reg[rs1] next
JALR1 Reg[1] <= A next
JALR2 PC <= A fetch

JAL0 A   <= PC next 
JAL1 Reg[1] <= A next 
JAL2 A <= A-4 next 
JAL3 B   <= IR next
JAL4 PC <= JumpTarg(A,B) fetch

J and JR are special cases with rd = x0



CS152, Spring 2016

VAX 11-780 Microcode

45



CS152, Spring 2016

Implementing Complex Instructions

46

enMem

MA

addr

data

ldMA

Memory

busy

MemWrt

Bus 32

zero?

A B

ALUOp ldA ldB

ALU

enALU

RegWrt

enReg

addr

data

rs1
rs2
rd

32(PC)

RegSel

32 GPRs
+ PC ...

32-bit Reg

3

rs1
rs2
rd

ImmSel

IR

Opcode

ldIR

Immed
Select

enImm

3

rd <= M[(rs1)] op (rs2) Reg-Memory-src ALU op
M[(rd)] <= (rs1) op (rs2) Reg-Memory-dst ALU op 
M[(rd)] <= M[(rs1)] op M[(rs2)] Mem-Mem ALU op



CS152, Spring 2016

Mem-Mem ALU Instructions: 
RISC-V-Controller-2

47

Mem-Mem ALU op          M[(rd)] <= M[(rs1)] op M[(rs2)]

ALUMM0 MA <= Reg[rs1] next
ALUMM1 A   <= Memory spin
ALUMM2 MA <= Reg[rs2] next
ALUMM3 B   <= Memory spin
ALUMM4 MA <=Reg[rd] next
ALUMM5 Memory <= func(A,B) spin
ALUMM6 fetch

Complex instructions usually do not require datapath modifications in a 
microprogrammed implementation 

-- only extra space for the control program

Implementing these instructions using a hardwired controller is difficult 
without datapath modifications



CS152, Spring 2016

Performance Issues

48

Microprogrammed control 
=>  multiple cycles per instruction

Cycle time ? 
tC > max(treg-reg, tALU, t ROM)

Suppose  10 * tμROM < tRAM

Good performance, relative to a single-cycle
hardwired implementation, can be achieved
even with a CPI of 10 



CS152, Spring 2016

Horizontal vs Vertical mCode

 Horizontal mcode has wider minstructions
– Multiple parallel operations per minstruction
– Fewer microcode steps per macroinstruction
– Sparser encoding more bits

 Vertical mcode has narrower minstructions
– Typically a single datapath operation per minstruction

– separate minstruction for branches

– More microcode steps per macroinstruction
– More compact   less bits

 Nanocoding
– Tries to combine best of horizontal and vertical mcode

49

# µInstructions

Bits per µInstruction



CS152, Spring 2016

Nanocoding

50

 MC68000 had 17-bit µcode containing either 10-bit µjump or 9-bit 
nanoinstruction pointer

– Nanoinstructions were 68 bits wide, decoded to give 196 
control signals

µcode ROM

nanoaddress

µcode 
next-state

µaddress

μPC (state)

nanoinstruction ROM
data

Exploits recurring control 
signal patterns in µcode, 
e.g., 

ALU0 A <= Reg[rs1] 
...
ALUi0 A <= Reg[rs1]
...



CS152, Spring 2016

Microprogramming thrived in the Seventies

 Significantly faster ROMs than DRAMs were available

 For complex instruction sets, datapath and controller were 
cheaper and simpler

 New instructions , e.g., floating point, could be supported 
without datapath modifications

 Fixing bugs in the controller was easier

 ISA compatibility across various models could be achieved 
easily and cheaply

54

Except for the cheapest and fastest machines, all 
computers were microprogrammed



CS152, Spring 2016

Writable Control Store (WCS)

 Implement control store in RAM not ROM
– MOS SRAM memories now almost as fast as control store (core 

memories/DRAMs were 2-10x slower)
– Bug-free microprograms difficult to write

 User-WCS provided as option on several minicomputers
– Allowed users to change microcode for each processor

 User-WCS failed
– Little or no programming tools support
– Difficult to fit software into small space
– Microcode control tailored to original ISA, less useful for others
– Large WCS part of processor state - expensive context switches
– Protection difficult if user can change microcode
– Virtual memory required restartable microcode

55



CS152, Spring 2016

Microprogramming is far from extinct

 Played a crucial role in micros of the Eighties
• DEC uVAX, Motorola 68K series, Intel 286/386

 Plays an assisting role in most modern micros
– e.g., AMD Bulldozer, Intel Ivy Bridge, Intel Atom, IBM PowerPC, …

– Most instructions executed directly, i.e., with hard-wired control

– Infrequently-used and/or complicated instructions invoke microcode

 Patchable microcode common for post-fabrication bug 
fixes, e.g. Intel processors load µcode patches at bootup

– Intel released microcode updates in 2014 and 2015

56



CS152, Spring 2016

Question of the Day

 What purpose does microcode serve today?
– Would we have it if designing ISAs from scatch?

– Why would we want a complex ISA?

– Why do you think motivated CISC and RISC?

57


