
1

1

Computer Architecture and Engineering

CS152 Quiz #4

April 11th, 2016

Professor George Michelogiannakis

Name: <ANSWER KEY>

This is a closed book, closed notes exam.

80 Minutes

21 pages

Notes:

 Not all questions are of equal difficulty, so look over the entire exam and
budget your time carefully.

 Please carefully state any assumptions you make.

 Please write your name on every page in the quiz.
 You must not discuss a quiz’s contents with other students who have not taken

the quiz. If you have inadvertently been exposed to a quiz prior to taking it,

you must tell the instructor or TA.

 You will get no credit for selecting multiple-choice answers without giving

explanations if the instructions ask you to explain your choice.

Writing name on each sheet 1 Point

Question 1 30 Points

Question 2 30 Points

Question 3 23 Points

Question 4 16 Points

TOTAL 100 Points

2

2

Question 1: VLIW Machines [30 points]

In this question, we will consider the execution of the following code segment on a VLIW

processor.

loop:

flw f1, 0(x1)

lw x9, 0(x2)

fmul f3, f1, f1

add x7, x5, x7

sw x7, 0(x1)

fsw f3, 0(x2)

addi x1, x1, 4

add x2, x2, x9

bne x2, x5, loop

This code will run on a VLIW machine with the following instructions format:

Int Op Branch Mem Op FP or Int Op FP Add FP Mul

Our machine has six execution units (in order from left to right in the instruction above).

All execution units are fully pipelined and latch their operands in the first stage.

- One integer unit, latency two cycles.

- One branch unit, latency one cycle.

- One memory unit, latency three cycles, each unit can perform both loads and stores.

You can assume a 100% cache hit rate (i.e., no variability).

- One functional unit that can deal with integer or floating point operations of any kind

(additions and multiplications). Latency five cycles.

- One floating point add unit. Latency three cycles.

- One floating point multiply unit. Latency four cycles.

This machine has no interlocks. All register values are read at the start of the instruction before

any writes from the same instruction take effect (i.e., no WAR hazards between operations

within a single VLIW instruction). Functional units write the register file at the end of their last

pipeline stage, and there are no data forwarding or stalls. I.e., a functional unit that requires 4

cycles and starts an operation in cycle 1 will have its result be visible at the beginning of cycle 5

(writes at the end of cycle 4).

3

3

Q1.A Scheduling VLIW Code, Naïve scheduling [6 points]

Schedule operations into VLIW instructions in the following table. Show only one iteration of

the loop. Schedule the code efficiently (try to use the least number of cycles), but do not use

software pipelining or loop unrolling. You don’t need to write in NOPs.

Inst Int Op Branch Mem Op FP/Int Op FP Add FP Mul

1 flw f1, 0(x1)

2 add x7, x5, x7 lw x9, 0(x2)

3 addi x1, x1, 4

4 sw x7, 0(x1) fmul f3, f1, f1

5

6

7 add x2, x2, x9

8 fsw f3, 0(x2)

9 bne x2, x5, loop

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Also: What is the resulting throughput of the code in “floating-point operations per cycle”?

Don’t count flw and fsw as floating-point operations.

1/9

4

Q1.B Scheduling VLIW Code, Software pipelining [11 points]

Rewrite the assembly code to leverage software pipelining. Do not loop unroll. Schedule VLIW

instructions in the following table. You should show the loop prologue and epilogue in addition

to the body. Use a clear method to distinguish between instructions of different loops (iterations).

You can use a different ink color, underlining, a number in parenthesis, or anything else that is

clear.

The below only shows two loops but a more complete solution has more. In that case, the body

contains 9 instructions.

Inst Int Op Branch Mem Op FP/Int Op FP Add FP Mul

1 add x7, x5, x7 flw f1, 0(x1)

2 lw x9, 0(x2)

3 add x7, x5, x7 addi x1, x1, 4

4 sw x7, 0(x1) fmul f3, f1, f1

5 flw f1, 0(x1) addi x1, x1, 4

6

7 lw x9, 0(x2)

8 add x2, x2, x9 fsw f3, 0(x2) fmul f3, f1, f1

9 bne x2, x5, loop

10

11

12 add x2, x2, x9 fsw f3, 0(x2)

13 bne x2, x5, loop

14

15

16

17

18

19

20

21

Also: What is the resulting throughput of the code in “floating-point operations per cycle”?

2/13

5

Q1.C More Aggressive Loop Unrolling [3 points]

If we were to unroll the loop to four times, could this be done efficiently in this processor? If you

could add a resource such as a functional unit, what would it be?

We can’t make the body smaller because the multiply unit is four cycles. The bottleneck remains

the memory unit. Unrolling to four times would stress the one memory functional unit we have

eve more. We should add at least one more.

Q1.D Cache Misses [3 points]

We made the assumption that loads and stores are predictable because we always hit in the cache.

This is unrealistic. How can a VLIW processor such as the one we describe in this question

respond to a cache miss?

It would have to stall until the cache miss is serviced and re-execute the same instruction. Stall

and abort (with re-execute) are two ways of dealing with a miss.

Q1.E Variable Latency Functional Units [3 points]

In the processor of this question, assume that the floating point or integer functional unit has a

variable latency depending on if it executes a functional point or integer operation. Ignoring

structural hazards in the writeback stage, what problem does this create?

Since there is no hazard resolution in the hardware, the VLIW compiler needs to know the

latency of each functional unit to know when each instruction will write to the register file,

and thus what version of the register (old or new) subsequent instructions will see.

6

Q1.F Branches [4 points]

Assume that the branch resolution unit in this processor has a two-cycle latency, instead of one

cycle as originally stated. Without prediction and without a branch delay slot, can we schedule an

instruction the cycle after the branch (i.e., if the branch is in cycle 13, the question is for cycle

14)? With branch prediction, what is the challenge in case of mispeculation and what do we need

to do about it in this processor?

No because we have not resolved the branch, therefore we do not know what the next instruction

is. If we have branch prediction the challenge is not allowing instructions that were fetched as

part of the mispeculation to change the state of the processor. In this processor, since all

functional units have a latency of two cycles or more, it suffices to kill the mispredicted

operations from the appropriate pipeline stages in the functional units. No operation would have

changed the state of the processor by the time we resolve the branch.

7

Question 2: Vector Machines [30 points]

In this question, we will consider the following code written in C:

for (int i=0; i<N; i++)

A[i] = A[i] + B[i]*C[i]

You can assume VLMAX = 32 (vector registers contain 32 elements). Also, unless otherwise

specified, N = 32. The base address of array A is contained in scalar register rA, B in rB, and C in

rC. For the rest of the machine, assume the following:

- 16 lanes

- one ALU per lane: 2 cycle latency

- one LD/ST unit per lane: 2 cycle latency. Fully pipelined that latches operands at the first

pipeline stage.

- all functional units have dedicated read/write ports into the vector register file

- no dead time
- no support for chaining

- scalar instructions execute separately on a control processor (5-stage, in-order)

8

Q2.A Vector Memory Memory and Register [6 points]

Write the vector assembly code for the above C code first in a vector memory-memory code, and

then vector register code. You can use as many registers as you need, as well as temporary

memory locations (e.g., rT). Remember to set VLR. You can use any pseudo-assembly language

that makes sense (“add”, “mul”, etc).

Vector memory-memory

LI VLR 32

Mul rT, rB, rC

Add rA, rA, rT

Vector register

LI VLR 32

LV v1 0(rB)

LV v2 0(rC)

Mul v3, v2, v1

LV v4 0(rA)

Add v5, v3, v4

SV v5 0(rA)

9

Q2.B Compare [2 points]

Which of the two versions of the code from Q2.A is more stressful to memory (causes more

memory accesses)? Also, which of the two versions provides more opportunities to exploit

instruction-level parallelism?

Vector memory memory causes 6 memory accesses whereas register causes 4. Vector register

provides more opportunities to exploit ILP because it has more independent instructions that can

be re-ordered.

Q2.C Lane Tradeoffs [3 points]

Suppose we want to add two vector registers (add v1, v2, v3), followed by another addition to

different registers (add v4, v5, v6). The next instruction after that uses a different functional unit.

VLR=VLRMAX=32. What would you choose between an ALU with 8 lanes and 2 cycles dead

time, and an ALU with 16 lanes and 8 cycles dead time?

The first case will need (32/8)*2 + 2 = 10 cycles. The second (32/16)*2 + 4 + 8 = 12 cycles. So

the first option is faster.

10

Q2.D Vectorize [7 points]

How can the following code be vectorized? You can assume N=VLMAX. Clearly state any

assumptions that you used for your answer for what the architecture provides, such as specialized

instructions, registers, etc.

for (int i=0; i<N; i++)

 if (A[i+1])

A[i] = A[i] + B[C[i]]

The indirection is not the issue here because we can load C to a register and use a load indirect

instruction (“LVI”) to load B, as long as the architecture supports that. For the if condition, we

have to rely on a special instruction and predicate registers. We first load &(A[i]) into a register,

and then &(A[i+1]) to a different register. We use the special instruction to set the predicate

registers of A based on the values of A[i+i]. Then we perform the addition.

11

Q2.E Scheduling Vector Code, No Chaining [8 points]

Complete the pipeline diagram of the baseline vector processor running the following

code. Assume no chaining.

LI VLR 32

LV v1 0(rA)

LV v2 0(rB)

LV v3 0(rC)

Mul v3, v3, v1

Add v3, v3, v2

LV v4 0(rD)

Add v4, v4, v3

Add v4, v4, v4

saddi r1, r1, 8 // Scalar add

SV v4 0(rA)

The following supplementary information explains the diagram:

- Scalar instructions execute in 5 cycles: fetch (F), decode (D), execute (X), memory (M),

and writeback (W).

- Vector instructions should write back in program order.

- A vector instruction is also fetched (F) and decoded (D). Then, it stalls (—) until its

required vector functional unit is available.

- With no chaining, a dependent vector instruction stalls until the previous instruction

finishes writing back all of its elements.

- A vector instruction is pipelined across all the lanes in parallel.

- For each element, the operands are read (R) from the vector register file, the operation

executes on the load/store unit (M) or the ALU (X), and the result is written back (W) to

the vector register file.

- A stalled vector instruction does not block a scalar instruction from executing.

Name

Inst 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

LI F D X M W

LV F D R M1 M2 W

 R M1 M2 W

LV F D - R M1 M2 W

 R M1 M2 W

LV F D - - R M1 M2 W

 R M1 M2 W

MUL F D - - - - - - R X1 X2 W

 R X1 X2 W

ADD F D - - - - - - - - - - R X1 X
2

W

 R X1 X2 W

LV F D - - - - - - - - - - - R M
1

M
2

W

 R M

1

M
2

W

ADD F D - - - - - - - - - - - - - - - R M M W

 R M M W

ADD F D - - - - - - - - - - - - - - - - - - - R X1 X2 W

 R X1 X2 W

saddi F D X M W

SV F D - R M M W

Name

Q2.F With Chaining [4 points]

In the same code, how many fewer cycles would be required if we added chaining?

In a RAW hazard, chaining lets the instruction that writes forward to the instruction that reads after

the functional unit produces the result but before it writes to the register file. The above code, there

are 5 RAW hazards between vector instructions: LV (v3) -> mul -> add -> add -> add -> SV. For

each of those, chaining would save 2 cycles (the first R of the second instruction lines up with the

first W of the first instruction). So 10 cycles total.

Name

Question 3: Multithreading [23 points]

In this question, we will consider multithreading executing in a single-issue, in-order,

multithreaded processor that supports a variable number of threads (as individual questions

specify). The code we will be working with is:

loop:

lw x1, 0(x3)

lw x2, 0(x4)

add x1, x2, x1

sw x1, 0(x3)

addi x3, x3, 4

addi x4, x4, 4

bne x1, x2, loop

The processor has the following functional units:

- Memory operation (load/store), 4 cycles latency (fully pipelined).

- integer add, 1 cycle latency.

- Floating point add and multiply unit, 3 cycles latency (fully pipelined).

- branch, 1 cycle latency.

The processor has a cache which has a 100% hit rate (4 cycle latency is with a cache hit). If an

instruction cannot be issued due to a data dependency, the processor stalls. We also assume that

the processor has a perfect branch predictor with no penalty for both taken and not-taken

branches. Throughout this question there is no communication between threads, and the loads

and stores of each thread are to different addresses.

Name

Q3.A Scheduling [5 points]

First consider that the processor can handle two threads at the same time. You have a choice

between round-robin scheduling where if the thread that was going to be selected in not ready a

bubble is inserted instead, and dynamic hardware scheduling where the processor at every cycle

picks a thread that is ready (in a round-robin manner if both threads are ready).

With the code and assumptions given, will this make a different in performance (i.e., how

quickly each thread completes a pre-defined large number of iterations)?

Does your answer change if we have an ideal cache and with a 10% chance a load/store misses

at the cache at imposes a 50-cycle penalty?

With the assumptions given, each thread has the same hazards and goes through the same

instructions with the same latencies, so when one stalls (e.g., due to RAW) the other stalls too.

So the two scheduling policies will not make a difference. However, if we now risk having a

cache miss, one thread may miss in the cache and the other may not. In that case, the ideal

scheduler will provide more cycles to the thread that is ready. With round-robin, the time for one

thread to complete does not depend on other threads, except for cache misses and

communication.

Name

Q3.C Number of Threads [10 points]

Now lets consider the same single-issue in-order processor as originally described, with round-

robin scheduling and a 100% cache hit rate, but a variable number of threads that it can support.

What is the minimum number of threads needed to fully utilize the processor, assuming you

reschedule the assembly as necessary to minimize the number of threads? Also, assume an

infinite number of registers.

With the same instruction sequence that you used, what is the number of threads if all adds are

floating point adds.

loop:

 lw x1, 0(x3)

lw x2, 0(x4)

addi x4, x4, 4 // This instruction was reordered

add x1, x2, x1

sw x1, 0(x3)

addi x3, x3, 4

bne x1, x2, loop

The first load is pushed to the memory in cycle 1. It writes back the result at the end of cycle 4.

In between, instructions 2 and 3 issued and are able to execute, but in cycle 4 there was a bubble

because instruction 4 issued but can’t execute. With the latencies and instructions provided,

there are no more bubbles. Therefore, two threads are needed to keep this processor busy.

If adds are floating point adds (only one add will be affected), their latency is now 3 cycles

instead of 1. Now there are two bubbles between instructions 4 and 5 (RAW). In the first

bubble, instruction 5 issues and in the next bubble instruction 6 issues. Neither can execute.

Instruction 6 can’t execute because of the WAR hazard. To cover these two bubbles we need

three threads.

Name

Q3.C Pipeline [7 points]

Above you can see a diagram of an in-order issue, out-of-order execute processor with a physical

register file that performs register renaming. This diagram is for a single-threaded processor. If

we wanted to make this processor two-way multithreaded with round-robin scheduling, which

block(s) do we have to duplicate, and which block(s) we should probably make larger in order to

avoid having them be a performance bottleneck? Do not make the processor superscalar. Explain

why for each block.

We have to duplicate the PC register to two PC registers, one for each thread. We also have to

duplicate the register renaming table because each thread has its own set of architectural registers.

Those are the only blocks we have to duplicate to ensure functional correctness in this processor.

We should make the physical register file larger because now we have two threads looking to store

data in registers. We should also make the reorder buffer (ROB) larger because now we have

instructions from two threads that are independent. Therefore, we need a larger ROB to find

instruction-level parallelism. Finally, we can also use a deeper store buffer because there will be

more pending (completed but not committed) stores, and more functional units.

Register

renaming

table

Name

Question 4: Potpourri [16 points]

Q4.A Vector Processors [5 points]

Assume a register vector processor (no vector memory-memory operations) with vector registers

that can hold 8 elements and has 4 lanes in its integer functional unit (shown below). The

alternative processor is a similar vector processor that has vector registers that can hold 16

elements but only 2 lanes in its integer functional unit. Both architectures have an infinite number

of registers. If we want to add 64 array elements (code shown below), which of the two will

complete faster? Assume loads and stores take one cycle, and load instructions have to be before

adds, and adds have to be before stores.

The first processor needs 64/8 = 8 loads and 8 stores, so 16 cycles. The addition takes 64/4 =16

cycles. So 32 cycles overall. The second processor needs 64/16 = 8 (4 loads and 4 stores). The

addition takes 64/2 = 32 cycles. So the first processor is faster.

C code

for (i=0; i<64; i++)

 C[i] = A[i] + B[i];

Name

Q4.B Multithreaded Processors [4 points]

Assume a multithreaded processor with a cache, 64 integer registers, and in-order issue and

commit. We have four threads, and we want to compare statically interleaving them cycle-by-cycle

by having thread 1 issue an instruction in cycle 1, 5, 9, etc (option 1), against option 2 where we

statically execute 512 cycles of thread 1, then 512 of thread 2, etc. Name one advantage and one

disadvantage of option 2 compared to option 1.

One disadvantage is that if thread 1 blocks, the rest of its cycles before the next thread executes are

wasted. One advantage is that a thread running for a number of cycles consecutively warms up the

cache and brings its own data in, before other threads have the change to evict them due to

capacity or conflict. Other answers are also possible.

Q4.C VLIW Processors [3 points]

Both VLIW and out-of-order superscalar processors exploit instruction-level parallelism. What is

the motivation to choose VLIW processors instead of out-of-order superscalar? How does this

affect hardware and compiler complexity?

VLIW can issue multiple operations per cycle with simple hardware. Out-of-order superscalar

need complex control logic. Independent operations are scheduled statically by the compiler into

the same VLIW instruction. The compiler’s job becomes more complex.

Name

Q4.D Multithreaded with VLIW and Vector [4 points]

Suppose we have two threads (which may have different instructions), and we want to merge their

instructions into one (mega-)thread. We have the option of running this (mega-)thread on a VLIW

and a vector processor. Give one reason why we would choose VLIW (and what assumption or

condition that depends on), versus a reason we would choose the vector processor (and what

assumption or condition that depends on).

This has to do with how different the instruction streams are. The advantage of VLIW is that it

provides more flexibility such that if threads have different operations each cycle, VLIW can mix

different kinds of operations in the same cycle. On the other hand, if threads are perfectly

synchronized (unlikely but possible), the vector multithreaded processor will increase throughput

because it can do more operations of the same kind in the same cycle.

Appendix

This is the code and other information for question 1. You may detach the appendix.

loop:

flw f1, 0(x1)

lw x9, 0(x2)

fmul f3, f1, f1

add x7, x5, x7

sw x7, 0(x1)

fsw f3, 0(x2)

addi x1, x1, 4

add x2, x2, x9

bne x2, x5, loop

This code will run on a VLIW machine with the following instructions format:

Int Op Branch Mem Op FP or Int Op FP Add FP Mul

Our machine has six execution units (in order from left to right in the instruction

above). All execution units are fully pipelined and latch their operands in the first stage.

- One integer unit, latency two cycles.

- One branch unit, latency one cycle.

- One memory unit, latency three cycles, each unit can perform both loads and stores.

You can assume a 100% cache hit rate (i.e., no variability).

- One functional unit that can deal with integer or floating point operations of any kind

(additions and multiplications). Latency five cycles.

- One floating point add unit. Latency three cycles.

- One floating point multiply unit. Latency four cycles.

This machine has no interlocks. All register values are read at the start of the instruction

before any writes from the same instruction take effect (i.e., no WAR hazards between

operations within a single VLIW instruction). Functional units write the register file at the

end of their last pipeline stage, and there are no data forwarding or stalls. I.e., a functional

unit that requires 4 cycles and starts an operation in cycle 1 will have its result be visible at

the beginning of cycle 6 (writes at the end of cycle 5).

