
CS 152 Laboratory Exercise 5 (Version B)

Professor: George Michelogiannakis
TA: Colin Schmidt

Department of Electrical Engineering & Computer Science
University of California, Berkeley

April 20, 2016

1 Introduction and goals

The goal of this laboratory assignment is to allow you to explore a multi-core, shared memory
environment using the Chisel simulation environment.

You will be provided a complete implementation of a multi-core Rocket processor (the scalar
processor from Lab 4). Students will write C code targeting Rocket, to gain a better understanding
of how data-level parallel (DLP) code maps to multi-core processors, and to practice optimizing
code for different cache coherence protocols.

For the “open-ended” section, students will write and optimize a multi-threaded implementation
of spare-matrix vector multiply for two different cache coherence protocols.

The lab has two sections, a directed portion and an open-ended portion. Everyone will do the
directed portion the same way, and grades will be assigned based on correctness. The open-ended
portion will allow you to pursue more creative investigations, and your grade will be based on the
effort made to complete the task.

Students are encouraged to discuss solutions to the lab assignments with other students, but
must run through the directed portion of the lab by themselves and turn in their own lab report.
For the open-ended portion of each lab, students can work individually or in groups of two (not
three). Any open-ended lab assignment completed as a group should be written up and handed in
separately. Students are free to take part in different groups for different lab assignments.

For this lab, there will only be one open-ended assignment. If you would prefer to do something
else, you must contact your TA or professor with an alternate proposal of significant rigor.

1

2 Background

2.1 The Multi-core Rocket Processor

A Chisel implementation of a full multi-core processor is provided.

The Rocket Processor

Rocket will be returning from lab 4, but this time, there are multiple Rocket cores. Each core has
its own private L1 instruction and data caches. The data caches are kept “coherent”’ with one
another.

Rocket is a RV64G 6-stage, fully bypassed in-order core. It has full supervisor support (including
virtual memory). It also supports sub-word memory accesses and floating point. In short, Rocket
supports the entire 64-bit RISC-V ISA (however, no OS will be used in this lab, so code will still
run “bare metal” as in previous labs.).

Both the user-level ISA manual and the supervisor-level ISA manual can be found on the RISC-
V website.

F D X M C

FD FX
1

FX
2

FX
3 FW

P Integer Pipeline

Floating-Point Pipeline

Generate Next PC

Fetch Instruction

Decode, Operand Fetch, Issue

Execute Integer ALU

Data Cache

Commit

FP Decode, Operand

Fetch, Issue

FP Execute Stages

FP Register W
rite

Commit Point

Figure 1: The Rocket control processor pipeline.

In this lab, the Hwacha vector-fetch unit has been removed; we will only be writing multi-
threaded code.

2

2.2 The Memory System

In this lab, you are provided a multi-core processor that utilizes a directory-based cache coherence
protocol. Figure 2 shows the high-level schematic of this system.

T
ile

s
M

em
 S

ys
te

m
D

Si
m

2
Rocket
Core 0

L1I$ L1D$

L2$
Bank 0

L2$
Bank 1

L2$
Bank 2

L2$
Bank N

AXI4 Crossbar

DRAM
Channel 0

DRAM
Channel 1

L1-to-L2 TileLink Crossbar

…

DRAM
Channel N…

TL/AXI4 …TL/AXI4 TL/AXI4 TL/AXI4

Uncached TileLink IO

Cached TileLink IO

AXI4 IO

Rocket
Core N

L1I$ L1D$

...

Figure 2: The multi-core Rocket system. A crossbar connects the private caches to the shared cache and the
shared cache to main memory. The shared cache contains the directory and manages the cache coherence
protocol.

Each Rocket core has its own private L1 instruction and write-back data caches. The cores
share a single multi-banked level 2 cache. An off-chip memory provides the last level in the memory
hierarchy. Both cores are connected via a crossbar to main memory. The crossbar and L2 cache
can handle multiple inflight transactions. The L2 is connected to memory with another crossbar
that has configurable number of memory channels on the backside.

Conceptually, Cache coherence is maintained by having caches send their intentions to the L2
cache and having it check for with other caches to acheieve coherence.

3

2.3 The Lab 5 Multi-threaded Programming Environment

In most multi-threaded programming systems, one thread begins execution at main(), who must
then call some sort of spawn() or thread create() function to create more threads with help from
the OS.

However, we will not be using an operating system in this lab. Instead, ALL thread begins
execution at a function called thread entry() (there is no main() function in this lab). Each
thread is provided a coreid (its inique core id number, either 0 or 1), and ncores (number of
cores, which will vary from 2 to 8 for this lab).

You will need to be careful where you allocate memory in your code. As there is no OS, you
cannot use malloc to dyanamically allocate more memory. By default, your code will allocate space
on the stack, however each thread is provided only a very small amount of stack space. You will
want to use the static keyword to allocate memory statically in the binary, where it is visible to
both threads. There is also the __thread modifier, which denotes a variable that should be located
in “thread-local storage” memory. Each thread is provided a very small amount of “thread-local
storage”, where variables visible only to the thread can be located.

2.4 Memory Fences & other Synchronization Primitives

A barrier() function is provided to synchronize all threads. Once a thread hits the barrier()

function, it stalls until all threads in the system have hit the barrier(). Implicit in the barrier is
a memory fence. The barrier() function should probably be enough to implement any algorithms
necessary in this lab.

For more information on the RISC-V memory model, consult Section 2.7 of the user-level
ISA manual in the specifications section of the RISC-V website. The RISC-V FENCE in-
struction can be executed by calling __sync_synchronize() gcc built-in function (i.e., saving
you the hassle of inlining assembly). The gcc compiler provides more built-in functions, such as
__sync_fetch_and_add(), which correspond to RISC-V atomic operations.

The FENCE instruction performs as follows: it is sent to the L1 data cache. If the cache is not
busy, the FENCE instruction returns immediately and the pipeline continues executing. If the cache
is busy servicing oustanding memory requests (i.e., cache misses), the FENCE stalls the processor
pipeline until the cache is no longer servicing any outstanding memory requests. In this manner,
the FENCE instruction ensures that any memory operations before the fence has completed before
any memory operations after the fence has started.

2.5 WARNINGS and Pitfalls

Here are a few warnings and pitfalls that may cause errors in your code.
The stack space provided to each thread is only 8KB. There is no virtual memory protecting

your stack, so there is no warning if you overrun your stack (try to allocate arrays and other large
structures statically).

The thread-local storage is also very small, and also has no warning if you overrun it. Also, no
matter what your code says, all memory is initialized to zero in thread-local storage.

You may use printf to debug your code, however, only thread 0 may execute it. Also, the
printf provided with this lab does not support outputting floating point numbers; you will have
to cast them to integers first. However, you will note that the auto-generated input vectors are
actually using whole numbers.

4

2.6 Graded Items

You will email a write up of your results to the TA. Please label each section of the results clearly.
The following items need to be turned in for evaluation:

First, the end-goal of this lab is to fill out Table 1. Some of the values have been filled in for
you. Each problem will guide you through the steps to accomplish this task.

1. Problem 3.3: Vvadd performance statistics and answers

2. Problem 3.4: Vvadd-Optimized code, performance statistics and answers

3. Problem 4.1: Matmul or SPMV code, statistics, and answers

4. Problem 5: Feedback on this lab, and all labs

Submit your vvadd and matmul or spmv code via email.

3 Directed Portion

3.1 General Methodology

This lab will focus on writing multi-threaded C code. This will be done in two steps: step 1) build
the C++ cycle-accurate emulator of the multi-core processor (if the cache coherence needs to be
changed, or the number of cores), and Step 2) verify the correctness and measure the performance
of your code on the cycle-accurate emulator.

3.2 Setting Up Your Chisel Workspace

The tools for this lab were set up to run on any of the 5 instructional Linux servers icluster5.eecs,
icluster6.eecs, ..., icluster9.eecs. (see http://inst.eecs.berkeley.edu/cgi-bin/clients.
cgi?choice=servers for more information about available machines).

5

First, download the lab materials:1

inst$ cd ~

inst$ cp -R ~cs152/sp16/lab5 .

inst$ cd lab5

inst$ export LAB5ROOT=$PWD

This lab is now also managed as a git repository which means you can also use git to fetch
updates from the published version. To copy the repo you will need to clone it:

inst$ cd ~

inst$ git clone ~cs152/sp16/lab5-git lab5

inst$ cd lab5

inst$ export LAB5ROOT=$PWD

If any updates are released you can then pull in the new updates using

inst$ cd ${LAB5ROOT}

inst$ git pull

If you encounter problems using git feel free to post a question on Piazza or consult the git
documentation (see https://git-scm.com/doc)

We will refer to ./lab5 as ${LAB5ROOT} in the rest of the handout to denote the location of
the Lab 3 directory.

1The capital “R” in “cp -R” is critical, as the -R option maintains the symbolic links used.

6

• ${LAB5ROOT}/rocket-chip/

– riscv-tools/riscv-tests/ Source code for assembly tests and benchmarks.

∗ benchmarks/ Benchmarks (mostly) written in C. This is where you will spend

nearly all of your time.

· mt-vvadd C and assembly code for the vector-vector add benchmark.

· mt-matmul C and assembly code for the matrix multiply benchmark.

· mt-spmv C and assembly code for the sparse matrix vector multiply benchmark.

∗ isa/ Assembly code for the individual instruction tests.

– emulator/ C++ simulation tools and output files.

– csrc/ C++ test bench source code.

– dramsim2/ DRAMSim2 source code that is used to emulate DRAM.

– chisel/ The Chisel source code.

– rocket/ The Rocket processor.

– hardfloat/ The floating point unit source code.

– uncore/ The uncore source code.

– src/ Top-level source code.

– sbt/ Chisel/Scala voodoo. You can safely ignore this directory.

The following command will set up your bash environment, giving you access to the entire
CS152 lab tool-chain. Run it before each session:2

inst$ source ~cs152/sp16/cs152.lab5.bashrc

To compile the cycle-accurate dual-core RocketC++ simulator, execute the following commands:

inst$ cd ${LAB5ROOT}/rocket-chip/emulator

inst$ make clean; make

This will build the default configuration which is two cores with a 256KB L2 cache, with an MI
coherence directory protocol.

For this lab, we will play with the benchmarks mt-vvadd, and either mt-matmul or mt-spmv.
To compile these benchmarks, and execute the binary on the ISA simulator, run the following
commands:

inst$ cd ${LAB5ROOT}/rocket-chip/riscv-tools/riscv-tests/benchmarks

inst$ make clean; make; make run-riscv

If they run correctly you should see output like the following at the end

spike mt-vvadd.riscv > mt-vvadd.riscv.out

spike mt-matmul.riscv > mt-matmul.riscv.out

echo; perl -ne ’print " [$1] $ARGV \t$2\n" if /*{3}(.{8})*{3}(.*)/’ \

mt-vvadd.riscv.out mt-matmul.riscv.out; echo;

2Or better yet, add this command to your bash profile.

7

Now, we run the compiled benchmarks on the C++ emulator:

inst$ cd ${LAB5ROOT}/rocket-chip/emulator

inst$ make run-bmark-tests

The naive versions of vvadd and matmul benchmarks should PASS, but the optimized versions
should FAIL, because you have not written the code for them yet!

This tests the benchmarks for correctness and outputs the performance metrics running on the
emulator.

It should take about one to two minutes to run both vvadd and matmul on the emulator.

3.3 Measuring the Performance of Vector-Vector Add (vvadd)

First, to acclimate ourselves to the Lab 5 infrastructure, we will gather the results of a poorly
written implementation of vvadd.

Navigate to the mt-vvadd directory, found in ${LAB5ROOT}/rocket-chip/riscv-tools/riscv-tests/becnhmarks/.
In the mt-vvadd directory, there are a few files of interest. First, the dataset.h file holds a static
copy of the input vectors and results vector.3 Second, mt-vvadd.c and vvadd.c hold the code
for the benchmark, which includes initializing the state of the program, calling the vvadd function
itself, and verifying the correct results of the function.

An very poor implementation of vvadd can be found in the function vvadd().
Run the vvadd benchmark and gather the performance results of this unoptimized implemen-

tation:

inst$ cd ${LAB5ROOT}/emulator

inst$ make run-bmark-tests

make will run both vvadd and matmul benchmarks on the emulator, when changes are detected.

You should get something similar to the following output, which corresponds to vvadd:

vvadd(cid, nc, 1000, results_data, input2_data, results_data); barrier(nc): 17800 cycles, 17.8 cycles/iter, 1.9 CPI

This is the output from the stats() macro, which times a section of code and outputs the
resulting performance statistics. The vvadd() function is a non-optimal implementation of a multi-
threaded vvadd function.

For now, ignore the matmul statistics.
Record the non-optimal vvadd() function results. By default, the Rocket processor is using the

MI cache coherence protocol. Now we will change the cache coherence protocol and record the new
performance metrics.

3You can generate your own input arrays that are a smaller size for rapid testing. See vvadd gendata.pl for
details.

8

Changing the Cache Coherence Protocol

The different protocols are already set in different configurations. For this lab there are configs
from 2 to 8 cores with MI, MSI, and MESI protocols.

To rebuild the emulator using the MSI protocol for example:

inst$ cd ${LAB5ROOT}/rocket-chip/emulator

inst$ make clean; make CONFIG=DualCoreMSIConfig run-bmark-tests

This will take about five minutes to build and an additional two minutes to run the benchmarks.
Record and report the results of vvadd() using the MSI protocol.

Analyze the vvadd() code in ${LAB5ROOT}/rocket-chip/riscv-tools/riscv-tests/benchmarks/vvadd/

vvadd.c. Taking into consideration that the code is written for a multi-core cache-coherent system,
what is sub-optimal about the provided implementation?

3.4 Optimize VVADD

Now that you know how to run benchmarks, record results, and change the cache coherence protocol,
you can now optimize vvadd for the dual-core Rocket processor. You should write your code in the
provided vvadd opt function, found in ${LAB5ROOT}/rocket-chip/riscv-tools/riscv-tests/benchmarks/

vvadd/vvadd.c.
Make sure to remove the multi-line comments in mt-vvadd.c on lines 72 and 93 to begin running

the optimized version.
Collect results of your vvadd implementation, for the MI, MSI, and MESI protocols. What did

you do differently to get better performance over the provided vvadd function? You should be able
to at least double the performance over the provided vvadd function (or thereabouts). Does your
performance scale as you add more cores? Record the statistics for the 4 and 8 core with different
protocols. You can run all of the different configurations with:

inst$ cd ${LAB5ROOT}/rocket-chip/emulator

inst$ make clean; ./runall.sh

If you’re implementation doesn’t scale well what do you think you could do to fix it? Feel free
to optimize further if you would like but it is not required for this lab.

VVADD Hints

You can now use printf to test your code, however it can only be executed from core 0, and does
not handle floating point numbers. If you want to see what each core is doing cycle by cycle, look
at the *.out log file in the emulator directory.4

You may also want to use the command:

inst$ cd ${LAB5ROOT}/rocket-chip/emulator

inst$ make output/mt-vvadd.riscv.out

This will allow you to only run vvadd which will speed up your development time.

4Core 0 output is prefixed with C0, and core 1 data is prefixed with C1. You can parse stderr by using 2>

output.txt to pipe stderr to a file.

9

4 Open-ended Portion

For this lab, there will only be two open-ended portions that all students can do. As will all labs,
you can work individually or together in groups of two. If you would like try something else, talk
to your TA about other applications you can implement instead that are of sufficient merit.

4.1 Contest: Parallelizing and Optimizing Matrix-Matrix Multiply or Sparse
Matrix-Vector Multiply

For this problem, you will implement a multi-threaded implementation of matrix-matrix multiply,
or sparse matrix-vector multiply. The matrix-matrix version is slightly simpler and more com-
monly solved, for a challenge and more interesting grading for your TA the sparse matrix-vector
multiplication is recommended.

You will write three versions: one version that targets each of the cache three cache coherence
protocols MI, MSI, MESI. If you do not feel any special targetting is necessary please explain
carefully why this is the case or you risk losing points.

A naive, single-threaded implementation can be found in ${LAB5ROOT}/rocket-chip/riscv-tools/riscv-tests/

benchmarks/mt-[matmul,spmv]/[matmul,spmv].c. Feel free to comment it out to save yourself
simulation time. You will fill in your own in the provided function [matmul,spmv]_opt(). You
may add additional helper functions, so long as any additional code you add is within the stats()

function.
Once your code passes the correctness test, do your best to optimize matmul or spmv. This

will be a contest, with the best team, as measured by the fewest cycles, will receive a bonus +1
(yes, 1% of your total grade) points on the lab. There will be separate contests for each of the two
benchmarks. So you don’t kill yourselves you can only submit to one contest. Your results from
the MI, MSI, and MESI versions will be averaged together. Go crazy!

Include your code in your email submission. Describe what your code does, and some of the
strategies that you tried.

Matrix Multiply Hints

A number of strategies can be used to optimize your code for this problem. First, the problem size
is for square matrices 32 elements on a side, with a total memory footprint of 12 KB (the L1 data
cache is only 4 KB, 4-way set-associative). Common techniques that generally work well are loop
unrolling, lifting loads out of inner loops and scheduling them earlier, blocking the code to utilize
the full register file, transposing matrices to achieve unit-stride accesses to make full use of the L1
cache lines, and loop interchange.

You will also want to minimize sharing between cores; in particular, you will want to have each
core responsible for writing its own pieces of the arrays (you do not want write permissions to ping
pong between caches).

5 The Third Portion: Feedback

This is a newly refreshed lab, and as such, we would like your feedback again! How many hours did
the directed portion take you? How many hours did you spend on the open-ended portion? Was

10

this lab boring? Did you learn anything? Is there anything you would change? Feel free to write
as little or as much as you want (a point will be taken off only if left completely empty).

6 Acknowledgments

This lab was made possible through the hard work of Andrew Waterman and Henry Cook (among
others) in developing the Rocket processor, memory system, cache coherence protocols, and multi-
threading software environment. This lab was originally developed for CS152 at UC Berkeley by
Christopher Celio.

11

Table 1: Performance of the Lab 5 benchmarks, measured by total cycles, cycles per iteration, and cycles
per instruction (CPI). Single thread performance is compared against dual thread implementations running
on MI and MSI cache coherence protocols.

vvadd vvadd (opt) matmul spmv

one thread 23.7k cycles 494k cycles
23.7 cycles/iter n/a 15.0 cycles/iter

2.6 CPI 1.6 CPI

two threads (MI)

two threads (MSI)

two threads (MESI)

four threads (MI)

four threads (MSI)

four threads (MESI)

eight threads (MI)

eight threads (MSI)

eight threads (MESI)

12

