C152 Laboratory Exercise 4 (Version B)

Professor: George Michelogiannakis
TA: Colin Schmidt
Department of Electrical Engineering & Computer Science
University of California, Berkeley

March 31, 2016

1 Introduction and goals

The goal of this laboratory assignment is to allow you to explore the vector-fetch architec-
ture using the Chisel simulation environment.

You will be provided a complete implementation of a vector-fetch style processor, called
Huwacha. Students will write vector-fetch assembly code targeting Hwacha, to gain a bet-
ter understanding of how data-level parallel code maps to vector-style processors, and to
practice optimizing vector code for a given implementation. For the “open-ended” section,
students will optimize a vector implementation of spare-matrix vector multiply, or attempt
to improve Hwacha’s prefetching

The lab has two sections, a directed portion and an open-ended portion. Everyone will
do the directed portion the same way, and grades will be assigned based on correctness.
The open-ended portion will allow you to pursue more creative investigations, and your
grade will be based on the effort made to complete the task.

Students are encouraged to discuss solutions to the lab assignments with other students,
but must run through the directed portion of the lab by themselves and turn in their own
lab report. For the open-ended portion of each lab, students can work individually or in
groups of two (not three). Any open-ended lab assignment completed as a group should be
written up and handed in separately. Students are free to take part in different groups for
different lab assignments.

For this lab, there will only be two open-ended assignments. If you would prefer to
do something else, you must contact your TA or professor with an alternate proposal of
significant rigor.

2 Background

2.1 The vector-fetch Architecture

The vector-fetch architecture is a new style of data-parallel architecture that combines the
efficiencies of traditional vector processors with the programability of general purpose GPU
processors. [1}, 2], 3]

The Hwacha assembly programming model is best explained by contrast with other,
popular data-parallel assembly programming models. As a running example, we use a
conditionalized SAXPY kernel, CSAXPY. Figure [I] shows CSAXPY expressed in C as
both a vectorizable loop and as a SPMD kernel. CSAXPY takes as input an array of
conditions, a scalar a, and vectors x and y; it computes y += ax for the elements for
which the condition is true.

void csaxpy(size_t n, bool cond[], float a, float x[], float y[l)
{
for (size_t i = 0; i < n; ++i)
if (cond[il)
y[i]l = a*xx[i] + y[i];

(a) vectorizable loop

void csaxpy_spmd(size_t n, bool cond[], float a, float x[], float y[])
{
if (tid < n)
if (cond[tid])
y[tid] = a*xx[tid] + y[tid];

(b) SPMD kernel

Figure 1: Conditional SAXPY kernel written in C. The SPMD kernel launch code
for (b) is omitted for brevity.

2.2 Packed SIMD Assembly Programming Model

Figure [2| shows CSAXPY kernel mapped to a hypothetical packed SIMD architecture,
similar to Intel’s SSE and AVX extensions. This SIMD architecture has 128-bit registers,
each partitioned into four 32-bit fields. As with other packed SIMD machines, ours cannot
mix scalar and vector operands, so the code begins by filling a SIMD register with copies
of a. To map a long vector computation to this architecture, the compiler generates a
stripmine loop, each iteration of which processes one four-element vector. In this example,
the stripmine loop consists of a load from the conditions vector, which in turn is used

csaxpy_simd:

slli a0, a0, 2

add a0, a0, a3

vsplat4 vv0O, a2
stripmine_loop:

v1bd vvl, (al)

vcmpez4 vp0O, vvl
lvpO vliwéd vvl, (a3)
lvpO vliwéd vv2, (ad)
lvpO vima4d vvl, vv0, vvl, vv2
lvpO vswéd vvl, (a4d)

addi al, al, 4

addi a3, a3, 16

addi a4, a4, 16

bleu a3, a0, stripmine_loop
handle edge cases
when (n % 4) !'=0 ...

ret

Figure 2: CSAXPY kernel mapped to the packed SIMD assembly programming
model. In all pseudo-assembly examples presented in this section, a0 holds variable n, al
holds pointer cond, a2 holds scalar a, a3 holds pointer x, and a4 holds pointer y.

to set a predicate register. The next four instructions, which correspond to the body of
the if-statement in Figure are masked by the predicate registerﬂ Finally, the address
registers are incremented by the SIMD width, and the stripmine loop is repeated until the
computation is finished—almost. Since the loop handles four elements at a time, extra
code is needed to handle up to three fringe elements. For brevity, we omitted this code;
in this case, it suffices to duplicate the loop body, predicating all of the instructions on
whether their index is less than n.

The most important drawback to packed SIMD architectures lurks in the assembly code:
the SIMD width is expressly encoded in the instruction opcodes and memory addressing
code. When the architects of such an ISA wish to increase performance by widening the
vectors, they must add a new set of instructions to process these vectors. This consumes
substantial opcode space: for example, Intel’s newest AVX instructions are as long as 11
bytes. Worse, application code cannot automatically leverage the widened vectors. In
order to take advantage of them, application code must be recompiled. Conversely, code

"We treat packed SIMD architectures generously by assuming the support of full predication. This
feature is quite uncommon. Intel’s AVX architecture, for example, only supports predication as of 2015,
and then only in its Xeon line of server processors.

csaxpy_simt:
mv t0, tid
bgeu t0, a0, skip
add t1l, al, tO
1b t1, (t1)
beqz t1, skip
slli tO0, tO, 2
add a3, a3, to
add a4, a4, to
1w t1, (a3)
1w t2, (ad)
fma t0, a2, t1, t2
sw t0, (a4)
skip:
stop

Figure 3: CSAXPY kernel mapped to the SIMT assembly programming model.

compiled for wider SIMD registers fails to execute on older machines with narrower ones.
As we later show, this complexity is merely an artifact of poor design.

2.3 SIMT Assembly Programming Model

Figure [3] shows the same code mapped to a hypothetical SIMT architecture, akin to
an NVIDIA GPU. The SIMT architecture exposes the data-parallel execution resources
as multiple threads of execution; each thread executes one element of the vector. One
inefficiency of this approach is immediately evident: the first action each thread takes is
to determine whether it is within bounds, so that it can conditionally perform no useful
work. Another inefficiency results from the duplication of scalar computation: despite the
unit-stride access pattern, each thread explicitly computes its own addresses. (The SIMD
architecture, in contrast, amortized this work over the SIMD width.) Moreover, massive
replication of scalar operands reduces the effective utilization of register file resources: each
thread has its own copy of the three array base addresses and the scalar a. This represents
a threefold increase over the fundamental architectural state.

2.4 Traditional Vector Assembly Programming Model

Packed SIMD and SIMT architectures have a disjoint set of drawbacks: the main
limitation of the former is the static encoding of the vector length, whereas the primary
drawback of the latter is the lack of scalar processing. One can imagine an architecture
that has the scalar support of the former and the dynamism of the latter. In fact, it has

csaxpy_tvec:
stripmine_loop:
vsetvl t0O, a0

vlb vv0, (al)
vcmpez vpO, vvO0
lvpO vlw vv0, (a3)
lvpO vlw vvl, (ad)
'vpO vima vv0, vvO, a2, vvl
lvpO vsw vv0, (a4d)
add al, al, tO
s1lli tl, t0, 2
add a3, a3, til
add a4, a4, ti
sub a0, a0, toO
bnez a0, stripmine_loop
ret

Figure 4: CSAXPY kernel mapped to the traditional vector assembly program-
ming model.

existed for over 40 years, in the form of the traditional vector machine, embodied by the
Cray-1. The key feature of this architecture is the wvector length register (VLR), which
represents the number of vector elements that will be processed by the vector instructions,
up to the hardware vector length (HVL). Software manipulates the VLR by requesting a
certain application vector length (AVL); the vector unit responds with the smaller of the
AVL and the HVL. As with packed SIMD architectures, a stripmine loop iterates until the
application vector has been completely processed. But, as Figure[d]shows, the difference lies
in the manipulation of the VLR at the head of every loop iteration. The primary benefits
of this architecture follow directly from this code generation strategy. Most importantly,
the scalar software is completely oblivious to the hardware vector length: the same code
executes correctly and with maximal efficiency on machines with any HVL. Second, there
is no fringe code: on the final trip through the loop, the VLR is simply set to the length
of the fringe.

The advantages of traditional vector architectures over the SIMT approach are owed
to the coupled scalar control processor. There is only one copy of the array pointers and of
the scalar a. The address computation instructions execute only once per stripmine loop
iteration, rather than once per element, effectively amortizing their cost by a factor of the
HVL.

The Programmer’s View of vector-fetch

The Hwacha architecture builds on the traditional vector architecture, with a key difference:
the vector operations have been hoisted out of the stripmine loop and placed in their own
vector fetch block. This allows the scalar control processor to send only a program counter
to the vector processor. The control processor then completes the stripmining loop faster
and is able to continue doing useful work, while the vector processor is independently
executing the vector instructions.

Figure |5 shows the Hwacha user-visible register state. Like the traditional vector ma-
chine, Hwacha has vector data registers (vv0-255) and vector predicate registers (vp0-15),
but it also has two flavors of scalar registers. These are the shared registers (vs0-63, vs0
is hardwired to constant 0), which can be read and written within a vector fetch block,
and address registers (va0-31), which are read-only within a vector fetch block. This dis-
tinction supports non-speculative access/execute decoupling and is further described in the
Hwacha microarchitecture manual.

Vector data and shared registers may hold 8-, 16-, 32-, and 64-bit integer values and
half-; single-, and double-precision floating-point values. Vector predicate registers are 1-
bit wide, and hold boolean values that mask vector operations. Address registers hold
64-bit pointer values, and serve as the base and stride of unit-strided and strided vector
memory instructions.

In addition, the vector configuration register vcfg, which keeps the configuration state
of the vector unit, and the vector length register vlen, which stores the maximum hardware
vector length, are also visible to the user. The configuration state is described in Section 77.

The maximum hardware vector length is configurable based on how many registers of
each type a program uses. Regardless of how many registers are used, a hardware vector
length of 8 is guaranteed. The vector length register (vlen) can be set to zero, in such
case, all vector instructions will not be executed.

Figure [6] shows the CSAXPY code for the Hwacha machine. The structure of the
stripmine loop in the control thread (line 1-16) is similar to the traditional vector code,
however, all vector operations in the stripmine loop have been hoisted out into its own
worker thread (line 18-25). The control thread first executes the vsetcfg instruction
(line 2), which adjusts the maximum hardware vector length taking the register usage into
account. vmcs (line 3) moves the value of a scalar register from the control thread to a
vs register. The stripmine loop sets the vector length with a vsetvl instruction (line 5),
moves the array pointers to the vector unit with vmca instructions (line 6-8), then executes
a vector fetch (vf) instruction (line 9) causing the Hwacha unit to execute the vector fetch
block. The code in the vector fetch block is equivalent to the vector code in Figure [d], with
the addition of a vstop instruction, signifying the end of the block.

For the CSAXPY example, factoring the vector code out of the stripmine loop reduces
the scalar instruction count by 15%, but as the stripmine loop gets complicated with more
vector instructions, the fraction of saved scalar instruction fetches per stripmine loop due

to the Hwacha assembly programming model will increase. This lets the control thread run
ahead further, enabling a higher degree of access/execute decoupling. Consult the Hwacha
microarchitecture manual for more details.

2.5 The Rocket/ Hwacha vector-fetch Processor

A Chisel implementation of a full vector-fetch processor is provided. The provided vector-
fetch processor comes with two big pieces: the control processor, known as Rocket, and the
vector unit, known as Hwacha.

Rocket is a RV64G b-stage, fully bypassed in-order core. It has full supervisor support
(including virtual memory). It also supports sub-word memory accesses and floating point.
In short, Rocket supports the entire 64-bit RISC-V ISA (however, no OS will be used in
this lab, so code will still run “bare metal” as in previous labs).

As the control processor, Rocket executes scalar code. However, when it encounters any
vector instruction, it will send the instruction (and the corresponding operands, perhaps
including a PC) to the Hwacha vector-unit, which will handle the command and/or begin
fetching and executing instructions starting at the given PC.

Rocket has an L1 data and instruction cache while Hwacha has an L1 instruction cache
for wvector-fetchinstructions and communicates directly with the L2 cache for data. These
caches are then backed up by DRAM that lives in the test harness.

Both Rocket and Hwacha are and have been developed and debugged for many tape-
outs, one of which is a joint Berkeley/MIT research chip (Berkeley is developing the cores
and caches, while MIT is focusing on novel memory designs that are far beyond the scope
of this lab). The upside of this is that you are playing with an actual, realistic processor
design that is being used for real computer architecture research. The downside is that
many of the tools and features are not yet mature, and it can be harder to grasp all of the
moving parts of these very real processors!

2.6 Graded Items

You will turn in a hard copy of your results to the professor or TA. Please label each section
of the results clearly. The following items need to be turned in for evaluation:

First, the end-goal of this lab is to fill out Chart [I|, which compares the floating point
performance of the wvector-fetch code running on the Hwacha vector-unit against the ref-
erence code running on the scalar Rocket core. Each problem will guide you through the
steps to accomplish this task. The performance results of Rocket has already been filled in
for you.

[

. Problem vvadd, saxpy, dgemm performance statistics and answers

[\]

. Problem 3.4} cmplxmult code, statistics, and answers

w

. Problem [£.1} spmv code, statistics, and answers

4. Problem [B} Feedback on this lab

Table 1: Performance of floating point benchmarks.

vvadd saxpy dgemm cmplxmult spmv
Rocket (scalar) | 0.060 GFLOPs | 0.080 GFLOPs | 0.859 GFLOPs | 0.159 GFLOPs | 0.069 GFLOPs
1.94 CPI 3.56 CPI 1.40 CPI 2.30 CPI 2.76 CPI

Hwacha (vf)

3 Directed Portion (2/7 of lab grade)

3.1 General Methodology

This lab will focus on writing wvector-fetch assembly code. This will be done in two steps:
step 1) write assembly code and test it for correctness using the very fast RISC-V ISA
sitmulator, and Step 2) measure the performance of your correct code on a Chisel-generated
cycle-accurate simulator of the Rocket/ Hwacha processor.

3.2 Setting Up Your Chisel Workspace

To complete this lab you will log in to an instructional server, which is where you will use

Chisel and the RISC-V tool-chain.

The tools for this lab were set up to run on any of the 5 instructional Linux servers

iclusterb.eecs, icluster6.eecs, ..

., icluster9.eecs. (seehttp://inst.eecs.berkeley.

edu/cgi-bin/clients.cgi?choice=servers| for more information about available ma-

chines).

http://inst.eecs.berkeley.edu/cgi-bin/clients.cgi?choice=servers
http://inst.eecs.berkeley.edu/cgi-bin/clients.cgi?choice=servers

First, download the lab materials{]

inst$ cd ~

inst$ cp -R “cs152/spl6/lab4d .
inst$ cd lab4

inst$ export LAB4ROOT=$PWD

This lab is now also managed as a git repository which means you can also use git to
fetch updates from the published version. To copy the repo you will need to clone it:

inst$ cd ~

inst$ git clone ~cs152/spl6/labd-git lab4d
inst$ cd lab4

inst$ export LAB4ROOT=$PWD

If any updates are released you can then pull in the new updates using

inst$ cd ${LAB4ROOT}
inst$ git pull

If you encounter problems using git feel free to post a question on Piazza or consult
the git documentation (see https://git-scm.com/doc)

The following command will set up your bash environment, giving you access to the
entire CS152 lab tool-chain. Run it before each sessionf]

inst$ source “cs152/sp16/cs152.1lab4.bashrc

We will refer to . /1ab4 as ${LAB4R0O0T} in the rest of the handout to denote the location
of the Lab 3 directory.

We will refer to /cs152-xy/1lab4 as ${LAB4R0O0T} in the rest of the handout to denote
the location of the Lab 4 directory. Some of the directory structure is shown below:

e ${LAB4ROOT} /rocket-chip/

— riscv-tools/riscv-tests/ Source code for assembly tests and benchmarks.

* benchmarks/ Benchmarks (mostly) written in C. This is where you will

spend nearly all of your time.
- vec-vvadd C and assembly code for the vector-vector add benchmark.
- vec-saxpy C and assembly code for the scalar Ax plus Y benchmark.

- vec-dgemm C and assembly code for the matrix multiply benchmark.

2The capital “R” in “cp -R” is critical, as the -R option maintains the symbolic links used.
30r better yet, add this command to your bash profile.

10

https://git-scm.com/doc

- vec-cmplxmult C and assembly code for the complex-multiply bench-

mark.

- vec-spmv C and assembly code for the sparse matrix vector multiply

benchmark.

% isa / Assembly code for the individual instruction tests.
- emulator/ C++ simulation tools and output files.
— CSI‘C/ C++ test bench source code.
— dramsimQ/ DRAMSim?2 source code that is used to emulate DRAM.
— chisel/ The Chisel source code.
— hwacha/ The Hwacha source code.
— rocket/ The Rocket processor.
- hardﬂoat/ The floating point unit source code.
— uncore / The uncore source code.
— SI”C/ Top-level source code.

— sbt / Chisel/Scala voodoo. You can safely ignore this directory.

The following command will set up your bash environment, giving you access to the
entire CS152 lab tool-chain. Run it before each sessionf] Note that hwacha has a different
ISA and therefore needs a different tool-chain than in previous labs which could use the
stock RISC-V tool-chain.

inst$ source “cs152/spl6/cs152.1ab4.bashrc

For this lab, we will play with the benchmarks vec-vvadd, vec-saxpy, vec-dgemm,
vec-cmplxmult, and vec-spmv. To compile and run these benchmarks on the RISC-V ISA
simulator, execute the following commands:

inst$ cd ${LAB4RO0T}/rocket-chip/riscv-tools/riscv-tests/benchmarks
inst$ make clean; make; make run-riscv

This quickly tests the benchmarks for correctness using the ISA simulator. The vec-cmplxmult
and vec-spmv benchmarks should FAIL, because you have not written the code for them
yet!

To run the benchmarks on the cycle-accurate C++ simulator of Hwacha/Rocket, exe-
cute the following commands:

inst$ cd ${LAB4ROOT}/emulator
inst$ make clean; make; make run-bmark-tests

10r better yet, add this command to your bash profile.

11

If this is your first compiling the emulator, this command may take a while.

The vec-cmplxmult and vec-spmv benchmarks should FAIL, because you have not
written the code for them yet! Note that the emulator is only compiled once. Once you
add your working complex multiply and sparse matrix vector multiply code, the total
simulation time should be about five to ten minutes.

3.3 Measuring the Performance of Simple Kernels

To acclimate ourselves to the Lab 4 infrastructure and wvector-fetch coding in general, we
will first look at the provided Vector-Vector Add (vec_vvadd) benchmark and measure its
performance on Hwacha.

First, navigate to the vec_vvadd directory, found in

${LAB4R0O0T}/rocket-chip/riscv-tools/riscv-tests/benchmarks/vec-vvadd/. In
the vec-vvadd directory, there are a few files of interest. First, the dataset1.h file holds
a static copy of the input vectors and results vector. Second, vec_vvadd main.c holds the
main driving C code for the benchmark, which includes initializing the state of the pro-
gram, calling the vvadd function itself, and verifying the correct results of the function. An
example scalar implementation of vvadd, written in C, is provided in vec_vvadd.c as well.
The assembly implementations are found in vec_vvadd_asm.S. Two versions are provided:
first, a scalar assembly version of vvadd, and second, a wvector-fetch version of vvadd.

Now let’s run the vector version of vec-vvadd on the ISA simulator:

inst$ cd ${LAB4R0O0T}/rocket-chip/riscv-tools/riscv-tests/benchmarks
inst$ make clean; make; make run-riscv

This will delete any old copies of the benchmarks, build new copies of the benchmarks,
generate obj-dump files, generate hex file copies, and run the resulting RISC-V binaries
on the RISC-V ISA simulatorE] You should see a PASS for vecv-vadd, denoting that the
output vector of our wvector-fetch implementation matches the reference results provided
by the dataset.h file. For now, you should see FAIL for both the vec-cmplxmult and
vec-spmv benchmarks, since we have not yet written the code for them yet!

Now, we will run vec-vvadd on the cycle-accurate simulator of Hwacha.

®Notice that the shown command (make run-riscv) runs the RISC-V binary. It is also possible to
build the code and run it on the “host” x86 platform, using make run-host. The advantage is that you get
full printf support (and a full OS), but the disadvantage is that you can not use any RISC-V assembly in
your code.

12

inst$ cd ${LAB4RO0T}/rocket-chip/emulator
inst$ make clean; make; make output/vec-vvadd.riscv.out

You should see the following output, which corresponds to vec-vvadd:

./emulator-Top-ISCA2016Config +dramsim +max-cycles=100000000 +verbose

+loadmem=output/vec-vvadd.riscv.hex none 3>&1 1>&2 2>&3 |
/home/ff/cs152/sp16/install-lab4/bin/spike-dasm --extension=hwacha >
output/vec-vvadd.riscv.out && [$PIPESTATUS -eq O]

cycle = 61807

instret = 574

The first line calls the emulator and loads the vec-vvadd benchmark into the simulator’s
memory, and stores any log information into output/vec-vvadd.riscv.out.

The second line is the output from the vec-vvadd.riscv program itself. In this ex-
ample, we are provided information about the number of cycles executed by the critical
function, and the number of instructions retired by the critical function in hexadecimal
form (3407 cycles and 27 scalar instructions respectively, in decimal).

Use this information to calculate the CPI of the control processor (retired instructions
is measured from the scalar control processor’s point of view), and to calculate the FLOPs
(“floating point operations / second”) achieved by Hwacha.

To calculate the FLOPs achieved, we need to know two things: how many floating point
operations were performed, and how many seconds elapsed. To calculate the former, we
need to look at the vec-vvadd code (vec_vvadd main.c and dataset1.h): we can see that
every iteration performs one floating point add operation, and that vec-vvadd runs for
20000 iterations. To calculate seconds, we need to know the number of cycles that elapsed
(provided by the above printout), as well as the clock rate of the processor. Both Rocket
and Hwacha can run at 1 GHz. Thus, since Rocket is a single-issue machine, we expect its
absolute maximum theoretical floating point performance to be 1 GFLOP (1 floating point
op per cycle / 1 billion cycles per second)ﬂ Huwachaas a vector machine has more functional
units to make consistent use of its large register files. In fact Hwachahas the capability to
do 4 double precision FMAs per cycle. As we have seen in section Hwacha’s register file is
broken up into SRAM banks with 1 read and 1 write port. For microarchitectural reasons
these banks are actually 128-bits wide so we have an aggregate read bandwidth of 8 double
precision operands per cycle. If this is the case how can Hwachafully saturate its 4 FMAs
which require 3*4=12 double precision operands per cycle (Hint: look at the optimized
matmul code and think about the other register Hwachacan use).

5This is actually a bit of a lie, since Rocket and Hwacha support “fused multiply add” instructions,
which perform a d = ¢+ (a x b) operation. Thus, with the fmadd and fmsub instructions, the processor can
actually issue two floating point operations in a single cycle!

13

3.4 Implementing Complex Multiply (cmplxmult) in vector-fetch

Now that you understand the infrastructure, how to run benchmarks, and how to collect
results, you can write your own benchmark and measure its performance on the Hwacha
vector-fetch core.

The first benchmark will be Complex Multiply (cmplxmult). Complex multiply involves
multiplying two vectors of complex numbers together element-wise. The pseudo-code is
shown below:

1| // pseudo code

2 for (i =0; i < nj; i++)
3] {

4 e = (axb) - (c*d);

5 f = (cxb) + (axd);

6] }

7}

In terms of calculating FLOPs, each iteration involves four FP multiplies and two FP
adds, for a total of six FLOP per iteration. The actual C code is shown here:

1| struct Complex

219

3 float real;

4| float imag;

50}

6

7|// scalar C implementation

8| void cmplxmult(int n, struct Complex al[], struct Complex b[], struct Complex c[])
94
10 int i;
11 for (i =0; i < n; i++)
12| {
13 clil.real = (a[il.real * b[il.real) - (al[il.imag * b[i].imag);
14 cl[i]l.imag = (al[il.imag * b[il.real) + (alil.real * b[i].imag);
15| %
16|}

Add your vector-fetch code to

${LAB4R0O0T}/rocket-chip/riscv-tools/riscv-tests/benchmarks/vec_cmplxmult/
vec_cmplxmult_asm.S. You will find a brief description of the RISC-V ABI calling con-
vention (which provides suggestions on which registers to use).

When you are ready to test your vector-fetch code, first test for correctness on the ISA
simulator:

inst$ cd ${LAB4R00T}/rocket-chip/riscv-tools/riscv-tests/benchmarks
inst$ make clean; make; make run-riscv

14

Once your code passes the correctness test, you can then gather performance results
on cycle-accurate simulator of Hwacha:

inst$ cd ${LAB4R0O0T}/rocket-chip/emulator
inst$ make clean; make; make output/vec-cmplxmult.riscv.out

Collect your results and fill out the corresponding entries in Table[l] Also, attach your
code in your submission email.

Hints: You will almost certainly want to work with strided vector memory operations
for this problem. For strided loads, the instruction is vlstw vvl, rBaseAddr, rStride,
or vector load strided (word version). The argument vv1 is the vector register # 1 (you
may use any number from 0 to the number of configured registers. The operand register
rBaseAddr holds the starting memory address for the vector strided load to begin loading
from, and rStride is a register that holds the size of the stride (both are required to be
address registers vaX). Because this problem involves vectors of structs, and each complex
number struct is 8 bytes in size, trying to load a vector of the real parts of the complex
numbers will involve a stride value of 8 (bytes). The corresponding store version is vsstw.

Although not necessary, you may also get higher performance by using “fused multiply
add” instructions, which are supported by Hwacha and Rocket (d = ¢+ (a x b)). These
instructions (vfmadd.w and vfmsub.w) allow two floating point operations to be issued
in a single cycle, doubling floating point performance! See the provided Hwacha ISA
specification for more information about the provided floating point instructions.

4 Open-ended Portion (5/7 of lab grade 4+ 2 bonus points)

For this lab, there will only be one open-ended portion that all students can do. As will
all labs, you can work individually or together in groups of two.

4.1 Contest: Vectorizing and Optimizing Sparse Matrix Vector Multiply

For this problem, you will implement a vector-fetch implementation of sparse matrix-vector
multiply. A scalar implementation written in C can be found in ${LAB4R00T}/rocket-chip/riscv-tools/ris
vec-spmv/vec_spmv_main.c Add your own vector-fetch implementation in vec_spmv_asm. S.

Once your code passes the correctness test, do your best to optimize spmv for Hwacha.
This will be a contest, with the best team, as measured by the achieved FLOPs (i.e., the
lowest number of cycles to correctly execute), will receive a bonus +2 (yes, 2% of your
total grade) points on the lab.

You are only allowed to write code in the vec_spmv_asm function (i.e., do not change
any code in the vec_spmv_main.c file). If you would like to do some transformation on
the inputs please only do this after you have done the non-transformed version.

Email your spmv wvector-fetch assembly code along with your lab submission. Describe
what your code does, and some of the strategies that you tried.

15

Sparse Matrix Vector Multiply Hints

Common techniques that generally work well are loop unrolling, lifting loads out of inner
loops and scheduling them earlier, blocking the code to utilize the full register file, trans-
posing matrices to achieve unit-stride accesses to make full use of the L2 cache lines, and
loop interchange.

More specific to vector-fetch, try and have all element loads be re-factored into vector
loads. Use fused multiply-add instructions as often as possible. Also, carefully choose which
loop(s) you decide to vectorize for this problem: not all loops can be safely vectorized!

Finally, be mindful about the use of the fence.v instruction: it is expensive and can
hurt performance, but you must use it when you need the results of stores visible.

5 The Third Portion: Feedback

This is a newly refreshed lab, and as such, we would like your feedback again! How many
hours did the directed portion take you? How many hours did you spend on the open-
ended portion? Was this lab boring? Did you learn anything? Is there anything you would
change? Feel free to write as little or as much as you want (a point will be taken off only
if left completely empty).

6 Acknowledgments

This lab was made possible through the work of Yunsup Lee and Andrew Waterman (among
others) in developing the Rocket and Hwacha processors, and in helping make the RISC-V
tool-chain available to users at large. This lab was originally developed for CS152 at UC
Berkeley by Christopher Celio.

A Appendix: Debugging

Debugging your wvector-fetch code can be difficult. To make matters worse, you do not have
an OS to call upon, gdb, or printf.
However, there are a couple of strategies that will help.
First, some simple printing functions are provided: printstr() and printhex().
These functions, found in ${LAB4R00T}/rocket-chip/riscv-tools/riscv-tests/benchmarks/commmon/sys
allow you to print out a static string and an integer value respectively. This can allow you
to check conditions and print out the appropriate strings from your code.
Second, the ISA simulator can be run in a debug mode that prints out an instruction
trace. For example, the basic command for running vec_vvadd in the ISA simulator is:

inst$ spike vec-vvadd.riscv

16

However, adding “-d” will provide a log of the instructions executed.
inst$ spike -d vec_vvadd.riscv

The only down-side is that this only shows the instruction trace from the point of view
of the control processor: the vector unit is effectively invisible.

In order to give a better sense of the vector instructions you can rebuild spike with the
—-—enable-hcommitlog flag which causes it to print out all writes to vector registers.

The objdump of the RISC-V binaries can be found in ${LAB4R00T}/rocket-chip/riscv-tools/riscv-tes
benchmarks/*.riscv.dump, which can be very useful for comparing with the instruction
traces and verifying that the code you wrote was correctly translated by the compiler.

If you are confused about vector-thread, I recommend that you look at the CS152
Section 10 slides, look through the ISA manual or the microarch manual.

References

[1] R. Krashinsky, C. Batten, M. Hampton, S. Gerding, B. Pharris, J. Casper, and
K. Asanovic. The vector-thread architecture. IEEE Micro, 24(6):84-90, 2004. |http:
//groups.csail.mit.edu/cag/scale/papers/vta-isca2004.pdf].

2] Y. Lee, 2012. [http://www.eecs.berkeley.edu/~yunsup/papers/
maven-isca2011-talk.pdf].

[3] Y. Lee, R. Avizienis, A. Bishara, R. Xia, D. Lockhart, C. Batten, and K. Asanovi¢.
Exploring the tradeoffs between programmability and efficiency in data-parallel accel-
erators. June 2011.

17

http://groups.csail.mit.edu/cag/scale/papers/vta-isca2004.pdf
http://groups.csail.mit.edu/cag/scale/papers/vta-isca2004.pdf
http://www.eecs.berkeley.edu/~yunsup/papers/maven-isca2011-talk.pdf
http://www.eecs.berkeley.edu/~yunsup/papers/maven-isca2011-talk.pdf

Shared Registers

vs0/zero

vsl

vs2

vs3

vsd

vs5

vs6

vs

vs8

vs9

vslO0

vsll

vsl2

vsl3

vs63

Address Registers

va0

val

vaz

va3

vad

vab

vabo

va3l

Vector Registers

[vien-1]

Predicate Registers

vpO

vpl

vp2

vpi5| . I

(0]

Vector Configuration Register

[vien-1]

Vector Length Register

| vcig |

vilien |

Figure 5: Hwacha user-visible register state.

18

csaxpy_control_thread:
vsetcfg ...
vmcs vsl, a2
stripmine_loop:
vsetvl t0, a0

vmca va0, al

vmca val, a3

vmca va2, a4

vE csaxpy_worker_thread
add al, al, tO

slli tl, t0, 2

add a3, a3, ti

add a4, a4, ti

sub a0, a0, toO

bnez a0, stripmine_loop
ret

csaxpy_worker_thread:

vlb vv0, (va0)
vcmpez vpO, vvO0
lvp0 vlw vv0, (val)
lvpO vlw vvl, (va2)
lvpO vima vv0, vv0O, vsl, vvil
lvpO vsw vv0, (va2)
vstop

Figure 6: CSAXPY kernel mapped to the Hwacha assembly programming
model.

19

‘oS
<0 o0 (B
& o (o
oV 0% 0 28 e
e"‘i\ ‘(\\(\ ©
@6(\ ?e\c’ 0@0 Qj\
PIF|ID]|X

Floating-Point Pipeline

LN 2
o
A\
< V¢e

Figure 7: The Rocket control processor pipeline.

20

	Introduction and goals
	Background
	The vector-fetch Architecture
	Packed SIMD Assembly Programming Model
	SIMT Assembly Programming Model
	Traditional Vector Assembly Programming Model
	The Rocket/Hwacha vector-fetch Processor
	Graded Items

	Directed Portion (2/7 of lab grade)
	General Methodology
	Setting Up Your Chisel Workspace
	Measuring the Performance of Simple Kernels
	Implementing Complex Multiply (cmplxmult) in vector-fetch

	Open-ended Portion (5/7 of lab grade + 2 bonus points)
	Contest: Vectorizing and Optimizing Sparse Matrix Vector Multiply

	The Third Portion: Feedback
	Acknowledgments
	Appendix: Debugging

