C152 Laboratory Exercise 3 Rev. A

Professor: George Michelogiannakis
TA: Colin Schmidt
Department of Electrical Engineering & Computer Science
University of California, Berkeley

February 25, 2016

1 Introduction and goals

The goal of this laboratory assignment is to allow you to conduct a variety of experiments in the
Chisel simulation environment.

You will be provided a complete implementation of a speculative superscalar out—of—order pro-
cessor. Students will run experiments on it, analyze the design, and make recommendations for
future development. You can also choose to improve the design as part of the open-ended portion.

The lab has two sections, a directed portion and an open—ended portion. Everyone will do the
directed portion the same way, and grades will be assigned based on correctness. The open—ended
portion will allow you to pursue more creative investigations, and your grade will be based on the
effort made to complete the task or the arguments you provide in support of your ideas.

Students are encouraged to discuss solutions to the lab assignments with other students, but
must run through the directed portion of the lab by themselves and turn in their own lab report.
For the open-ended portion of each lab, students can work individually or in groups of two. Any
open-ended lab assignment completed as a group should be written up and handed in separately.
Students are free to take part in different groups for different lab assignments.

You are only required to do one of the open—ended assignments. These assignments are in
general starting points or suggestions. Alternatively, you can propose and complete your own
open—ended project as long as it is sufficiently rigorous. If you feel uncertain about the rigor of a
proposal, feel free to consult the TA or the professor.

1.1 Chisel Rocket—Chip, & The Berkeley Out—of-Order Machine

The Chisel infrastructure is much more advanced than what we saw in Lab 1. This is the in-
frastructure that the Berkeley Architecture group (UCB-BAR) uses. The infrastructure is com-
posed of several components which are each maintained as separate git repos, submoduled into the
main Rocket—Chip repository. Rocket—Chip is a system—on—a—chip (SoC) generator implemented in
Chisellt can generate processors, caches, accelerators, and connections off chip including memory
channels. The default processor in Rocket—Chip is a single issue 5-stage pipeline processor called
Rocket, the namesake of the repository. In this lab, however, we will be using the RISC-V Berkeley
Out—of-Order Machine, or “BOOM”. BOOM is heavily inspired by the MIPS R10k and the Alpha
21264 out—of-order processors[l, 3|. Like the R10k and the 21264, BOOM is a unified physical

register file design (also known as “explicit register renaming”). BOOM can be configured to be a
multi-issue processor(1,2,3,4 are the most tested widths).

In this lab will be interfacing with the outside world via a DRAM memory link. On-chip is an
out—of-order core, which is where the focus of this lab will be. The core, in this case the BOOM
processor, is directly connected to an instruction cache and a non-blocking data cache, both of
configurable size. These caches will be backed by an L2 cache, which is connected to the DRAM|2]
(located “off-chip”).

2 The BOOM Pipeline

Fetch Decode Rename Dispatch Issue RegisterRead Execute Memory wB
Branch
+ Prediction l
Resol
Fetch > BP Branch
v
—>
- Unified [>|ALu
2 egISter g] RegiSter >
ename, — f
File —— >
Fetch A
Buffer Issue Window LAQ
>
ROB addr
SAQ Datarsaa
waataMem
—
Commit
SDQ

Figure 1: The Berkeley Out of Order Machine Processor.

Conceptually, BOOM is broken up into 10 stages: Fetch, Decode, Register Rename, Dispatch,
Issue, Register Read, Execute, Memory, Writeback, and Commit. However, many of those stages
are combined in the current implementation, yielding siz stages: Fetch, Decode/Rename/Dispatch,
Issue/RegisterRead, Execute, Memory, and Writeback (Commit occurs asynchronously, so I'm not
counting that as part of the “pipeline”).

Fetch Instructions are fetched from the Instruction Memory and pushed into a FIFO
queue, known as the fetch buffer.t

Decode Decode pulls instructions out of the fetch buffer and generates the appropriate
“micro-op” to place into the pipeline.

Rename The ISA, or “logical”, register specifiers are then renamed into “physical”
register specifiers.

"While the fetch buffer is N-entries deep, it can instantly read out the first instruction on the front of the FIFO.
Put another way, instructions don’t need to spend N cycles moving their way through the fetch buffer if there are no
instructions in front of them.

BOOM supports full branch speculation and branch prediction. Each instruction, no matter
where it is in the pipeline, is accompanied by a branch tag that marks which branches the instruction
is “speculated under”. A mispredicted branch requires killing all instructions that depended on
that branch. When a branch instructions passes through Rename, copies of the Register Rename

Dispatch The micro-op is then dispatched, or written, into the Issue Window.

Issue Micro-ops sitting in the Issue Window wait until all of their operands are ready,
and are then issued.? This is the beginning of the out—of-order piece of the pipeline.

RF Read Issued micro-ops first read their operands from the unified physical register
file (or from the bypass network)...

Execute ... and then enter the Fzecute stage where the functional units reside. Issued
memory operations perform their address calculations in the Ezxecute stage, and
then store the calculated addresses in the Load/Store Unit which resides in the
Memory stage.

Memory The Load/Store Unit consists of three queues: a Load Address Queue (LAQ),
a Store Address Queue (SAQ), and a Store Data Queue (SDQ). Loads are fired to
memory when their address is present in the LAQ. Stores are fired to memory at

Commit time (and naturally, stores cannot be committed until both their address
and data have been placed in the SAQ and SDQ).

Writeback ALU operations and load operations are written back to the physical reg-
ister file.

Commit The Reorder Buffer, or ROB, tracks the status of each instruction in the
pipeline. When the head of the ROB is not-busy, the ROB commits the instruction.
For stores, the ROB signals to the store at the head of the Store Queue that it can
now write its data to memory.

Table and the Free List are made. On a mispredict, the saved processor state is restored.

Although Figure 1 shows a simplified pipeline, BOOM implements the RV64G and privileged
ISAs, which includes single- and double-precision floating point, atomic memory support, and

page-based virtual memory.

Additional information on BOOM can be found in the online documents at http://ccelio.

github.io/riscv-boom-doc/ and the CS152 Section 8 notes.

2More precisely, uops that are ready assert their request, and the issue scheduler chooses which uops to issue that

cycle.

2.1 Graded Items

You will turn in a digital copy of your results to the professor or TA. Some of the open-ended
questions also request source code - this should include the files you have modified such that they
can be replaced with the current versions to replicate your results. See the individual open-ended
section for more details. Please label each section of the results clearly. The following items need
to be turned in for evaluation:

1. Problem 3.2: Baseline CPI, branch predictor statistics, and answers
2. Problem 3.3: Issue window and width statistics and answers
3. Problem 4.2/4.1/4.3/4.4 modifications and evaluations

4. Problem 5: Feedback on this lab

3 Directed Portion

The questions in the directed portion of the lab use Chisel. A tutorial (and other documenta-
tion) on the Chisel language can be found at (http://chisel.eecs.berkeley.edu). Although
students will not be required to write Chisel code as part of this lab, students will need to write
instrumentation code in C+4 code which probes the state of a Chisel processor.

WARNING: Chisel is an ongoing project at Berkeley and continues to undergo rapid devel-
opment. Any documentation on Chisel may be out of date, especially regarding syntax. Feel free
to consult with your TA with any questions you may have, and report any bugs you encounter.
Likewise, BOOM will pass all tests and benchmarks for the default parameters, however, changing
parameters or adding new branch predictors will create new instruction interleavings which may
expose bugs in the processor itself.

3.1 Setting Up Your Chisel Workspace

To complete this lab you will log in to an instructional server, which is where you will use Chisel
and the RISC-V tool-chain.

The tools for this lab were set up to run on any of the 5 instructional Linux servers icluster5. eecs,
icluster6.eecs, ..., icluster9.eecs. (seehttp://inst.eecs.berkeley.edu/cgi-bin/clients.
cgi?choice=servers for more information about available machines).

First, download the lab materials:?

inst$ cd ~

inst$ cp -R “cs152/spl6/lab3 .
inst$ cd lab3

inst$ export LAB3ROOT=$PWD

This lab is now also managed as a git repository which means you can also use git to fetch
updates from the published version. To copy the repo you will need to clone it:

inst$ cd ~

inst$ git clone “cs152/spl6/lab3-git lab3
inst$ cd lab3

inst$ export LAB3ROOT=$PWD

If any updates are released you can then pull in the new updates using

inst$ cd ${LAB3ROOT}
inst$ git pull

If you encounter problems using git feel free to post a question on Piazza or consult the git
documentation (see https://git-scm.com/doc)

The following command will set up your bash environment, giving you access to the entire
CS152 lab tool-chain. Run it before each session:*

inst$ source “cs152/spl16/cs152.bashrc

We will refer to ./1ab3 as ${LAB3R0O0T} in the rest of the handout to denote the location of
the Lab 3 directory.

3The capital “R” in “cp -R” is critical, as the -R option maintains the symbolic links used.
10r better yet, add this command to your bash profile.

The directory structure is shown below:

e ${LAB3RO0T}/
— rocket-chip / Top level rocket-chip directory.
* boom/ Chisel source code for the BOOM processor.
* chisel/ The source code of Chisel itself.
% context-dependent-environments / Library for the parameter system used in rocket-
chip.
csre / Miscellaneous C code for rocket-chip.
dramsimQ/ A DRAM simulator that the Chisel emulator hooks into.
emulator / C++ simulation makefile and generated source.

hardﬂoat/ Chisel code implmenting various floating point functional units.

* X X X X

junctions / Chisel code implmenting converters for different interfaces used through-
out rocket-chip.

LICENSE Open source license for the code in rocket-chip.

*

*

Makefrag High-level portion of a makefile that holds many basic options for other
deeper Makefiles.

prOjeCt/ Various scala, sbt magic configuration files.

README.md Readme based on the full rocket-chip repository.

riSCV—tOOIS/ Toolchain for RISC-V. Only used for the tests in this lab.

rocket/ Chisel code implmenting a well-tuned 5-stage in-order RISC-V processor.
sbt-launch.jar SBT jar used to manage scala projects.

src/ Chisel code stiching together all of the other components into an entire chip.

L S U R S S

uncore/ Chisel code implmenting things outside the core, including L2 cache, and

interface to the outside world.

— coremark / Coremark benchmark suite binary and executable script.

To compile the Chisel source code for BOOM, compile the resulting C+4 simulator, and run
all tests and benchmarks, run the following Bash script:

inst$ cd ${LAB3RO0T}/emulator
inst$ make run

To “clean” everything, simply use the “clean target of the Makefile:
inst$ make clean

The entire build and test process should take around ten to fifteen minutes on the icluster
machines. ° Throughout this lab you will be experimenting with many different configurations of
BOOM. Each configuration is given a name in ${LAB3R00T}/rocket-chip/src/main/scala/PrivateConfigs.sca
In order to build a different configuration you can use the CONFIG environmental variable. For ex-
ample to a smaller boom

inst$ make run CONFIG=SmallBOOMConfig

5The generated C++ source code is ~10MB in size, so some patience is required while it compiles.

3.2 Gathering the CPI and Branch Prediction Accuracy of BOOM

For this problem, you will learn how to collect and report the CPI and branch predictor ac-
curacy of BOOM and report the resulst for the benchmarks dhrystone, median, multiply, gsort,
towers, mm, spmv, and vvadd.

inst$ cd ${LAB3RO0T}/rocket-chip/emulator
inst$ make run
inst$ make stats

The Makefile is similar to the one you interacted with in Lab 1, which compiles the Chisel
code into C++ code, then compiles that C++ code into a cycle-accurate simulator, and finally
calls the RISC-V front-end server which starts the simulator and runs a suite of benchmarks
on the target processor. The stats target is generating *.run files which contain the number
of cycles taken, the number of instructions completed and several microarchitecturable coun-
ters that denote interesting events in BOOM. The microarchtiectural counters are generated in
${LAB3RO0T}/rocket-chip/boom/src/main/scala/core.scala. Take a look at this file and think
about how you would calculate branch prediction accuracy.

To test your estimate, we’ll use a config we will turn off branch predicition entirely. This design
has no BHT or BTB.

inst$ make stats CONIG=NoBPCOnfig

What happened to your computed branch prediction accuracy? Is this what you expected?
What if we still had a BHT but no BTB?

inst$ make stats CONIG=NoBTBConfig
What happened to your computed branch prediction accuracy? Is this what you expected?

The default parameters for BOOM are summarized in Table 1. This configuration is designed
to match a Cortex-A9 class processor.

Table 1: The BOOM Parameters for Problem 3.2.

Default
Fetch Width 2
Issue Width 3
Register File 110 physical registers
ROB 48 entries
Inst Window 20 entries
Load/Store Queue 16 entries
Max Branches 8 branches
Branch Prediction | 4KB of two-bit counters
BTB on

Table 2: CPI for the in-order 5-stage pipeline and the out-of-order “6-stage” pipeline. Fill in the rest of the
table.

dhry | mm | median | multiply | gsort | spmv | towers | vvadd

BOOM (PC+4)
BOOM (BHT)
BOOM (BTB+BHT)

Table 3: Branch prediction accuracy for predict PC+4 and a simple 2-bit BHT prediction scheme. Fill in
the rest of the table.

dhry | mm | median | multiply | gsort | spmv | towers | vvadd

BOOM (PC+4)
BOOM (BHT)
BOOM (BTB+BHT)

Explain the results you gathered. Are they what you expected? Was using a BHT always a
win for BOOM? Why or why not? (Don’t forget to include the accuracy numbers of the branch
predictor!). 6

Additional Notes: Jumps are included in the branch accuracy statistics. Jump and Jump-
and-Link are predicted as always taken, while Jump-and-Link-Register is always predicted as not
taken. The CPI is calculated at the Commit stage. Finally, the branch predictor accuracy is
calculated based on the signals in the Ezecute stage, which means that the reported accuracy is
also including misspeculated instructions.”

3.3 Issue width limitations

Building an out—of—order processor is hard. Building an out—of-order processor that is well balanced
and high performance is really hard. Any one piece of of the processor can bottleneck the machine
and lead to poor performance. For this problem we will investigate how the machines issues
instructions and some possible limitations. In order to see this we will use a different set of counters
than the previous question.

Open up ${LAB3R0O0T}/rocket-chip/boom/src/main/scala/core.scala again and change
the commented lines to the second set. Look at the list of counters and their descriptions so
you are familiar with what they signify.

First we will compare the values of the counters for our baseline machine from the previous
question, and a similar machine with a smaller and wider issue width.

inst$ make stats CONIG=OneWideConfig
inst$ make stats CONIG=FourWideConfig

SHint: when a branch is misspredicted for BOOM, what is the branch penalty?
"The branch predictor itself is updated in the Commit stage.

Once we have a wider issue processor we may be bottlenecked by other features, so we experi-
ment with a larger ROB:

inst$ make stats CONIG=FourWideSmallROBConfig
inst$ make stats CONIG=FourWideBigROBConfig

Another imporant factor on performance is how we determine which operation to issue next,
BOOM support two methods: an unordered version that selects instructions simply based on their
location in the issue window, and an age based policy that selects the oldest instructions first.

inst$ make stats CONIG=StaticIssueConfig

Finally, we look at the difference a larger or smaller issue window has when using the age based
policy.

inst$ make stats CONIG=SmallIssueConfig
inst$ make stats CONIG=BigIssueConfig

Table 4: CPI for the in-order 5-stage pipeline and the out-of-order “6-stage” pipeline. Gradually turn on
additional features as you move down the table. Fill in the rest of the table.

dhry | mm | median | multiply | gsort | spmv | towers

vvadd

BOOM (default)

BOOM (OneWideConfig)

BOOM (FourWideConfig)

BOOM (FourWideSmallROBConfig)

BOOM (FourWideBigROBConfig)

BOOM (StaticIssueConfig)

BOOM (SmalllssueConfig)

BOOM (BiglIssueConfig)

BOOM (SmallCustomConfig)

BOOM (BigCustomConfig)

Looking at the collected performance counters across these different configurations, do they
change as you would expect? Why or why not? What other parameter in configs.scala that we
did not change here do you think would have the largset impact on CPI, positive and negative?
Select one of LSU_ENTRIES, PHYS REGISTERS, and MAX BR_COUNT to reduce and grow in size in two
configurations, SmallCustomConfig and BigCustomConfig. Look at
${LAB3R0O0T}/rocket-chip/boom/src/main/scala/configs.scala and
${LAB3R0O0T}/rocket-chip/src/main/scala/PrivateConfigs.scala for examples. Why do you
think your chosen parameter will have the greatest impact? Where does it rank within the other
parameters we changed earlier?

4 Open-ended Portion

4.1 Analyzing and Modifying the BOOM Issue Window Design
4.2 Branch predictor contest: The Chisel Edition!

Currently, BOOM uses a GShare branch predictor by default. A version of this code with slightly
simplified interfaces can be found in
${LAB3R0O0T}/rocket-chip/boom/src/main/scala/simplegshare.scala. For this problem, your
goal is to implement a better branch predictor for BOOM.

It is recommended to look at the following papers.
https://www.cis.upenn.edu/"milom/cis501-Fall09/papers/Alpha21264.pdf
http://www.hpl.hp.com/techreports/Compaq-DEC/WRL-TN-36.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=491460 Consider implementing, a
local predicitor, a tournament predictor, or something else. The code has been commented with
FIXME’s in places you should easily be able to modify the code. Feel free to modify other places
as well but be aware that you may have less support doing so. You can also add print statements
(an example is given) to investigate what the state of your predictor is during program execution.

Before you get started hacking you should create a block diagram, at a similar level of detail to
slides 21 and 24 from lecture 5.

Describe the branch predictor(s) you decided to implement and fill in their entries in the table
below. The branch predictor counters will let you obtain accuracy by (uarch7-uarchi) /uarchil
The table contains numbers collected for the default predictor as well as a yet to be released TAGE
predictor. Compare your implementation(s) with these other predictiors. How well did you do?
How much more state does your predictor require compared to the default GShare? Do you think
your predictor would affect cycle time?

Table 5: Branch prediciton accuracy. Fill in the rest of the table.

dhry | mm | multiply | gsort | towers | vvadd
BOOM (default) 98.2 | 96.7 87.6 57.1 75.6 95.4
BOOM (TAGE) 99.7 | 65.6 90.6 65.4 | 91.2 89.5
BOOM (CustomBranchPredictorConfig)

Please include your modified code as a .zip file in your email. I will be checking that it runs
and generates the numbers you claim.

4.3 Branch predictor contest: The C++ Edition!

For this open-ended project, you will design your own branch predictor and test it on some realistic
benchmarks.

Changing the operation of branch prediction in hardware would be arduous, but luckily a
completely separate framework for such an exploration already exists. It was created for a branch
predictor contest run by the MICRO conference and the Journal of Instruction-Level Parallelism.
The contest provided entrants with C++ framework for implementing and testing their submissions,

10

which is what you will use for our in-class study. Information and code can be found at:
http://www.jilp.org/cbp/

A description of the available framework can be found in the readme. The framework has been
included in
${LAB3RO0T}/cbp/cbp-framework-version-3

You can compile and run this framework on essentially any machine with a decently modern
version of gcc/g++. So, while the TA will not be able to help you with setup problems on your
personal machine, you may choose to compile and experiment there to avoid server contention.

In the interests of time, you can pick 3-5 benchmarks from the many included with the framework
to test iterations of your predictor design on.

A final rule: you can browse textbooks/technical literature for ideas for branch predictor designs,
but don’t get code from the internet.

For the lab report: Submit the source code for your predictor, an overall description of
its functionality, and a summary of its performance on 3-5 of the benchmarks provided with the
framework. Report which benchmarks you tested your predictor out on.

For the contest: We will take the code you submit with the lab, and test its performance on
a set of benchmarks chosen by us. Please email your code in a .zip file to the TA.

4.4 BOOM Parameter Introspection With Software

The goal of this open-ended assignment is to purposefully design a set of benchmarks which stress
different parts of BOOM. This problem is broken down into two parts:

e Write two benchmarks to stress the Load/Store Unit
e Write a benchmark(s) to introspect a parameter within BOOM

4.4.1 Part 1: Load/Store Unit Micro-benchmarks

You may have noticed that many of the benchmarks do not use all of the (very complicated)
features in the Load/Store Unit. For example, few benchmarks perform any store data forwarding.
For this part, you will implement two (small) benchmarks, each attempting to exercise a different
characteristic.

e Maximize store data forwarding

e Maximize memory ordering failures

As a reminder, “store data forwarding” is when a load is able to use the data waiting in the
store data queue (SDQ) before the store has committed (there is a store->load dependence in
the program). A memory ordering failure is when a load that depends on a store (a store->load
dependence) is issued to memory before the store has been issued to memory - the load has received
the wrong data. There is a set of uarch counters that you can enable to count these events.

There is no line limit for the code used in this problem. Each benchmark must run for at least
twenty thousand cycles (as provided by the SetStats() printout).

Two skeleton benchmarks are provided for you in
${LAB3RO0T}/rocket-chip/riscv-tools/riscv-tests/benchmarks/lsu_forwarding/
and ${LAB3R0O0T}/rocket-chip/riscv-tools/riscv-tests/benchmarks/lsu_failures/. To build
and test them under the RISC-V ISA simulator:

11

inst$ cd ${LAB3RO0T}/riscv-tools/riscv-tests/benchmarks/
inst$ make run-riscv

Once you are satisfied with your code and would like to run it on BOOM, type:

inst$ cd ${LAB3RO0T}/rocket-chip/emulator/
inst$ make run-bmark-tests

Finally, you can run a single benchmark with:

inst$ cd ${LAB3ROOT}/rocket-chip/emulator
inst$ make output/lsu_forwarding.riscv.MediumBOOMConfig.run

Be creative! When you are finished, submit your code via zip attached to your email submission.
In your report, discuss some of the ideas you considered, and describe how your final benchmarks
work.

Finally, it is possible that you may uncover bugs in BOOM through your stress testing: if you
do, consider your benchmarking efforts a success! (save a copy of any offending code and let your
TA know about any bugs you find).

4.4.2 Part 2: Parameter Introspection

Now the real challenge! Pick a non-binary parameter in BOOM’s design and try to discover its
value via a benchmark you design and implement yourself!

The basic strategy is as follows.
Step 1) implement a micro-benchmark that stresses a certain parameter of the machine and mea-
sure the machine’s performance.
Step 2) go into ${LAB3R0O0T}/rocket-chip/boom/src/main/scala/configs.scala to change the
parameter you are studying. The default config can be changed by changing WithMediumBOOMs.
Then rerun your benchmark.
Step 3) Repeat to gather more results.
Step 4) Build a model to describe how performance is affected by modifying your parameter.

Your model should be good enough that the TA can take your model and benchmark, run it on
a machine and discover the value of the parameter in question without knowing its value a priori
(even better if the TA can change other parameters of the machine so your model is not simply a
lookup table).

Here are a set of parameters to choose from:®

e ROB size
e Number of physical registers
e Maximum number of branches

e Number of issue slots

8You may not use cache size(number of sets) as a parameter, as that is too easy.

12

Number of entries in the load and store queues
Number of entries in the fetch buffer
Number of entries in the BHT

Data cache associativity

A skeleton benchmark is provided for you in
${LAB3R0O0T}/rocket-chip/riscv-tests/benchmarks/param_introspect/. To build and test
them under the RISC-V ISA simulator, use the same steps as in the first part. Submit your code,
describe how it works, and what ideas you explored. Also submit your data and your model showing
how well it works on BOOM.

Naturally, this is a challenging task. The goal of this project is to make you think very carefully
about out-of-order micro-architecture and write code to defeat the processor. There may not
necessarily be a “clean” answer here.

Warning: not all parameters are created equally. Some will be harder challenges than others,
and we cannot guarantee that all parameters will be doable. But with a dose of cleverness, you
might be surprised what you can discover! (especially when you can white-box test your ideas).

13

5 The Third Portion: Feedback

This is a newly refreshed lab, and as such, we would like your feedback again! How many hours did
the directed portion take you? How many hours did you spend on the open-ended portion? Was
this lab boring? Did you learn anything? Is there anything you would change? Feel free to write
as little or as much as you want (a point will be taken off only if left completely empty).

6 Acknowledgments

This lab was originally developed for CS152 at UC Berkeley by Christopher Celio, and partially
inspired by the previous set of CS152 labs written by Henry Cook.

References

[1] R. Kessler. The Alpha 21264 Microprocessor. IEEE Micro, 19(2):24-36, 1999.

[2] P. Rosenfeld, E. Cooper-Balis, and B. Jacob. Dramsim2: A cycle accurate memory system
simulator. Computer Architecture Letters, 10(1):16 —19, jan.-june 2011.

[3] K. Yeager. The MIPS R10000 Superscalar Microprocessor. IEEE Micro, 16(2):28-41, 1996.

14

