CS152 Laboratory Exercise 2 (Version A)

Professor: George Michelogiannakis
TA: Colin Schmidt
Department of Electrical Engineering & Computer Science
University of California, Berkeley

February 11, 2015

1 Introduction and goals

The goal of this laboratory assignment is to conduct some simple memory hierarchy experiments
in the RISC-V simulation environment. Using the cache simulator module, you will collect cache
statistics and make architectural recommendations based on the results.

The lab has two sections, a directed portion and an open-ended portion. Everyone will perform
the directed portion the same way, and grades will be assigned based on correctness. The open-
ended portion will allow you to pursue more creative investigations, and your grade will be based
on the effort made to complete the task or the arguments you provide in support of your ideas.

Students are encouraged to discuss solutions to the lab assignments with other students, but
must run through the directed portion of the lab by themselves and turn in their own lab report.
For the open-ended portion of each lab, students can work individually or in groups of two (not
three). Any open-ended lab assignment completed as a group should be written up and handed in
separately. Students are free to take part in different groups for different lab assignments.

You are only required to do one of the open-ended assignments. These assignments are generally
starting points or suggestions. Alternatively, you can propose and complete your own open-ended
project as long as it is sufficiently rigorous. If you feel uncertain about the rigor of a proposal, feel
free to consult the instructor or the TA.

1.1 Tools and Benchmarks

The processors that you will be studying in this lab implement the RISC-V ISA, recently developed
at UC Berkeley for use in education and research.

The ISA simulator riscv-isa-sim or spike can execute RISC-V binaries. Note that in Lab 1,
we used the ISA simulator as the golden reference for the ISA. The ISA simulator executes RISC-V
code rapidly, but does not model pipeline timing and so is not cycle-accurate.

In Lab 2, we will use an ISA simulator that has been extended with a cache simulator. The cache
simulator will run memory addresses through a simulated cache (with a given size, associativity, and
block size), and record the number of accesses, hits, and misses. With the simulated miss rate and
miss penalty, we can estimate the impact on CPI. We also use CACTI (http://quid.hpl.hp.com:
9081/cacti) to see how various cache parameters will impact the cycle time of the pipeline.

The ISA simulator is used in this lab, not the Chisel-generated emulator, even though the ISA
simulator doesn’t give accurate cycle counts: 1) Typically, we need to run a couple billion cycles to
get a realistic view of the cache behavior, and the Chisel-generated emulator runs a few orders of
magnitudes slower than the ISA simulator, 2) the AMAT/CPI performance estimate for a simple
pipeline turns out to be reasonably accurate.

We will use 5 benchmarks (bzip2, mcf, soplex, sjeng, 1bm) from the SPEC CPU2006
benchmark suite (http://www.spec.org). SPEC is a standardized set of benchmarks to evalu-
ate the performance of modern computer systems. The test results are published on the SPEC
website. To read more about SPEC, please consult the SPEC website.

1.2 Graded Items

You will turn in a hard copy of your results to the instructor or TA. Please label each section of
the results clearly. The directed items need to be turned in for evaluation. You only need to turn
in one of the problems found in the open-ended portion.

Directed
Directed
Directed
Directed

Problem 2.2: simple cache statistics for each benchmark and answers
Problem 2.3: suggested working sets and evidence

Problem 2.4: optimal I$ configuration and evaluation

~— — ~— —

Problem 2.5: optimal D$ configuration and evaluation

Directed) Problem 2.6: optimal D$ configuration with an L2$ and evaluation

NS e 0N

Open-ended) Problem 3.2: suggested victim cache configuration, modifications, and evalua-
ion (include source code if required)

Open-ended) Problem 3.3: suggested prefetching algorithm, modifications, and evaluation

(
(
(
(
(
(Open-ended) Problem 3.1: optimal cache configuration and evidence
(
ti
(
(include source code if required)

(

Open-ended) Problem 3.4: suggested replacement policy, modifications, and evaluation (in-
clude source code if required)

10. (Directed) Problem 4: Feedback on this lab

Lab reports must be in readable English and not raw dumps of log-files. It is highly recommended
that your lab report be typed. Charts, tables, and figures - when appropriate - are great ways to
succinctly summarize your data.

2 Directed Portion (2/7 of lab grade)

2.1 Setting Up Your Workspace

To complete this lab you will log in to an instructional server to run the RISC-V ISA simulator and
compiler tool chain. We will provide you with an instructional computing account for this purpose.

The tools for this lab were set up to run on any of the 5 instructional Linux servers icluster5b. eecs,
icluster6.eecs, ..., icluster9.eecs. (seehttp://inst.eecs.berkeley.edu/cgi-bin/clients.
cgi?choice=servers for more information about available machines).

First, download the lab materials!:

inst$ cd ~

inst$ cp -R “cs152/spl6/lab2
inst$ cd lab2

inst$ export LAB2ROOT=$PWD

This lab is now also managed as a git repository which means you can also use git to fetch
updates from the published version. To copy the repo you will need to clone it:

inst$ cd ~

inst$ git clone ~“cs152/spl6/lab2-git
inst$ cd lab2

inst$ export LAB2ROO0T=$PWD

If any updates are released you can then pull in the new updates using

inst$ cd ${LAB2ROOT}
inst$ git pull

If you encounter problems using git feel free to post a question on Piazza or consult the git
documentation (see https://git-scm.com/doc)

The following command will set up your bash environment, giving you access to the entire
CS152 lab tool-chain. Run it before each session:?

inst$ source “cs152/sp16/cs152.1lab2.bashrc

We will refer to ~/1ab2 as ${LAB2RO0T?} in the rest of the handout to denote the location of
the Lab 2 directory. The directory structure is shown below:

e ${LAB2ROOT}/
— riscv-isa—sim/ Source code for the RISC-V ISA Simulator
* riSCV/ Source code for the RISC-V ISA Simulator
— spec-cpu2006-riscv
* 401.bzip2/ Source and data files for the bzip2 benchmark
. SI‘C/ Source files
: data/ Data files
429.mcf/ Source and data files for the mcf benchmark

*

*

450.soplex/ Source and data files for the soplex benchmark

*

458.sjeng/ Source and data files for the sjeng benchmark
470.lbm/ Source and data files for the lbm benchmark

*

Build the ISA simulator with the following commands.

!The capital “R” in “cp -R” is critical, as the -R option maintains the symbolic links found in the ${LABIROOT}
directory.
20r better yet, add this command to your bash profile.

inst$ cd ${LAB2RO0T}/riscv-isa-sim

inst$ mkdir build

inst$ cd build

inst$../configure --prefix=${LAB2R0O0T}/install
inst$ make -j

inst$ make install

Execute the following line to put the ISA simulator in your path. Also, add this command to
your bash profile so that the path will automatically get updated every time you open up a new
session.

inst$ export PATH=${LAB2RO0T}/install/bin:$PATH
To check whether the ISA simulator is in your path, run the following command.

inst$ which spike

2.2 Collecting statistics from a simple cache

You should first build the benchmarks.

inst$ cd ${LAB2RO0T}/spec-cpu2006-riscv
inst$ make -j
inst$ 1s -1s build.riscv/
total 17120

932 -rwxr-xr-x 1 yunsup grad 1014224 Feb 15 23:31 401.bzip2
yunsup grad 1440538 Feb 15 23:31 429 .mcf
yunsup grad 12285464 Feb 15 23:31 450.soplex
yunsup grad 1730854 Feb 15 23:31 458.sjeng

yunsup grad 1357611 Feb 15 23:31 470.1bm

1348 -rwxr-xr-x
11940 -rwxr-xr-x
1632 -rwxr-xr-x
1268 -rwxr-xr-x

=R s e e

Execute the target binary on the ISA simulator with an L1 instruction cache.

inst$ cd ${LAB2R0OO0T}/spec-cpu2006-riscv

inst$ mkdir test

inst$ cd test

inst$ spike --ic=128:2:64 pk ../build.riscv/401.bzip2 \
../401.bzip2/data/test/input/dryer. jpg

spec_init

Loading Input Data

Tested 64KB buffer: OK!

I$ Bytes Read: 4539708644
I$ Bytes Written: 0

I$ Read Accesses: 1134927161
I$ Write Accesses: 0

I$ Read Misses: 1534

I$ Write Misses: 0
I$ Writebacks: 0
0.

I$ Miss Rate: 000Y%

The 3 parameters given to the instruction cache —-—ic are number of sets:associativity:line
size. If you multiply all the numbers 128 x 2 x 64, you will get cache size (16KB). Note that “I$
Read Accesses” equals the number of instructions executed.

You can also run the simulation with an L1 data cache, and with an unified L2 cache with the
following commands.

inst$ spike --dc=128:2:64 ...
inst$ spike --dc=128:2:64 --ic=128:2:64 ...
inst$ spike --dc=128:2:64 --ic=128:2:64 --12=1024:4:64 ...

We wrote a Makefile that launches the benchmarks. Execute all the tests in parallel with the
following command. It will take a couple minutes to run all 5 benchmarks.

inst$ cd ${LAB2RO0T}/spec-cpu2006-riscv
inst$ make -j run

inst$ 1s -1s run.riscv/

total 36

4 -rw-r--r-- 1 cs152 cs152 1398 Feb 10 23:58 401.bzip2.out
4 -rw-r--r-- 1 cs152 cs152 1353 Feb 10 23:59 429 .mcf.out

4 -rw-r--r-- 1 cs152 cs152 1310 Feb 10 23:59 450.soplex.out
4 -rw-r--r-- 1 cs152 cs152 2382 Feb 10 23:58 458.sjeng.out
4 -rw-r-—-r—— 1 cs152 cs152 1469 Feb 10 23:58 470.1bm.out

16 -rw-r--r-- 1 cs152 cs152 14800 Feb 10 23:59 mcf.out

Answer the following 7 questions.

(Q1) For each benchmark, look at the corresponding output file and record the miss rate for
the L1 I$, L1 D$, and the L2$. Which benchmark has the best cache performance? Which has the
worst? We highly recommend you to automate this process by scripting as we are going to analyze
a lot data in the subsequent sections

(Q2) What is the cache access time for the L1 I$, L1 D$, and the L2$? Refer to Table 1.

(Q3) What is the cycle time of the pipeline? Assume that the critical path among all non-
memory pipeline stages is 600ps long.

(Q4) Calculate the average CPI (in cycles) across all benchmarks without the L2$. Use the
following formula to calculate CPI. (MP=Miss Penalty, CT=Cycle Time. Assume that the backside
of the L1$s are connected to a DRAM, and it takes 100ns to access the DRAM. Use C'Plyyse = 1.2)

L1 I$ misses + L1 D$ misses MP

PI =CPI
¢ CPlbase + # of insts % [C’T]

(Q5) What is the AMAT (in ns) of the L2$ for all benchmarks? Use the following formula to
calculate AMAT. (HT=Hit Time, MR=Miss Rate, MP=Miss Penalty. Assume that the backside
of the L2$ is connected to a DRAM, and it takes 100ns to access the DRAM)

AMAT 9 = HTo + MR X M Py

(Q6) Calculate the average CPI (in cycles) across all benchmarks with the L23$. Use the following
formula to calculate CPI, assuming the L2$ is running asynchronously on its own clock domain.
(Use CPlpgse = 1.2)

L1 I$ misses + L1 D$ misses AM ATy

PI = CPI,
¢ CPlpase + # of insts ol CcT 1

(Q7) Compare the average CPI value with and without the L23$. Does the L2$ help performance?

2.3 Determining benchmark working-set size

Your task in this section is to determine the working-set size of each of the benchmarks by varying
the size and associativity of the L2$ cache used in the previous section. Record the measurements
you make that support your claim. Which benchmark seems to have the largest working set, and
how big is it? We have provided you a python script that will help you launch many simulation jobs.
Take a look at $LAB2R0O0T/spec-cpu2006-riscv/explore.py. Simply write a loop that populates
the design_space dictionary. Finally, run the script to kick off the design-space exploration.

inst$ cd ${LAB2RO0T}/spec-cpu2006-riscv
inst$./explore.py

2.4 Find the Optimal L1 I$ Configuration

For this section, you will find the optimal L1 I$ configuration that maximizes performance of the 5
SPEC benchmarks. Assume the data memory accesses all hit in the cache, and hence don’t affect
the CPL.

Note:

e Limit the L1 cache design space to: capacity[l6KB,32KB,64KB] x associativity[1,2,4,8] x
cache line size[64].

e To calculate CPI, come up with a similar formula you have used in 2.2.
e Consult Table 1 to see how cache access time scales with different cache configurations.

e Think carefully how the cache access time will affect the cycle time of the processor, and the
overall performance.

e We encourage you to modify the design-space exploration script used in 2.3.

e We put a text version of Table 1 in $LAB2R00T/spec-cpu2006-riscv/cacti just in case you
would like to read it from your analysis script.

Which configuration do you recommend for the L1 I$? Show your work. Based on your findings,
can you provide any intuition behind sizing the L1 I$? If you account the silicon area for different
cache configurations (see Table 2), would your recommendation change? If so, why?

2.5 Find the Optimal L1 D$ Configuration

For this section, you will find the optimal L1 D$ configuration that maximizes performance of
the 5 SPEC benchmarks. Pick one configuration from the following cache design space: capac-
ity[16KB,32KB,64KB] x associativity[1,2,4,8] x cache line size[64]. Assume your processor has the
L1 I$ you have recommended in Section 2.4.

Which configuration do you recommend for the L1 D$? Show your work. Based on your
findings, can you provide any intuition behind sizing the L1 D$? If you account the silicon area
(see Table 2), would your recommendation change? If so, why?

2.6 Find the Optimal L1 D$ Configuration with an L2$

This question is similar to Section 2.5, but now we assume that we have an L2$ between the L1$s
and the DRAM. Pick one configuration for the L1 D$ from the following cache design space that
maximizes performance: capacity[16KB,32KB,64KB] x associativity[1,2,4,8] x cache line size[64].
Assume your processor has the L1 I$ you have recommended in Section 2.4. Also assume a fixed
256KB 8-way set-associative L2 cache that uses 64-byte cache lines.

Which configuration do you recommend for the L1 D$? Show your work. How does the L2$
affect your cache design decisions?

3 Open-ended Portion (5/7 of lab grade)

Pick one of the following questions. The open-ended portion is worth a large fraction of the grade
of the lab, and the grade depends on how complex and interesting a project you complete, so spend
the appropriate amount of time and energy on it. Also, have fun with it!

3.1 Design a memory hierarchy that fits within a 5mm? area budget

For this question, we want to figure out how we can make the best use out of our 5mm? area budget
for caches. In the directed portion of the lab, we have asked you to explore the design space of L1
caches. However, we have constrained the design space to minimize the busy work. But for this
study, you have the freedom to change any cache parameter. The only constraint you have is to fit
in a 5mm? area budget. Propose the best memory hierarchy for the 5 SPEC benchmarks we used
in this lab.

Use Table 2 to estimate area, and Table 1 to estimate cache access time for different cache
configurations. If the tables don’t have an estimate for your cache configuration, please use the
CACTTI web interface (http://quid.hpl.hp.com:9081/cacti) to obtain them. Use 1 bank and
technology node of 45nm.

Make sure to report all the statistics you gathered and calculations you made to reach your
conclusions.

3.2 Design a victim cache

Although direct-mapped caches have an advantage of smaller access time than set-associative
caches, they have more conflict misses due to their lack of associativity. In order to reduce these
conflict misses, N. Jouppi proposed victim caching where a small fully-associative back up cache,
called a victim cache, is added to a direct-mapped L1 cache to hold recently evicted cache lines.

assoc — size | 8KB | 16KB | 32KB | 64KB | 128KB | 256KB | 512KB | 1MB
1 0.31 | 0.37 0.44 0.53 0.62 0.79 0.98 1.31
2 0.51 | 0.57 0.62 0.65 0.74 0.84 1.17 1.52
4 0.56 | 0.60 0.65 0.70 0.74 0.85 1.17 1.52
8 0.77 | 0.78 0.86 0.89 0.95 1.03 1.16 1.52
16 N/A | 1.21 1.24 1.30 1.35 1.42 1.53 1.69
32 N/A | N/A | 2.10 2.12 2.19 2.30 2.45 2.46
64 N/A | N/A | N/A | 3.90 3.92 3.95 4.02 4.13
(a) cache line size = 32
assoc — size | 8KB | 16KB | 32KB | 64KB | 128KB | 256KB | 512KB | 1MB
1 0.32 | 0.34 0.41 0.53 0.61 0.79 1.04 1.31
2 0.60 | 0.61 0.64 0.68 0.74 0.85 1.09 1.44
4 0.83 | 0.84 0.86 0.91 0.94 0.99 1.09 1.44
8 N/A | 1.28 1.30 1.34 1.37 1.41 1.48 1.60
16 N/A | N/A | 2.05 2.21 2.24 2.29 2.34 2.44
32 N/A | N/A | N/A | 397 4.01 4.04 4.10 4.18
64 N/A | N/A | N/JA | N/A 7.20 7.25 7.28 7.35
(b) cache line size = 64
assoc — size | 8KB | 16KB | 32KB | 64KB | 128KB | 256KB | 512KB | 1MB
1 0.37 | 045 0.46 0.53 0.62 0.85 1.04 1.37
2 0.83 | 0.84 0.87 | 0.90 0.94 0.98 1.06 1.42
4 N/A | 1.29 1.29 1.32 1.35 1.39 1.44 1.53
8 N/A | N/A | 2.16 2.18 2.25 2.27 2.33 2.36
16 N/A | N/A | N/A | 3.92 3.96 4.02 4.02 4.12
32 N/A | N/A | N/A | N/A 7.42 7.46 7.49 7.54
64 N/A | N/JA | N/JA | N/A N/A 13.84 13.88 | 13.92

Table 1: Cache access
obtained from CACTI.

time (in ns) for various cache configurations in 45nm technology. Data

(c) cache line size = 128

assoc — size | SKB | 16KB | 32KB | 64KB | 128KB | 256KB | 512KB | IMB
1 009 | 023 | 035 | 054 | 1.12 | 153 | 3.11 | 6.78
2 012 | 0.16 | 0.23 | 046 | 065 | 1.30 | 2.94 | 5.49
4 018 | 0.34 | 040 | 041 | 065 | 1.30 | 2.94 | 4.88
8 0.37 | 049 | 059 | 073 | 1.32 | 1.36 | 262 | 5.55
16 N/A | 080 | 0.99 | 1.08 | 1.34 | 229 | 337 | 551
32 N/A | N/A | 1.77 | 206 | 223 | 340 | 4.07 | 6.46
64 N/A | N/JA | N/A | 403 | 432 | 479 | 583 | 7.96

(a) cache line size = 32

assoc — size | 8KB | 16KB | 32KB | 64KB | 128KB | 256KB | 512KB | 1MB
1 0.21 | 0.25 0.33 0.73 1.25 1.95 3.24 6.98
2 0.34 | 0.37 0.44 0.57 1.10 1.47 3.12 6.99
4 0.55 | 0.64 0.71 0.84 1.48 2.03 3.12 6.99
8 N/A | 1.12 1.26 1.39 2.22 2.75 3.78 5.81
16 N/A | N/A | 3.11 2.54 2.78 4.35 5.36 7.34
32 N/A | N/A | N/JA | 4.89 5.14 5.64 8.66 10.92
64 N/A | N/A | N/A | N/A 10.23 10.75 15.44 | 17.37

(b) cache line size = 64

assoc — size | SKB | 16KB | 32KB | 64KB | 128KB | 256KB | 512KB | 1MB
1 0.70 | 075 | 0.82 | 0.98 | 2.03 | 3.13 | 4.60 | 7.38
2 112 | 127 | 135 | 148 | 1.77 | 330 | 450 | 7.39
4 N/A | 218 | 236 | 249 | 274 | 465 | 572 | 7.85
8 N/A | N/A | 429 | 457 | 552 | 604 | 7.16 |10.63
16 N/A | N/A | N/A | 865 | 9.16 | 10.69 | 10.58 | 13.72
32 N/A | N/JA | N/JA | N/A | 17.90 | 18.36 | 19.35 | 21.84
64 N/A | N/JA | N/JA | N/A | NJ/A | 36.17 | 37.17 | 39.01

(c) cache line size = 128

Table 2: Cache area (in mm?) for various cache configurations in 45nm technology. Data obtained
from CACTI.

Given a 32KB direct-mapped L1 D$, design your own victim cache. Assume that the backside
of the L1 D$ is directly hooked up to the DRAM. To read more about victim caches, please consult
problem 2.4 in the problem set. The only constraint you have is to add less than 2K flip-flops to
the cache design.

First sketch out a block diagram. Then modify the cache simulator to model your victim cache.
You will have to modify the cache_sim_t: :access () function in $LAB2R00T/riscv-isa-sim/riscv
/cachesim.cc. Recompile the ISA simulator with the steps described in Section 2.1. Run the
benchmarks and record the cache statistics. Analyze the impact on AMAT and CPI. Estimate
the impact on critical path, and performance. Change parameters in your design and see which
configuration works the best.

Make sure to report all the statistics you gathered and calculations you made to reach your
conclusions.

Feel free to email your TA or attend his office hours if you need help understanding the ISA
simulator, the cache simulator, or anything else regarding this problem.

3.3 Design your own hardware prefetcher

For this question, we want to investigate whether hardware data prefetching would improve per-
formance of the 5 SPEC benchmarks we have used in the directed portion. Please take a look at
lecture 7 for more information on hardware prefetching.

Assume you are building a hardware prefetcher for a 32KB 4-way set-associative L1 D$. The
backside of the L1 D$ is directly hooked up to the DRAM. The only constraint you have is to add
less than 2K flip-flops to the cache design.

First understand what the current simulator does, and plan a few ways to improve performance.
Then modify the cache simulator to model your new replacement policy. You will have to mod-
ify the cache_sim t::victimize () function in $LAB2RO0T/riscv-isa-sim/riscv /cachesim.cc.
Recompile the ISA simulator with the steps described in Section 2.1. Run the benchmarks and
record the cache statistics. Analyze the impact on AMAT and CPI. Estimate the impact on critical
path, and performance. Change parameters in your design and see which configuration works the
best.

Make sure to report all the statistics you gathered and calculations you made to reach your
conclusions.

Feel free to email your TA or attend his office hours if you need help understanding the ISA
simulator, the cache simulator, or anything else regarding this problem.

3.4 Design your own replacement policy

For this question, we want to investigate whether a different replacement policy would improve
performance of the 5 SPEC benchmarks we have used in the directed portion. Please take a look
at lecture 6 for more information on replacement policies.

Assume you are designing a new replacement policy for a 32KB 4-way set-associative L1 DS$.
The backside of the L1 D$ is directly hooked up to the DRAM. The only constraint you have is to
add less than 2K flip-flops to the cache design.

First sketch out a block diagram. Then modify the cache simulator to model your victim cache.
You will have to modify the cache_sim_t: :access () function in $LAB2R00T/riscv-isa-sim/riscv
/cachesim.cc. Recompile the ISA simulator with the steps described in Section 2.1. Run the

10

benchmarks and record the cache statistics. Analyze the impact on AMAT and CPI. Estimate
the impact on critical path, and performance. Change parameters in your design and see which
configuration works the best.

Make sure to report all the statistics you gathered and calculations you made to reach your
conclusions.

Feel free to email your TA or attend his office hours if you need help understanding the ISA
simulator, the cache simulator, or anything else regarding this problem.

4 The Third Portion: Feedback

How many hours did the directed portion take you? How many hours did you spend on the open-
ended portion? Was this lab boring? Did you learn anything? Is there anything you would change?
Feel free to write as little or as much as you want (a point will be taken off only if left completely

empty).

5 Acknowledgments

Many people have contributed to versions of this lab over the years. This lab was originally
developed for CS152 at UC Berkeley by Yunsup Lee and Andrew Waterman, and heavily inspired
by the previous set of CS 152 labs (which targeted the Simics emulators) written by Henry Cook.
This lab was made possible through the work of Andrew Waterman, Yunsup Lee, David Patterson,
and Krste Asanovi¢ who developed the RISC-V ISA.

11

