
EECS 150 Spring 2013 Checkpoint 4: Line Drawing Engine

Prof. John Wawrzynek
TAs: Vincent Lee, Shaoyi Cheng

Department of Electrical Engineering and Computer Sciences
College of Engineering, University of California, Berkeley

Revision 1, Due Wednesday April 17th, 2013 @ 2PM

1 Introduction

Hardware acceleration is a common technique used to complete tasks faster than possible in soft-
ware. Additionally, because accelerators and the processor run in parallel, the processor is free to
perform other tasks rather than spend computation on the accelerated task. In this checkpoint,
you will implement hardware acelerated line drawing using Bresenham’s algorithm.

2 Line Drawing Engine

We will be implementing the Bresenham’s line drawing algorithm as presented in lecture.
Thus we recommend you review Bresenham’s line drawing algorithm which can be found in:

http://inst.eecs.berkeley.edu/~cs150/sp12/agenda/lec/lec15-video.pdf

Implement this algorithm in LineEngine.v. The processor provides the line engine with the end-
points of the line (x0,y0,x1,y1) and the color to draw. In a similar manner as the FrameFiller

and UART, the line engine is controlled by a ready-valid interface via memory-mapped I/0. The
interface to the LineEngine module is:

• LE_color, LE_color_valid: When in the idle state, the line engine should register LE_color
when LE_color_valid is asserted.

• LE_{x0, y0, y0, y1}_valid, LE_point: When in the idle state, the line engine should
register LE_point for the coordinate with its valid signal asserted.

• LE_trigger: When asserted, the line engine should begin drawing.

• LE_ready: Output indicating that the LineEngine is not currently drawing.

• DRAM FIFO Interface: Same as used in the FrameFiller module.

It is your job to correctly interface these signals from your processor.

1

http://inst.eecs.berkeley.edu/~cs150/sp12/agenda/lec/lec15-video.pdf


3 Final I/O Memory Map

After adding the additional I/O for the memory mapped line engine and frame filler, the I/O
memory map should now look like:

Table 1: I/O Memory Map
Address Function Access Data Encoding

32’h80000000 UART transmitter control Read {31’b0, DataInReady}
32’h80000004 UART receiver control Read {31’b0, DataOutValid}
32’h80000008 UART transmitter data Write {24’b0, DataIn}
32’h8000000c UART receiver data Read {24’b0, DataOut}
32’h80000010 Cycle counter Read Total number of cycles
32’h80000014 Stall counter Read Number of cycles stalled
32’h80000018 Reset counters to 0 Write N/A

32’h8000001c Filler Control Read {31’b0, FillerReady}
32’h80000020 Filler Color Write {8’b0, Color}
32’h80000024 Line Control Read {31’b0, LE ready}
32’h80000028 Line Color Write {8’b0, Color}
32’h80000030 Line x0 Write {22’b0, Point}
32’h80000034 Line y0 Write {22’b0, Point}
32’h80000038 Line x1 Write {22’b0, Point}
32’h8000003c Line y1 Write {22’b0, Point}
32’h80000040 Triggering Line x0 Write {22’b0, Point}
32’h80000044 Triggering Line y0 Write {22’b0, Point}
32’h80000048 Triggering Line x1 Write {22’b0, Point}
32’h8000004c Triggering Line y1 Write {22’b0, Point}

4 New BIOS Command

The bios now has a command that will configure and trigger the hardware line engine. Remember
to rebuild the bios ROM after making the changes. The syntax for new command is:

hwline <color> <x0> <y0> <x1> <y1>

5 Testing

The skeleton files include a line engine testbench that prints the points generated by your line
engine. You can then compare the output to the C implementation of the line drawing algorithm
in software/le/.

In order to compile the software test, simply use gcc and generate the object file. The binary
takes four arguments:

./le.o <x0> <y0> <x1> <y1>

2



Where (x0, y0) denotes the coordinates of the origin of the line and (x1, y1) denotes the
end coordinate of the line.

You should then run the hardware test harness which will generate the points that your line
engine outputs and diff the two outputs. If they match, then you are good to go.

6 Memory Architecture Overview

Though the staff have provided the memory architecture for this stage of the project, it is useful
to understand the high-level structure. Fig. 1 shows a block digram of the final processor and
memory organization:

MIPS

Inst. 
Cache

Data 
Cache

Cache 
Bypass

Frame 
Filler

Line 
Engine

Pixel 
FeederDVI

Request 
Controller

Clock 
Crossing 

FIFOs

Xilinx MIG

DRAM

Frame 
Buffer

Figure 1: System Structure

Note that the instantiations of all of the modules accessing memory after inside Memory150.v
which you should not have to modify.

7 Checkoff

Checkoff will consist of demonstrating hardware accelerated line drawing and comparing it against
the speed of the software line drawing. This checkpoint is due at 2 PM on Wednesday, April 17,
2012. This is the final required checkpoint of the project.

3



8 Post Checkpoint

After finishing this checkpoint you are free to add any feature that you would like to your processor.
You will be required to perform a demonstration of your final system so we highly recommend that
you add features to your processor that will enahance your demonstration. In the past this has
ranged from circle drawing hardware accelerators, graphical command prompts, animations, and
simple games. This is the one part of the project where you can be creative and have fun (if your
up for it).

9 How to Survive This Checkpoint

This is the easiest checkpoint in the project. Basically all you need to do is manually cross compile
the C implementation of the line drawing algorithm into Verilog. We highly recommend that you
use the testing framework that is provided to you. Some of the commonly made mistakes in this
checkpoint usually stem from storing to the DRAM incorrectly. If you’re lines look like they’ve
been reflected about the y-axis, and weren’t what you intended, you probably stored to DRAM the
wrong way. Other than that, this checkpoint is fairly striaght forward.

4


	Introduction
	Line Drawing Engine
	Final I/O Memory Map
	New BIOS Command
	Testing
	Memory Architecture Overview
	Checkoff
	Post Checkpoint
	How to Survive This Checkpoint

