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1 Introduction

The first checkpoint in this project is designed to guide the development of a three-stage pipelined
MIPS CPU that will be used as a base system in subsequent checkpoints. The MIPS processor will
be implemented in Verilog by 1-2 person teams.
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Figure 1: A high-level overview of the final system

The yellow blocks are the focus of the first checkpoint. Next, you will integrate a cache and
modify the memory map accordingly. Then, you will implement interrupts, which will allow your
CPU to efficiently handle keyboard input. Finally, you will implement the purple blocks to enable
2-D accelerated graphics. The black blocks are physical chips on the board that your design will
interact with.
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2 MIPS 150 ISA

In the following tables, R[$x] indicates the register with address x, PC is the memory address of the
instruction, SEXT and ZEXT are sign and zero extension, and H-, B- and WMEM refer to byte,
half, and word aligned memory accesses. Note that this is the same as in the ALU specification for
Lab 3 so you will need to add that to your project source files.

Table 1: RTL Specification
Mnemonic RTL Description Notes
LB R[$rt] = SEXT (BMEM [(R[$rs] + SEXT (imm))[31 : 0]]) delayed
LH R[$rt] = SEXT (HMEM [(R[$rs] + SEXT (imm))[31 : 1]]) delayed
LW R[$rt] = WMEM [(R[$rs] + SEXT (imm))[31 : 2]] delayed
LBU R[$rt] = ZEXT (BMEM [(R[$rs] + SEXT (imm))[31 : 0]]) delayed
LHU R[$rt] = ZEXT (HMEM [(R[$rs] + SEXT (imm))[31 : 1]]) delayed
SB BMEM [(R[$rs] + SEXT (imm))[31 : 0]] = R[$rt][7 : 0]
SH HMEM [(R[$rs] + SEXT (imm))[31 : 1]] = R[$rt][15 : 0]
SW WMEM [(R[$rs] + SEXT (imm))[31 : 2]] = R[$rt]
ADDIU R[$rt] = R[$rs] + SEXT (imm)
SLTI R[$rt] = R[$rs] < SEXT (imm)
SLTIU R[$rt] = R[$rs] < SEXT (imm) unsigned compare
ANDI R[$rt] = R[$rs] ∧ ZEXT (imm)
ORI R[$rt] = R[$rs] ∨ ZEXT (imm)
XORI R[$rt] = R[$rs]⊕ ZEXT (imm)
LUI R[$rt] = {imm, 16′b0}
SLL R[$rd] = R[$rt] << shamt
SRL R[$rd] = R[$rt] >> shamt
SRA R[$rd] = R[$rt] >>> shamt
SLLV R[$rd] = R[$rt] << R[$rs]
SRLV R[$rd] = R[$rt] >> R[$rs]
SRAV R[$rd] = R[$rt] >>> R[$rs]
ADDU R[$rd] = R[$rs] + R[$rt]
SUBU R[$rd] = R[$rs]−R[$rt]
AND R[$rd] = R[$rs] ∧R[$rt]
OR R[$rd] = R[$rs] ∨R[$rt]
XOR R[$rd] = R[$rs]⊕R[$rt]

NOR R[$rd] = R[$rs] ∧R[$rt]
SLT R[$rd] = R[$rs] < R[$rt]
SLTU R[$rd] = R[$rs] < R[$rt] unsigned compare
J PC = {PC[31 : 28], target, 2′b0} delayed
JAL R[31] = PC + 8;PC = {PC[31 : 28], target, 2′b0} delayed
JR PC = R[$rs] delayed
JALR R[$rd] = PC + 8;PC = R[$rs] delayed
BEQ PC = PC + 4 + (R[$rs] == R[$rt]?SEXT (imm) << 2 : 0) delayed
BNE PC = PC + 4 + (R[$rs]! = R[$rt]?SEXT (imm) << 2 : 0) delayed
BLEZ PC = PC + 4 + (R[$rs] <= 0?SEXT (imm) << 2 : 0) delayed
BGTZ PC = PC + 4 + (R[$rs] > 0?SEXT (imm) << 2 : 0) delayed
BLTZ PC = PC + 4 + (R[$rs] < 0?SEXT (imm) << 2 : 0) delayed
BGEZ PC = PC + 4 + (R[$rs] >= 0?SEXT (imm) << 2 : 0) delayed
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Table 2: ISA Encoding

31 26 25 21 20 16 15 11 10 6 5 0
opcode rs rt rd shamt funct R-type
opcode rs rt immediate I-type
opcode target J-type

Load and Store Instructions
100000 base dest signed offset LB rt, offset(rs)
100001 base dest signed offset LH rt, offset(rs)
100011 base dest signed offset LW rt, offset(rs)
100100 base dest signed offset LBU rt, offset(rs)
100101 base dest signed offset LHU rt, offset(rs)
101000 base dest signed offset SB rt, offset(rs)
101001 base dest signed offset SH rt, offset(rs)
101011 base dest signed offset SW rt, offset(rs)

I-type Computational Instructions
001001 src dest signed immediate ADDIU rt, rs, signed-imm.
001010 src dest signed immediate SLTI rt, rs, signed-imm.
001011 src dest signed immediate SLTIU rt, rs, signed-imm.
001100 src dest zero-ext. immediate ANDI rt, rs, zero-ext-imm.
001101 src dest zero-ext. immediate ORI rt, rs, zero-ext-imm.
001110 src dest zero-ext. immediate XORI rt, rs, zero-ext-imm.
001111 00000 dest zero-ext. immediate LUI rt, zero-ext-imm.

R-type Computational Instructions
000000 00000 src dest shamt 000000 SLL rd, rt, shamt
000000 00000 src dest shamt 000010 SRL rd, rt, shamt
000000 00000 src dest shamt 000011 SRA rd, rt, shamt
000000 rshamt src dest 00000 000100 SLLV rd, rt, rs
000000 rshamt src dest 00000 000110 SRLV rd, rt, rs
000000 rshamt src dest 00000 000111 SRAV rd, rt, rs
000000 src1 src2 dest 00000 100001 ADDU rd, rs, rt
000000 src1 src2 dest 00000 100011 SUBU rd, rs, rt
000000 src1 src2 dest 00000 100100 AND rd, rs, rt
000000 src1 src2 dest 00000 100101 OR rd, rs, rt
000000 src1 src2 dest 00000 100110 XOR rd, rs, rt
000000 src1 src2 dest 00000 100111 NOR rd, rs, rt
000000 src1 src2 dest 00000 101010 SLT rd, rs, rt
000000 src1 src2 dest 00000 101011 SLTU rd, rs, rt

Jump and Branch Instructions
000010 target J target
000011 target JAL target
000000 src 00000 00000 00000 001000 JR rs
000000 src 00000 dest 00000 001001 JALR rd, rs
000100 src1 src2 signed offset BEQ rs, rt, offset
000101 src1 src2 signed offset BNE rs, rt, offset
000110 src 00000 signed offset BLEZ rs, offset
000111 src 00000 signed offset BGTZ rs, offset
000001 src 00000 signed offset BLTZ rs, offset
000001 src 00001 signed offset BGEZ rs, offset
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This is a subset of the full ISA that still allows for interesting programs while greatly simplifying
the design. This subset omits floating point, coprocessor, trap, multiplication, division and a several
other instructions that are of little utility for this project.

Note that the RTL specification marks some instructions as delayed. This ISA includes 1-cycle
architected branch and load delay slots, which means the instruction following the branch or load
is always executed, and must not depend on the outcome or data of the branch or load.

3 Pipelining

Your CPU must implement this instruction set using a 3 stage pipeline. The division of the datapath
into three stages is left unspecified as it is an important design decision with significant performance
implications. We recommend that you begin the design process by considering which elements of
the datapath are synchronous and in what order they need to be placed. After determining the
design blocks that require a clock edge, consider where to place asynchronous blocks to minimize
the critical path.

4 Hazards

As you have learned in lecture, pipelines create hazards. The branch delay slot eliminates control
hazards, but you will still need to resolve data hazards. You must resolve data hazards using
forwarding. You may not stall the CPU to resolve hazards.

Additionally, you are restricted to using positive-edge triggered state elements in your design.
The textbook uses a negative-edge writeback to the register file to eliminate one forwarding path,
but this is not a good design decision in a three-stage CPU. Ask a TA if it is unclear why.

5 Memory Architecture

The datapath shown in DDCA has separate instruction and data memories. Although this is an
intuitive representation, it does not let us modify instruction memory to run new programs. Your
CPU, by the end of this checkpoint, will be able to receive MIPS binaries through a serial interface,
store them into instruction memory, then jump to the downloaded program. To facilitate this, we
will adopt a modified memory architecture, shown in Figure 2:

These block rams have been provided for you in /hardware/src/imem_blk_ram and
/hardware/src/dmem_blk_ram. See Appendix A for details about initializing and using the block
RAMs. Note that this memory architecture will change as we integrate caches in the next check-
point.

The register file must be implemented as described in Appendix C.1. It is very important for the
register file to follow this specification, as any deviation will likely break your design. In particular,
you should make sure that it has synchronous writes and asynchronous reads.

5.1 Address Space Partitioning

Your CPU will need to be able to access multiple sources for data as well as control the destination
of store instructions. In order to do this, we will partition the address space into three main
categories: data memory read and writes, instruction memory writes, and memory-mapped I/O.
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Figure 2: Initial Memory Architecture

This will be encoded in the top nibble of the memory address generated in load and store operations,
as shown in Table 3. In other words, the target device of a load or store instruction is dependent on
the address. (Note: for this checkpoint, this does not apply for the PC. Instruction fetch is always
from the instruction memory.)

Table 3: Memory Address Partitions
Address[31:28] Device Access

4’b0xx1 Data memory Read/Write
4’b0x1x Instruction Memory Write Only
4’b1000 I/O Read/Write

Each partition specified in Table 3 should be enabled only based on its associated bit in the
address encoding. This allows operations to be applied to multiple devices simultaneously, which
we will be used to maintain memory consistency between the data and instruction memory. For
example, a store to an address beginning with 0x3 will write to both the instruction memory and
data memory, while storing to addresses beginning with 0x2 or 0x1 will write to only the instruction
or data memory, respectively. For details about the BIOS and how to run programs on your CPU,
see Appendix D.

5.2 Memory Mapped I/O

At this stage in the project the only way to interact with your CPU is through the serial interface.
The UART from Lab 5 accomplishes the low-level task of sending and receiving bits from the serial
lines, but you will need a way for your CPU to send and receive bytes to and from the UART. To
accomplish this, we will use memory-mapped I/O, a technique in which registers of I/O devices are
assigned memory addresses. This enables load and store instructions to access the I/O devices as
if they were memory. For instance, to send 32 bits out over UART, you would do a sw to address
32’h80000008 and to read from UART you would do a lw from address 32’h8000000c. Table 4
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shows the memory map for this stage of the project.

Table 4: I/O Memory Map
Address Function Access Data Encoding

32’h80000000 UART transmitter control Read {31’b0, DataInReady}
32’h80000004 UART receiver control Read {31’b0, DataOutValid}
32’h80000008 UART transmitter data Write {24’b0, DataIn}
32’h8000000c UART receiver data Read {24’b0, DataOut}

You will need to determine how to translate the memory map into the proper ready-valid
handshake signals for the UART. Essentially, you will want to set the output valid/ready/data
signals from the CPU based on the calculated load/store address, and mux in the appropriate
valid/ready/data signals to be written back to the register file.

6 Testing

The design specified for this project is a complex system and debugging can be very difficult without
tests that increase visibility of certain areas of the design. Although we will not require or grade
testing efforts, we expect that teams utilizing the testing tools will be able to complete checkpoints
faster. We strongly encourage that you follow the suggestions here for testing. A reasonable order
in which to complete your testing is as follows:

1. Test that your modules work in isolation via Verilog testbenches

2. Test the entire CPU one instruction at a time with an assembly program

3. Test serial I/O - see the provided file EchoTestbench.v

6.1 Simulation

You learned how to write Verilog testbenches and simulate your Verilog modules in Lab 3. You
should use what you learned to write testbenches for all of your sub-modules. As you design the
modules that you will use in your CPU, you should be thinking about how you can write testbenches
for these modules. For example, you may want to create a module that handles all of the branching
logic. You could imagine testing this module in a way similar to how you tested the ALU.

To run new simulations, you should write new testbenches and put them in your hardware/src
directory. Then you should create new .do files in the hardware/sim/tests directory. The staff
have provided you with EchoTestbench.v and RegFileTestbench.v and the corresponding .do

files; these will not be enough to get a functional CPU, but you should use these as templates to
write other tests. When you run make in the sim directory, all of the .do files in the tests directory
will run.

In echo.do you will see lines that look like this:
file copy -force ../../../software/echo/echo.mif imem_blk_ram.mif

add wave EchoTestbench/*

add wave EchoTestbench/CPU/*
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The first line initializes the contents of imem blk ram to whatever values you have in echo.mif.
You can change the filepath to point to a different .mif file, and you can specify different memories
you want to initialize. The second line tells Modelsim to collect data for all the signals in the top
level of EchoTestbench. The third line tells it to also get data for all signals inside the CPU, as-
suming you instatiated your CPU inside EchoTestbench.v and called it ”CPU”. You could also add
a line like add wave EchoTestbench/CPU/mySubModule/* which would allow you to see all signals
inside a submodule called mySubModule in the CPU. Note that the name ”mySubModule” should
correspond to the unique name which you instantiated that submodule with, not the submodule’s
real name (i.e. if you instatiated a UART called myUART, you want to use myUART). In this way
you can add all of the signals you need to your waveform viewer for debugging.

6.2 Integration Testing

Once you are confident that the individual components of your processor are working in isolation,
you will want to test the entire processor as a whole. The easiest way to do this is to write an
assembly program that tests all of the instructions in your ISA. A skeleton is provided for you in
software/src/asmtest. See Appendix C for details.
Once you have verified that all the instructions in the ISA are working correctly, you may also want
to verify that the memory mapped I/O and instruction/data memory reading/writing work with a
similar assembly program.

6.3 How to Survive This Checkpoint

The key to this checkpoint will be to start early and work on your design incrementally. This project
is not something that can be done with an all nighter and we can almost guarantee that you will
not finish if you start two or three days before the due date. The key to this checkpoint will be to
draw up a very detailed and organized block diagram and understanding the specification. Groups
that have been successful in the past usually have unit test cases that thoroughly test every module
and progressively large integration tests. We recommend for you final integration test of the whole
system that you write individual programs that thoroughly test the behavior of each instruction.
The final BIOS program that you will be required to run is several 1000 lines of assembly and will
be nearly impossible to use for debugging by just looking at the Modelsim waveforms.

We also encourage groups to work together and bounce ideas off of each other. The most valuable
asset for this checkpoint will not be your TAs but be your fellow peers who you can compare notes
with and discuss design aspects with in detail. However, do NOT under any circumstances share
source code. We highly recommend getting adequate sleep during the weeks of this checkpoint. We
realize there are not windows or clocks in the lab so it’s very easy to get carried away and work
into the early morning in the lab. If you find yourself spinning your wheels, it’s probably time to
go home and sleep a bit before trying again.
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7 Checkoff

The checkoff for this specification is divided into two stages: block diagram/design and implemen-
tation. The second part will require significantly more time and effort than the first one. As such,
completing the block diagram in time for the design review is crucial to your success in this project.

7.1 Checkpoint 0.5: Block Diagram and Design Review

The first checkpoint requires a detailed block diagram of your datapath. The diagram should have
a greater level of detail than the diagrams in DDCA. You may complete this electronically or by
hand. If working by hand, we recommend working in pencil and combining several sheets of paper
for a lager workspace. Though the textbook diagrams are a decent starting place, please remember
that they use asynchronous-read memories and we will be using synchronous-read block RAMs
(which you should recall from Lab 4).

Additionally, at this point you must have completely functional UART, ALU, ALU controller,
and Register File modules (see C.1). Checkpoint 0.5 is due in lab no later than 2:00 PM,
Wednesday, March 6th.

7.2 Non-Checkpoint Weeks

In labs, you probably found that you spent significantly more time debugging and verifying your
design than actually writing Verilog. Though your skills are continually improving, this project
involves a complex system and as such, bugs are inevitable. Design verification can take more
than twice as long as writing the initial implementation. During weeks where you do not have
a checkpoint, you are encouraged to still attend regular lab sections and ask the TA for help
understanding aspects of the design you may be confused with.

7.3 Checkpoint 1: Base MIPS150 System

This checkpoint requires a fully functioning three stage MIPS CPU as described in this specification.
Checkoff will consist of a demonstration of the BIOS functionality, storing a program over the serial
interface, and successfully jumping to and executing the program. Additionally, we would also like
to see evidence of integration testing for your design.

Checkpoint 1 is due in lab no later than 2:00 PM, Wednesday, March 20, 2013.
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A Block RAMs

A.1 Initialization

Inside of hardware/src/imem_blk_ram and hardware/src/dmem_blk_ram there are three skeleton
files:

• mem_blk_ram.xco: This file contains configuration information used by coregen to build the
memory. The only attribute you will need to change is the coe_file. To initialize the
memories with a program for synthesis, set this field to point to the desired .coe file and
re-generate the memories. This does not initialize the memory for simulation.
Tip: copy the .coe file you want to use into the directory where the .xco file resides.

• build: Running ./build generates the memory based on the configuration information. Run
this if you change the parameters in the .xco file. You must run this if you decide to use a
different .coe file.

• clean: Run ./clean to delete the files created when you generate the memories. Do not run
this from the GUI or any other directory!

The skeleton files contain two programs that you will likely want to initialize your memories
with: bios150v3 and echo. The bios is significantly more complicated, so while debugging, you
may want to stick with echo until it works on the hardware. If you get echo to work but bios150v3
fails, it is simply because the bios uses more instructions than echo.

In simulation, the memories are initialized with a .mif file. The software toolchain generates
these for you; look at the hardware/sim/tests/*.do files for examples of how to use these.

A.2 Endianness

The block RAMs have 4096 32-bit rows, as such, they accept 12 bit addresses (the block rams are
word-addressed). However, the memory address that the processor computes is byte addressed.
Thus, the bottom 14 bits of the addresses computed by the CPU are relevant for block RAM access.
The top 12 are the word address (for indexing into the block RAM), and the bottom two are the
byte offset.
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Figure 3: Block RAM organization

Figure 3 illustrates the 12-bit word addresses and the two bit byte offsets. Observe that the
RAM is big-endian, i.e. the most significant byte is at offset 00. Since your block RAMs have 32-bit
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rows, you can only read out data out of your block RAM 32-bits at a time. This is a problem when
you want to execute a lh or lb instruction, as there is no way to indicate to the block RAM which
8 or 16 of the 32 bits you want to read out. Therefore, you will have to mask the output of the
block RAM to select the appropriate portion of the 32-bits you read out. For example, if you want
to execute a lb on an address ending in 01, you will want bits [23:16] of the 32 bits that you read
out of block RAM (thus storing {24’b0, output[23:16]} to a register).

To take care of sb and sh, note that the we input to the imem and dmem modules is 4 bits wide.
These 4 bits are a byte mask telling the block RAMs which of the 4 bytes to actually write to. If
we={4’b1111}, then all 32 bits passed into the module would be written. However, if we={4’b1000},
then only bits [31:24] of the data would be written to the address: {addr in, 2’b00}.

B Software Toolchain

A GCC MIPS toolchain has been built and installed in the cs150 home directory; these binaries
will run on any of the p380 machines in the 125 Cory lab. The most relevant pieces of the toolchain
are given below:

• mips-gcc: gcc for MIPS, compiles C code to MIPS binaries.

• mips-as: MIPS assembler, assembles code to MIPS binaries.

• mips-objdump: Displays contents of MIPS binaries in readable format.

The easiest way to use this toolchain will be to copy and rename the example project in the
software directory of the skeleton files. After renaming the files for your new program, change the
TARGET variable in the makefile.

There are several files in the example project, each with a specific purpose:

• start.s: This is an assembly file that contains the start of the program. It initializes the
stack pointer then jumps to the main label. Edit this file to move the top of the stack.

• example.ld: This linker script sets the base address of the program. This needs to be set to
the base address the program will be loaded into.

• example.elf: Binary produced after running make. Use mips-objdump -D example.elf to
view the contents. You may want to redirect the output to a file or pipe it through less to
examine the assembly.

• example.mif: Produced by the toolchain. Use this to initialize the block RAMs in ModelSim.

• example.coe: Produced by the toolchain. Use this to initialize the block RAMs during
generation (coregen).
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C Assembly Test

This section describes the contents of software/src/asmtest. You can test individual instructions
with a program similar to the following example:

_start:

addiu $s7, $0, 0x0

# Test 1

li $s0, 0x00000020

addiu $t0, $0, 0x20

addiu $s7, $s7, 1 # register to hold the test number (in case of failure)

bne $t0, $s0, Error

j Done

Error:

# Perhaps write the test number over serial

Done:

# Write success over serial

In the given example, you have a few reference registers ($s0 in the example), which hold known
values. You then use the instruction you want to test (or possibly in conjunction with instructions
you’ve already tested earlier in the program) to create a copy of the reference value. You then
check if the temporary register is equal to the reference register, and branch if it isn’t.

Follow the directions from Appendix A and Appendix B to assemble your test program and
use it in simulation. You will also need to write a Verilog testbench that instantiates the CPU and
perhaps has helpful $display statements to help you debug your CPU.

C.1 Register File

Your register file should have two asynchronous-read ports and one synchronous-write port (positive
edge). To test your register file, you should verify the following:

• Register 0 is not writable, i.e. reading from register 0 always returns 0

• Other registers are updated on the same cycle that a write occurs (i.e. the value read on the
cycle following the positive edge of the write should be the new value).

• The write enable signal to the register file controls whether a write occurs (we is active high,
meaning you only write when we is high)

• Reads should be asynchronous (the value at the output one simulation time (#1) after feeding
in an input address should be the value stored in that register)

After you build your design, look for warnings in the report (make report) about the register
file. Occasionally, the tools infer a block RAM rather than distributed (slice) RAM. This will not
show up in simulation, but it will cause synchronous reads on hardware. To fix this, you can add
a flag to your register file:

(* ram_style = "distributed" *) reg myReg...
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D BIOS and Programming your CPU

We have provided a ”BIOS” program in software/bios150v3 that allows you to interact with
your CPU and bootstrap into other programs over the serial interface. To use this, compile the
program, rebuild your instruction and data memories with the generated .coe file, build your CPU,
and impact it to the board. Then, as in lab 4, use screen to access the serial port:

screen $SERIALTTY 115200

Please remember to shut down screen using Ctrl-a shift-k, or other students won’t
be able to use the serial port!

If all goes well, you should see a ’>’ prompt after pressing return. The following commands are
available:

• jal <address>: Jump to address (hex).

• sw, sb, sh <data> <address>: Store data (hex) to address (hex).

• lw, lb, lhu <address>: Prints the data at the address (hex).

In addition to the command interface, the bios also allows you to load programs to the CPU.
Close screen using ctrl-a shift-k, and execute in the terminal:

coe_to_serial <coe_file> <address>

This stores the .coe file at the specified hexadecimal address. In order to write into both the
data and instruction memories, remember to set the top nibble to 0x3. You also need to ensure
that the stack and base address are set properly (See Appendix B). In general, <address> should
correspond to the address found in the .ld file.

E Git

If you have not yet configured your repository, please follow the instructions in Lab 4. You should
check frequently for updates to the skeleton files. To pull them into your repository, assuming you
have correctly followed the configuration instructions, issue this command from a directory in your
repository:

git pull staff master

It is in your best interest to learn to use Git as manual subversion control for this project can
quickly become difficult to track. Also manually versioning your project eats up a large amount of
disc space. An overview of the most common operations can be found in the LabLecture4 slides
which should be posted on Piazza. There are also many online resources which can assist you
with this. However, you should be very careful, as you can potentially lose work if you attempt
complicated Git acrobatics without understanding what you are really doing.

12



F Protips

In previous iterations of this project, students have struggled with the following issues:

• Off by one errors. These occur in many different forms, but are usually the result of
not thinking carefully about the timing of your design. It is important to understand the
difference between synchronous and asynchronous elements. The synchronous elements in
your design include the UART, Block RAMs for data and instruction memory, registers, as
well as the register file (write-only!).

• Memory mapped I/O. As the name implies, you should treat I/O such as the UART just
as you would treat the data memory. This means that you should assert the equivalent write
enable (i.e. valid) and data signals at the end of the execute stage, and read in data in the
memory stage. The CPU itself should not check the valid and ready signals; this check is
handled in software.

• Byte/halfword/word and endianness. Read Appendix A.2 carefully, and ask questions
if you are confused at all.

• Incorrect control signals. A comprehensive assembly test program will help you system-
atically squash bugs caused by incorrect control signals. You should pay particular attention
to making sure that the control signals are correctly passed through the pipeline registers.

• Mismatched buses. It is a fairly common error to instantiate a wire or reg with the wrong
bus width. If you hook up a 10 bit wire to a driver that is 32 bits, it will still be syntactically
correct, but it probably won’t work. Pay attention to the synthesis warnings, as they will
advise you if you have mismatched bus widths.

• ALU inputs. Be careful of how your inputs are fed into the ALU. There are some operations
which require the inputs to be passed in a certain way. It is easy to get these mixed up when
hooking it up to the rest of your datapath, and will bring down your entire CPU. Make sure
you implement exactly the function as specified in the documentation.
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