EECS150 Spring 2013 Lab 5

Lab 5B: Xilinx Embedded System
Development

University of California, Berkeley
Department of Electrical Engineering and Computer Sciences
EECS150 Components and Design Techniques for Digital Systems
John Wawrzynek, Shaoyi Cheng, Vincent Lee

Due March 6", 2013 @ 2:00PM

Table of Contents

0 Introduction 1
Partners 1
1 PreLab 2
2 Lab Procedure 2
Xilinx Embedded Development Kit (EDK) and MicroBlaze 2
Hardware System 2
Software Design 6
Adding Coprocessor 10
Implementing GCD Coprocessor with ISE 12
Using Coprocessor in Software 15
Checkoff 15

0 Introduction

In this lab you will implement a simple processor based system using Xilinx Embedded System
Development Kit. Instead using Verilog, you are going to select components from a library of IPs and
connect them in the Xilinx GUI. In addition, using the Xilinx SDK, you will create a short program to run on
the processor, communicating with the host workstation using serial connection. Finally, you will integrate
a new hardware module into the existing system, and control it with software running on the processor.

Partners

You are permitted to work with a partner for this lab. You will be checking in your system and associated
files to the Git repository, you are required to work with your project partner.

EECS150 Spring 2013 Lab 5

1 PreLab
For the prelab, do the following:
1. Get the lab distribution from the class website.

wget http://inst.eecs.berkeley.edu/~cs150/sp13/1ab5/1ab5B.tar.gz
tar -zxvf lab5B.tar.gz

2. Read http://www.xilinx.com/support/documentation/ip_documentation/fsl_v20.pdf. Make sure you
understand how the FSL protocol works.

2 Lab Procedure

Xilinx Embedded Development Kit (EDK) and MicroBlaze

The embedded systems are complex. In addition to making sure the hardware and the software are both
working, the designer also needs to integrate the two components so they can function as one system. To
simplify this process, Xilinx offers a set of tools including:

Xilinx Platform Studio (XPS)

The XPS is the development environment used for designing the hardware portion of the
embedded system. The designer can quickly construct a system from a library of predefined
cores. The tool also allows the designer to integrate his/her own IP cores into the system.

Software Development Kit (SDK)
The SDK is an eclipse based IDE complementary to the XPS. It is used for C/C++ embedded
software application creation and verification.

A Xilinx embedded system is constructed around one or more MicroBlaze processors. The MicroBlaze is
a 32 bit RISC-architecture soft-CPU developed by Xilinx for use on their FPGA devices. It can be heavily
customized to the needs of the target application by configuring its properties such as instruction and data
cache sizes, use of a memory management unit, use of a floating point unit etc. In this lab, we will be
using a very simple configuration just to demonstrate the use of the EDK flow.

In general, to design an embedded processor system, you need the following:

e Hardware components
e Memory map
e Software applications

The XPS and SDK make it easy for the users to create and modify any of the three aspects of the design.

Hardware System

The system we are going to construct includes the following hardware components:

e MicroBlaze

e Local Memory Bus (LMB)
o LMB_BRAM_IF_CNTLR
o BRAM_BLOCK

e Processor Local Bus (PLB)

http://inst.eecs.berkeley.edu/~cs150/sp13/lab5/lab5B.tar.gz
http://www.xilinx.com/support/documentation/ip_documentation/fsl_v20.pdf

EECS150 Spring 2013 Lab 5

o XPS_UARTLITE
MDM
e Fast Simplex Link (FSL)
o User defined coprocessor

To use Xilinx Platform Studio, type the following command:

% xXps

Select Create New Project Using Base System Builder to open the Create New Project Using BSB
Wizard dialog shown below.

Mew Project
Select an Interconnect Type
71 AXI System

AXIis an interface standard recently adopted by Xilinx as the standard interface used for all current and
future versions of Xilinx IP and tool flows. Details on AXI can be found in the AXI Reference Guide on
xilinx.com.

@ PLB System
PLE is the legacy bus standard used by Xilinx that supports current FPGA families, including Spartané and
Virtexs. PLB IP will not support newer FPGA families, so is not recommend for new designs that may

migrate to future FPGA families. Details on PLE can be found in the PLBv46 Interface Simplifications
document on xdlinx.com.

Select Existing .bsb Settings File(saved from previous session)

Browse ...

Set Project Peripheral Repository Search Path

o) e

Click the Browse button under New Project and specify a location for the new project file (system. xmp).
Make sure the PLB system is selected under Interconnect Type. To facilitate the creation of systems on
our FPGA board, a board definition file is provided in the lab distribution. To point the tool to this file,
under Set Project Peripheral Repository Search Path, choose the 1ib directory in the lab distribution
(lab5B/). Press OK to create the new project.

In the next dialog box, choose | would like to create a new design and press Next. This brings up a board
selection dialog. As we have provided the board definition to the tool, you can find XUPV5-LX110
Evaluation Platform in the Board Name drop down menu. Select this board and press Next to bring up the
System Configuration dialog.

As we have mentioned earlier, the XPS creates processor based systems. In this lab, to keep things
simple, we will use a single-processor system, which is the default selection. Press Next to go to
Processor Configuration. Change the System Clock Frequency to 50MHz, this relaxed timing constraint
would give the backend an easier job in place and route, which in turn would shorten the compile time for
the hardware platform. Change the size of local memory to 64KB. Press Next and you should see the
Peripheral Configuration dialog.

EECS150 Spring 2013 Lab 5

Welcome Board System Processor Peripheral Cache Summary
! |

Peripheral Configuration

To add & peripheral, drag it from the "Available Peripherals™ to the processor peripheral list. To change a core parameter, dick on the peripheral.

Available Peripherals

Peripheral Mames Processor 1 (MicroBlaze) Peripherals Select Al
£} 10 Devices

Core Parameter
- R5232_Uart_2
- LEDs_8Bit RS232_Uart 1 .
- LEDs Positions Core: xps_uartlite, Baud Rate: 9600, Data ...
- Push_Buttons_SBit dimb_entlr]
- DIP Switches 8Bit Core: Imb_brarm_if_cntlr
- PS2 Mouse ilmb_cntlr
PSE_KE}rbDard Core: Imb_bram_if_cntlr
- IIC_EEPROM
- SRAM
- FLASH
- PCle_Bridge
- Hard_Ethernet_MAC
- DDR2_SDRAM

- SysACE_CompactFlash
[=F Internal Peripherals

- lmb_bram_if_cntlr

- ¥ps_bram_if_cntlr

-~ ups_timebase_wdt

- ups_timer

Add =

< Remave

[< Back][Mext = l[Cancel l

The MicroBlaze processor can be connected to many different cores. Some of these will be useful when
you are implementing your own project. However, in this lab, we will use a minimal set of peripherals to
showcase the functionality of a simple embedded system. Remove all peripherals except RS232_Uart_1,
dimb_cntlr and ilmb_cntlr. The RS232_Uart_1 will be used to communicate with the host workstation,
while the dimb_cntlr and ilmb_cntlr are used by the processor to access the local memory (Block RAM).

Click Next to go to the cache configuration page. As we are not using any off-chip memory for this lab,
there is no caching necessary, click Next to skip this step.

You should now see a summary showing the address mapping of each of the peripherals. These are
automatically generated according to the size of the address range assigned to the peripheral, which can
be modified later. Click Finish to complete the system creation.

EECS150 Spring 2013 Lab 5

LLP ,ﬂ Bus Interfaces | Ports | Addresses |
ré‘ ré‘ Ié Mame Bus Name IP Type IP Version
— || dlmb T Imb_vl0 2.00.b
P — | 11] Tr Imb_vl0 2.00.b
I— 1 Tr plb_vié 1.05.a
i [microblaze_0 1'r microblaze 830.a
— [+ Imb_bram 'ﬁ' bram_block 1.00.a
" | .E - dimb_cntlr r Imb_bram_i... 3.00.b
9 [+ ilmb_cntlr 1} Imb_bram_i... 3.00.b
2 [mdm_0 r mdm 200.b
;7 - R5232 Uart 1 r xps_vartlite 1.02.a
- clock_gener... 1r clock_gene.. 4.03.a
- PPDC_SYS_IE-.. 1r proc_sys_re.. 3.00.a
4 [0
Legend
dMaster #Slave diMaster/Slave W Target {Initiator @ Connected JUnconnected I Monitor
Production [ElLicense (paid) License (eval) Local Z&Pre Production HBeBeta BDevelopment
4 Superseded Discontinued
= Design Summary x|] & Graphical Design View & | & System Assembly View x| [

From the System Assembly View, you can see a MicroBlaze based system with the specified peripherals
has been generated, and all the connections between components are created accordingly. The local
memory bus (LMB) is used by the MicroBlaze core to control the dimb_cntlr and ilmb_cntlr modules (the
microblaze_0 is the master while the controlled modules are the slaves). Meanwhile, the PLB bus is used
to connect to the RS232_Uart_1 component.

Switch to the Addresses tab to examine the address mapping for each peripheral, Change the size of the
address map and observe how the range of the address is updated automatically. Remember to change
everything back.

On the left hand side of the XPS window, there are several buttons. Run DRCs check the design against
a set of design rules. Under Implement Flow, Generate Netlist implements the design using the Xilinx
backend, going through synthesis and place and route to create the final netlist. Generate BitStream
generates the actual bitstream using bitgen. Export Design is used to create a hardware platform
description, which can be used for software development. Exporting the design will automatically invoke
the generation of netlist and bitstream, so press the Export Design button to bring up the dialog box
shown below. Executing this is equivalent to running make and will take a while (30-40 min) so we
recommend doing something else while you wait.

@ This dialog allows you to export hardware

/ platform information to be used in SDK.

Include bitstream and BMM file

(XPS will regenerate bitstream if necessary,
and it may take some time to finish.)

Directory location for hardware description files

D:Ywork\edkrunThrough\SDK\SDE_Expart

[Export Only J [Export&Laund1 SDK] ’ Cancel] ’ Help]

Click Export & Launch SDK to implement the design and start the software development environment.

5

EECS150 Spring 2013

Software Design

Lab 5

When the Xilinx SDK is launched, you will need to specify a workspace directory. Click OK and soon you
will see a welcome page, close it and you should see the IDE interface shown below.

EYAC/C+ + - runThrough, hw_platform O/system.xmi- Xilinx SDK = @p380-12.EECS. Berkeley. EOU>

File Edit Source Refactor Navigate Search Run

Project Xilinx Tools Window Help

| Fav o |#m| & e e e v ovar | & o | = [Eccw

J - . Tt

[t5 Project Explor 3 = O |4z systemxml &2 =0 ?
B % 7 || runThrough_hw_platform_0 Hardware Platform Specification

= (@ runThrough_hw_platform_0
=] system_bd.bmm

Design Information

2 system.bit Target FPGA Device: xcSvix110t
5 system.xml Created With: EDK 14.1
Created On: Mon Feb 18 15:35:38 2013

XPS Design Report: file:///home/cc/cs 150/sp13/staff/cs1504b/labs/edklab_stu/runThrough/SDK/SDK_Export/hw/system. ht

Address Map for processor microblaze 0

dimb_cntlr 0x00000000 0x0000LEET
ilmb_cntlr 0x00000000 0x0000EEEE
RS232 Uart_1 0x84000000 0x8400F£EF
mdm_0 0x84400000 0x8440F£EE

IP blocks present in the design

microblaze 0 microblaze 8.30.a Datasheet
mb_plb plb_v46 1.05.a Datasheet
iimb Imb_v10 2.00.b Datashest

-

7 B
Overview | Source
2! Problems | & Tasks | El Console 2 . & Prcpeﬂies}@"l’erminaq G B o ~ Fj» = O

SDK Log
16:232:54 INFO

: Processing command lins option -hwspsec .e’hornef’Cc‘f’cslSOx‘sple’stafff’cslSO—th!la

T G I [>)

There are three files used to capture the information of the exported hardware platform. The
system.xml file contains the information about the IP cores used in the design. The system.bit fileis
used for programming the FPGA device while the system bd.bmmn file is used by the SDK for loading
memory onto the target board. When we create a software project in Xilinx SDK, we will need to refer to
the hardware platform the compiled program is meant to run on.

In the IDE, select File 2New >Xilinx C Project, name your project GCD. Under Select Project Template,
choose Empty Application. You will populate this C project with a main function which takes in two input
numbers and compute the greatest common divisor.

EECS150 Spring 2013

b4l Mew Project =@p380-12 EEC5_Berkeley EDU

New Xilinx C Project ;]
Create a managed make application project. Choose from one of the sample applications.

Project name: [GCD| l

Use default location

Location: | home/cc/cs150/sp13/staff/cs 150-th/labsBR T/GCD | | Browse... |

Choose file sys

em: | default

~Target Hardwar

Hardware Platform: | run Through_hw_platferm * |

Processor: | microblaze_0 * |

~Target Softwar
Software Platform: @ Standalone) Linux

~Select Project Templat

Dhrystone -Description
Empty Application Ablank C project.
Hello World

lwlP Echo Server

Memory Tests

Peripheral Tests

SREC Bootloader

Kilkernel POSIX Threads Demo
Zyng FSBL

@ e | Nedt> || Cancel |[Finish

Lab 5

Press Next to bring up the Board Support Package creation screen. The Board Support Package (BSP) is
a collection of libraries and drivers that form the lowest layer of your application software stack. Your
software applications must link against or run on top of a given board support package using the provided
Application Program Interfaces (APIs). In our case, change the project name to GCD_bsp_0 as shown in

the figure below, leave the rest of the default options as they are set and press Finish, the board

supporting package will be automatically created.

EECS150 Spring 2013

-V New Project =¢@p380-12.EECS Berkeley. EDU>

New Xilinx C Project]
Create a managed make application project. Choose from one of the sample applications. @

(@ Create a new Board Support Package project

The template provided by application 'Empty Application' will be used to configure the project.

Project name: [GCD_bsp_O l

1 Use default location

Lecation: |/homelcclc: 50-tb/1absBRT/GCD_bs

(o

Choose file :

em: | default

(O Target an existing Board Support Package
Available Board Support Packages:
Mo Board Support Packa

® Mext .[Cancel H Finish l

Lab 5

After the BSP is created, you can modify its settings from the following screen, accessible by clicking on

system.mss under the BSP project.

f
|5 system.xml [system_bd. bmm [system. bit il_ih system.mss El_@\

hello_world_bsp_0 Board Support Package

Modify this BSP's Setting |

Target Information

This Board Support Package is compiled to run on the following target.

Target Processor: microblaze 0

Operating System

Board Support Package OS.

Name: standalone
Version: 3.05.a

standard input and output, profiling, abort and exit.

8

Hardware Specification: /homef/cc/cs150/sp13/staff/cs150tb'workspaceR un Through/run Through_hw_platform/s

Description: Standalone is a simple, low-evel software layer. |t provides access to basic processor feature:
caches, interrupts and exceptions as well as the basic features of a hosted environment, such

EECS150 Spring 2013 Lab 5

Click the Modify this BSP’s Settings button and you can see an overview of the OS and the hardware
platform we use. In this lab, to keep things simple, we only have a basic software layer (standalone)
instead of a fully functional OS. Click standalone under Overview to bring up the screen below.

L¥dBoard Support Package Settings = @p380-12.EEC5. Berkeley EDU>

Board Support Package Settings m

Control various settings of your Board Support Package.

= Overview
Configuration for OS: standalone

~ drivers Name Value Default Type Description
cpu stdlin RS232_Uart_1 none peripheral stdin peripheral
stdout RS232_Uart_1 none peripheral stdout peripheral
P enable_sw_intrusive_profiling false false boolean Enable S/W Intrusive Profilin
P microblaze_exceptions false false boolean Enable MicroBlaze Exceptior
[| 1 |)]
® [Cancel l [OK l

As you can see, we will be using the RS232_Uart_1 for both input and output for our program. The serial
port of your workstation has already been connected to the FPGA board using serial cable, through which
the MicroBlaze will be receiving and sending data. In the application running on the processor, the
communication with the host workstation will be performed as read from STDIN and write into STDOUT.
Of course these settings can be modified to suit your need in your own project, if you choose to work with
the EDK flow. Click Cancel to exit the BSP settings screen, and copy the gcd. c file in the lab distribution
(under src/software) into the src directory under GCD project under your workspace directory.

This program will read two numbers from the STDIN and print the greatest common divisor back to
STDOUT. To interact with the MicroBlaze processor running this program, before you program your
FPGA board and load your program, open up a terminal in your workstation and run:*

% screen S$SERIALTTY 9600

This tells screen, a highly versatile terminal emulator, to open up the serial device with a baud rate of
9600. Now, go back to the Xilinx SDK, and select Xilinx Tools 2 Program FPGA to bring up the following
dialog:

1 Note that if someone else has locked the serial cable on your workstation, you will not be able to execute this command.
Since we don’t have sudo access, the only way to resolve this problem is to either find the offending user and have him kill
his session, or reboot the computer.

EECS150 Spring 2013 Lab 5

-V Program FPGA =@p380-12 EEC5.Berkeley EDU>

Program FPGA
Specify the bitstream and the ELF files that reside in BRAM memory

-Hardware Configuration
Harcware Specification: /home/ee/cs150/sp13/staff/cs150-tk/1absBR T/runThrough_hw_platform_o/system.xml

Bitstream: [J‘home.f'ccfcm50fsp13/stafffcs1EU—tbeabSBRT.FmnThrough_hWJalatform_Ofsystem.bit l [Browse..l

BMM File: [J‘homefccfcm50fsp1SJ‘stafffcs1EU—tbeabEBRTfrunThrough_hWJ:Iatform_Dfsystem_bd.bmml [Browse..l

-Software Configuration

Processor ELF File to Initialize in Block RAM
il RN H ome/ce/cs 150/sp1 3/staff/cs 150-tb/lab5BR T/GCD/Debug/ GCD. elf
@ [Cancel] [Program l

To program the FPGA, use the bitstream and BMM file from the exported hardware platform. For the
software configuration, choose GCD.elf in the GCD project under GCD/Debug. Click Program to
configure the FPGA and load the gcd program.

If your design is working properly, after the FPGA is configured, you should see instructions being printed
to the terminal you opened earlier. The first line you should see is:

GCD program started, please enter two positive numbers.

You can follow the displayed instructions and get the gcd of any two positive numbers. Close the SDK
after you are finished.

To close screen, type Ctrl-a then shift-k and answer y to the confirmation prompt. If you don't close
screen properly, other students won't be able to access the serial port. Use screen -x to re-attach an
improperly closed screen session.

Adding Coprocessor

In many cases, people add coprocessors to take over computationally intensive parts of the program. In
this lab, we will create a coprocessor so the computation of gcd can be offloaded from the MicroBlaze.
The creation and integration of user coprocessors are supported by the Xilinx EDK. Using the XPS and
the SDK, we can modify the existing system to take advantage of the coprocessor we design.

Run the XPS again by running:

% Xps

Choose Open Project, and open the system. xmp file you created earlier. From the XPS GUI, select
Hardware - Create or Import Peripheral to bring up the wizard, press Next to go to the Peripheral Flow
dialog. As the coprocessor has not been created, select Create templates for a new peripheral. Press
Next and you will be asked where the new peripheral should be stored, use the default and go to the next
page. Name the new peripheral gcd coprocessor and move on to the Bus Interface selection dialog.

10

EECS150 Spring 2013 Lab 5

Select Fast Simplex Link (FSL), which provides a point to point communication between any two modules
on the FPGA. We will use FSL to couple the gcd coprocessor with the MicroBlaze core. Press Next to
move on to the FSL Bus Interface Settings.

E¥] Create Peripheral < @p380-12. EECS. Berkeley. EDU> 7/

FSL Bus Interface Settings :
Define FSL bus interface of your FSL peripheral. /1\\//\%?

Each FSL interface provides a uni-directional, point-to-point communication channel between two peripherals.

Please customize the FSL peripheral you want to create:

rnput FSL interface

Number of input 32:bit words: (2. [= Msﬁkﬁ;\m

[%] Output FSL intefface CPU NW—IB’
FSL FSL
Number of output 32-bit words: E k&m _ Ma

Note

The number of input and output words are used to create a simple peripheral. Please implement the coprocessor in this
peripheral.

More Info < Back Next > Cancel
| ST | /| J| |

&

As the FSL is unidirectional, in order for the coprocessor to pass back the computed value, we would
need to have two FSL links. The first will be used by the CPU to send the two input numbers to the
coprocessor while the second will be carrying the result back to the CPU. As the gcd algorithm takes in
two inputs and produces one output, the number of input/output words should be set accordingly. After
you press Next, the Peripheral Implementation Support dialog will allow you to specify the language for
the example peripheral, and if you wish to have the tool generate support infrastructure for the hardware
and software implementation. Check all three boxes and continue.

In the Driver Settings dialog, you can configure the driver API for using the coprocessor. In our case, the
number of input arguments can either be one or two since we have two input words. It should be apparent
to you that when you are using the coprocessor in your program, the input numbers should be placed in
the input array(s) while the result can be read out of the output array. Use one input and one output
argument for the driver APl and continue to the summary page. Click Finish to generate the template for
the new peripheral and return to the XPS GUI.

You may notice that under the IP catalog in the XPS, a new category, Project Local PCores is created.
Expand this category and you can see the gcd_coprocessor being listed. However, the coprocessor is not
yet added to our system. Right click on it and choose Add IP, the coprocessor should appear in the
system assembly view, but it is still not connected to any of the existing components. To build up the link

11

EECS150 Spring 2013 Lab 5

between the coprocessor and the MicroBlaze, select Hardware 2>Configure Coprocessor to bring up the
coprocessor manager. Add gcd_coprocessor to the Connected Coprocessors list and press OK, the
updated system assembly view should be similar to the one shown below:

ﬂ Bus Interfaces Ports Addresses

FFLLP

E E I;' gl I& MName Bus Name IP Type IP Version
- ged_coprocessor_0_to_microbloze 0 ﬁ fsl_w20 21le
- microblaze 0 to ged_coprocessor 0 ﬁ' fsl_w20 21l.e
- dlmb T Imb_v10 2.00.b
- ilmb 7 Imb_v10 2.00.b
- mb_plb 7 plb_vd6 1.05.a
- microblaze_0 <7 microblaze 830
- lmb_bram 7 bram_block 1.00.a
i dimb_entir ﬁ' Imb_bram_i... 3.00.b
o ilrmb_cntly T Imb_brarm_i.. 300k
t- rdm 0 <7 mdm 2.00.b
38 god_coprocessor 0 S gcd_coproc...
t- RE232 Uart 1 7 xps_uartlite 102.a
- clock_generator 7 clock _gene.. 403.a
- proc_sys_reset 0 ﬁ' proc_sys_re.. 3.00.a

4 L1 k

Legend
dMaster #Slave dMaster/Slave W Target <Initiator @ Connected JUnconnected b Monitor
ﬁ'Production @License (paid) IgILicense (eval) %Local = Pre Production MBeta EiDevelopment
(4 Superseded Discontinued

I = Design Summary x| ‘ 3 Graphical Design View || | & System Assembly View m

Implementing GCD Coprocessor with ISE

When the coprocessor template is generated, an ISE project is also created to facilitate the
implementation of the module. In the past few labs, you have been using various components of the ISE
software. In this lab, we will use the ISE GUI for Verilog editing, synthesis and simulation. Start ISE by
running:

% ise

Go to File 2Open Project, navigate to the directory for your XPS project. Under this directory, find
pcores/gcd coprocessor vl 00 a/devl/projnav/gcd coprocessor.xise, thisisthe ISE
project file. Select it and click Open

12

EECS150 Spring 2013 Lab 5

@ File Edit View Project Source Process Tools Window Layout Help

ND3EFL kBxwar-'prppr ~RARRE12 ‘S b Q
Design Qo8 & 55 // ports: "- Names begin w
[View® FF implementatic”) g Simulatic 5= 56 // processes: " PROCES
] |Hierarchy — 51 // compenent instantiations: "CENTITY_>T1_<#|F
& .-] ged_coprocessor - L ettt
El- £3 xes5vix = 59
o4 - B 60 SSSSSITSLS TR TIPS E PP PT LRI TP P i i idiriid i s s
g 61 //
< 62 //
A 63 // Definition of Ports
& % 64 // : Synchronous clock
—_ 65 // HES: em reset, should always come from
- i 66 // : Slave asynchronous clock
s 67 [/ : Read signal, requiring next available i
@ 68 // FSL_S_Data : Input data
. 69 // FSL_S_Control : Control Bit, indicating the input data
}") 70 // FSL_S_Exists : Data Exist Bit, indicating data exist i
€1 I | [«]»] 71 // FSL_M_Clk : Master asynchronous clock
» 2 NoProcesses Running 72 // FSL_M mWrite : Write signal, enabling writing to outpu
73 // FSL_M_Data : output data
L, |Processes: ged_coprocessor ‘ 74 // FSL_M_Control : Control Bit, indicating the cutput data
[E Design Summary/Reports 75 // FSL_M_Full : Full Bit, indicating output FSL bus is
= ‘¥ Design Utilities 76 I/
- g@:ijtrnzzr::a‘;; BT SSETFIIITELTE P PP E LA I PP E i i i i i it ri i iidiitiiiiy
1 [@-8) Implement Design e .
€) Generate Programming File T
@ Configure Target Device 80 // Module Section
&= Analyze Design Using Chip.. 81 //-—mmmmmmmoo oo oo
82 module gcd_coprocessor
83 (

In the Hierarchy view of the project (on the left of the screen), double click the gcd_coprocessor module
to open up the Verilog file in the HDL editor of ISE.

In the earlier part of the lab, you have used the gcd algorithm written in C. Now you are going to
implement the same algorithm using Verilog. An important aspect in implementing the gcd coprocessor is
to understand how to use the FSL interface to get data from the processor and write the result back.
Read over the generated gcd _coprocessor.v to understand how the example module performs read
and write. In this generated example, there are multiple clocks, but only one of them is actually used. Also
there are other control signals which are not driving anything. In your own project, you may be able to
take advantage of a separate clock domain or use the extra control signals to make a more efficient
accelerator.

When you finish editing gcd coprocessor.v, save it. Some syntax errors can be immediately
detected by the editor, and an error message will be shown in the Console window towards the bottom of
the IDE. More subtle errors can be caught when you synthesize the design, which can be done by
double-clicking Synthesis-XST under Processes (on the left of the IDE). After resolving all syntax
problems, simulate the design to verify its functionality.

We have provided a simple testbench, called Testbench that will run a test on a pair of numbers. To
simulate the design in ISE, select Project 2Add Source, go to the directory of the lab distribution and
open Testbench.v under src/hardware/sim.

13

EECS150 Spring 2013

View: () {&F Implementation @ Simulation

Dsely SRR o=

5| [DErTEvTorat

£ g4 xc5vix110t-1111136

L] |

Hierarchy

=] ged_coprocessor

& [iTestbench (Testbench.v)

uut - god_coprocessor (god_coproce:

103

= ¢

o~

P2 Run Failed: Synthesis

Processes: Testbench

{: =] %’

1Sim Simulator
Behavioral Check Syntax

&)

Simulate Behavioral Model

Lab 5

98

99
100
101
102
103
104
105
1086
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121

17272

)i

input
input
input
output
input
input
input
input
output
output
output
input

FSL_M _Write,
FEL_IM Data,
FSL_IM_Control,
FSL_M_Full

DO MOT EDIT ABOVE Tl

ADD USER PORTS BELOW THIS
USER ports added here
ADD USEER PORTS RABOVE THIS
[0 311
[0 311
ATIN TTSRR PLRAMETRRS RRET.OH

As highlighted in the screen above, switch the design view from Implementation to Simulation and select
the Testbench file. Under the Processes window, run Simulate Behavioral Model by double clicking it,
The Xilinx simulator, ISim, should start. The interface, shown below, allows you to add and remove waves
as well as look at the messages the testbench prints out (in the Console window towards the bottom). If
your design is functioning properly, you should see “test passed” being printed out. Also look at the
waveform to ensure the circuit is behaving as you have expected. Feel free to modify the testbench to
test more numbers.

[File Edit View Simulation Window Layout Help

a2

Instances and Pr..@ 5 & ®

EEEEw -

Instance and Process Nam
{1} Testbench
p B uut \
0 Always_65 0
(% Cont_74_1
(% Cont_75_2
L[Aways_T78_3
G Ahays_S8_4
(5 Inital_106_5

{4} anl

LR

Objects HBEOERE
Simulation Objects for uut

BOPBNDE

Valuy™

Object Name
[FsL_ck
Ly FSL_Rst o
I FSL_s Ck x
Iy FSLS Read 0o
& FsL_S Datal.
|5 FSL_S_Contral x
Ly FSL S Exists ©
L[} FSL_M_Clk x
1[5 FSL_M_writa

Stopped at time : 290 ns : File "/home/cc/cs150/sp13/staff/cs150th/labs/edklab_stu/runThroughAddHdGCD/ pe ores/ged_coprocessor_vi_00_a/devl/projnav/Testbench.v" Line 128

24 FSL_M_Data[... ooooc

4‘3@ FSL_M_Contral =

Iy FSL_M_Ful o
_ § g ANE C
oA I 7 stae(30]
£ Instan... Mem T P i 7 Default.welg Testbench.v

Conscle HEEX

This is a Full version of 1Sim
Time resolution is 1 ps
Simulator is doing circuit initialization process.
Finished circuit initialization process. D
test passed @

@ Console |] Compilation Log | ® Breakpoints |lg Find in Files Results | Search Results[

14

EECS150 Spring 2013 Lab 5

After verifying the functionality of your module, go back to XPS. As the hardware platform has been
changed, select Hardware ->Clean Bitstream, and press Export Design in the Navigator. Choose Export &
Launch SDK. After the hardware compilation, when SDK is launched again, the BSPs in the original
workspace will be automatically updated. Then the coprocessor is ready for use by your software
application.

Using Coprocessor in Software

As the coprocessor has been implemented and integrated into the hardware system, software changes
are needed to make use of it. When the example coprocessor was generated, a skeleton for the driver
was also created. It is located in the driver/src directory under the XPS project. You should find four
files gcd coprocessor.c, gcd coprocessor.h, gcd coprocessor selftest.c and
Makefile. In gcd coprocessor.h, a macro has been defined, which writes the input data into the
coprocessor and reads the result out of it. Meanwhile in gcd coprocessor selftest.c, the defined
macro is employed to actually use the coprocessor. Make sure you understand these two files. In more
complex peripherals, additional functions can be added to gcd coprocessor.c to exercise the
coprocessor in different ways. For this lab however, the generated macro is sufficient.

Copy gcd coprocessor.c and gcd coprocessor.h from the driver directory to the GCD project
we created earlier in the SDK. Edit the computeGCD function in gcd. c to use the gcd_coprocessor. Feel
free to borrow code from the gcd _coprocessor selfTest.c. Don’tforget to include the appropriate
header file for the coprocessor.

Note: for the application to work properly, you should define both the input_slot_id and output_slot_id to
be 0. The generated gcd coprocessor selfTest.c points them to two compile time constants
which are supposed to be in xparameters.h but are actually absent. In your own project, if you have
more than one coprocessors, the input and output slot ids should be changed accordingly.

After the updated gcd. c is compiled (built automatically by default), you are ready to test out the new
system. Program the FPGA again using the new bitstream and the updated .e1f file. Try a few pairs of
numbers to verify the new system is working as it was before.

Checkoff

When you have the whole system (MicroBlaze + coprocessor + software) working on the board, talk to a
TA to be checked off

1. Explain how the FSL protocol works.

2. Show the TA the output from the testbench in ISim. Relate the waveforms to your coprocessor
design.

3. Show the TA the C code you wrote to use the gcd_coprocessor.

4. Demonstrate the final working system. You should be able to type in two positive numbers and see
the gcd being returned.

15

