EECS 150 Spring 2013 Lab 4

Lab 4: List Processor and Chipscope

University of California, Berkeley
Department of Electrical Engineering and Computer Sciences
EECS150 Components and Designh Techniques for Digital Systems
John Wawrzynek, James Parker, Daiwei Li

Due February 27", 2013 @ 2PM

Contents

(O LT 0o 18 o 1 o] o IHPH OSSOSO 2

IR =1 = o DTS 2

2 LIST ACCUMUIBLONcoieeeeeeeeseessensseessesssesssesssessse s 2
2.1 SKEIETION FlES ..cooreeeeeeeereerseeeseessessseessssesssesssssssessssesssssssssesssesssssssssesssssssessssssssssssessssesssssssas 3
2.2 BIOCK RAM...oo ettt sttt ssse s ss e ss s ss bbb bbb bbb bbb 3
2.3 DAtaPAt DESIGN.....ccueeeeererireesseessesssess s sessseessess s sesssesssess s ss st ss st ss s sesssesssesssssssessans 4
A o g1 (0] | T TSN 6
2.5 DeployiNg t0 HAIGWAIEocceeeeereeereeseetseessessseessesssesssesssesssssssesssesssssssesssesssssssssssssssssssessans 6

G O 110 1Yo 1P 7
3.1 CORE GENErator (COMEOEN)omurrerrrreesresesssessssssesssassans 7
3.2 INtegrating ChIPSCOPE ... sesssesssesses 13
3.3 ChIpSCOPE ANAIYZEN ...ttt 13

2 G CKOTT ...eeeeeeeeeeeteeee e e s eseeeeeeeesesesesesesesesassssssanasaseessssssesnsnsssasasaesesesenessnsnsnsssssasananesseesesnsesenanananassees 16

EECS 150 Spring 2013 Lab 4

O Introduction

Although the software simulation techniques from the previous lab should remain your first line of defense
against bugs, at the end of the day, designs must work on the physical device. Verilog was created for
hardware modeling, not synthesis, as a result not all Verilog constructs map to hardware.

This introduces the problem of designs running correctly in simulation but failing in hardware. In this lab,
you will learn to use ChipScope to examine actual signals generated by a list processor running on the
FPGA. Note that there is no simulation directory provided for you in this lab so you will have to re-make
every time you want to test your implementation.

Additionally, this lab is intended to introduce design of complete digital systems (rather than individual
components, as in previous labs). Datapath and control design will be a major focus of the upcoming term
project - it is therefore in your interest to ensure you understand the reasoning behind the design
decisions in this lab.

Finally, this lab requires that you complete a prelab document before attending section so that you
understand the problem that you are solving.

1 Prelab

Complete this before attending lab section.

Read all of section 2 and complete the worksheet posted on the course website with this document
before attending lab. Show the pre-lab to your TA before starting the lab to verify that you understand
what you are doing.

2 List Accumulator

A common feature of early computer architectures is an “Accumulator” circuit. In general, this pattern
uses a register to hold intermediate values of a series of operations rather than storing and fetching from
memory for each one. In this lab, we will build an accumulator that processes linked lists using the ALU

created in Lab 2.

Recall that a linked-list is a sequence of nodes, each of which contains a data element and a pointer to
the next node. This example shows the list 1, 2, 3 with null-termination:

In C code, each node would likely be represented using a struct:

typedef struct list element ({
int val;
struct list element *next;
} Node;

EECS 150 Spring 2013 Lab 4

When instances of this data structure are stored in memory, the two fields will be in subsequent
addresses. This lab simulates that behavior. The skeleton files contain a 1024 x 32-bit single-port read-
only memory. The list will be stored in the following manner:

. The first node will always be at address 0.

. The data and pointer fields of a given node will be in sequential memory addresses, with the data
before the pointer.

. The pointer field in the last node of the list will be 0.

The diagram below shows an example of a valid memory configuration representing the list {1, 2, 3}:

Address:

0 1

1 6 7

2 3 \

3 0 = null
4 X

5 X

3 2

7 2

Figure 1 Sample Linked List

Use this list to complete prelab question 3.

2.1 Skeleton Files

In your 1abs directory, enter the following commands to acquire the skeleton files:

wget http://inst.eecs.berkeley.edu/~csl50/spl3/1lab4/labd.tar.gz

tar -xzvf labéd.tar.gz

The skeleton files contain a top-level module, a datapath module, a controller module, and a directory
containing configuration files for the memory described in the previous section. For this lab, you will need
to complete Lab4Datapath and Lab4Controller. You should not modify m1505top or any of the
module interfaces.

You will need to copy your completed ALU.v and ALUdec.v from the previous lab into the src directory.
2.2 Block RAM

As mentioned above, the skeleton files provide configuration files for a 1024x32-bit read-only memory
(ROM). This memory utilizes the built-in Block RAMs on the FPGA and the memory contents can be
initialized.

Go to the blk_ram directory in the skeleton files:

cd ~/labs/lab4/src/blk ram/

EECS 150 Spring 2013 Lab 4

This directory contains 4 files:

*. blk mem gen v4 3.xco: This file is generated using coregen (more in the next section) and
contains configuration information.

». small list.coe: Thisfile is used to initialize the memory. Each row corresponds to an address
(starting with 0) and the contents are in hex.

. build: Run this script (. /build) to generate the Block RAM

. clean: Run this script (. /clean) to delete the generated files. You must build the block memory
before synthesizing your design otherwise you will get an error. Also do no run this from the GUI
or you will lose your work.

Open the configuration file (b1k mem gen v4 3.xco) and find the following line:

CSET coe file=./small list.coe

The . coe file specified in this option is used to initialize the contents of the block RAM when it is

generated. Every time this file (or the file referenced in the configuration) changes, the memory needs to

be re-generated using the build script.

The skeleton files provide an example list to test your design with. Complete section 2 in the prelab to
familiarize yourself with the list.

2.3 Datapath Design

There are two primary tasks that need to be accomplished in the list accumulator datapath: list traversal
and data accumulation. These tasks can be considered separately to simplify the datapath design
process.

List Traversal

The memory provided in the skeleton files is single-ported, but for each node both the data and pointer
fields need to be accessed. The list processor will therefore require two cycles for each element in the list.

Each cycle has a different purpose:

Cycle 1: Fetch data: The address is 0 on reset, otherwise, the previous value loaded from the
memory (which would have been a pointer) is the address.

Cycle 2: Fetch a pointer: Pointers are stored immediately after the data, so use the previous
address incremented by 1.

EECS 150 Spring 2013 Lab 4

This block diagram enables the functionality outlined below:

rat —{rst
1
DQ =07 > ram_Zero
AN
+1 1
10 32
A BlockRaMm D r #3m _cout
o | "t
[9:0]
addr_s=l A

The list traversal component of this processor requires just one control signal, addr sel, to determine
the address for the block ram. Notice that on reset, the block ram will load address 0, which is the
beginning of the list.

Accumulator Register
The accumulator component is straightforward: When data is loaded from the block ram, apply the
operation on the data and the contents of the accumulator register. The use of a write enable signal

allows the controller to prevent the accumulator from storing operations on the pointers.

The accumulator portion of the datapath can be implemented in the following way:

alu_op
ram_dout
a2
ALL r K] accum_result
Accum
Reg
wr_en — WI_EN
15t —— rsth

This requires two control signals: the alu op to set the accumulator function and a wr_en signal to
prevent modifying the accumulator register contents when pointers are loaded or after the list ends.

The Complete Datapath

Combining these two components yields the complete datapath:

EECS 150 Spring 2013 Lab 4

alu_op
32
A BlockRam D s
il

E_% accum _result
[&0] acoum 7
reg
AN W_EN —_En
ret —fst

The interface to the datapath has been specified in Lab4Datapath.v. The block diagram above shows
the control signals in red and the outputs in blue.

Implement the datapath in Lab4Datapath. v after a you have verified question 3 of the pre-lab with a
TA.

2.4 Controller

After a TA has checked off the prelab questions, implement the controller in Lab4Control.v. The
controller should use the ALUdec module from the previous lab to generate the alu_op output.

Hard-code the opcode inputto 6’ b0 (R-type).

The funct is set using the bottom six GPIO switches (this has already been wired into m1505top.v).
2.5 Deploying to Hardware

Once you have completed Lab4Datapath and Lab4Control, run make in the 1ab4 directory.

Next, run make report and verify that there are no unexpected synthesis warnings.

You can ignore the warning about “instantiating a black box module <blk_mem_gen_v4 3” and
accum_result[31:8] unused.

After building the design successfully, deploy to hardware using make impact.
Verifying the Design
The skeleton files are configured such that:
e the center compass switch resets the design
e the center compass switch LED indicates that the list traversal is complete
e the GPIO LEDs show the bottom 8 bits of the accumulator register

To check if your list accumulator is working, first configure the DIP switches to a known funct.

For example, ADD is 6’b100001. After setting the lower 6 DIP switches, press the center compass button
to reset the CPU.

The example list provided in small list.coe runs nearly instantly, so the center switch LED should be
on (if not, traversal isn’t terminating). Finally, verify the sum displayed on the LEDs: the sum of the

EECS 150 Spring 2013 Lab 4

elements in small list is 36, which corresponds to LEDs 2 and 5 lit.

Unfortunately, it's incredibly difficult to write correct Verilog on the first try. Furthermore, twiddling switches
on hardware yields very little insight into design problems. The next step is to bring out the heavy artillery
of FPGA debugging: ChipScope.

3 ChipScope

The ChipScope Analyzer is a tool that allows you to record internal signals of your design running on the
FPGA when triggering conditions are met. In some circumstances this is preferable to software simulation
because it removes uncertainty created in the process of mapping Verilog to hardware.

There are two modules that you will need to add to your design to enable ChipScope: The “Integrated
Controller Core” (ICON) and the “Integrated Logic Analyzer” (ILA). You will generate these using Xilinx
CORE Generator, a tool for customizing a variety of blocks from a library.

3.1 CORE Generator (coregen)

The first step is to make a new directory (within the src directory) for the generation output, then run
coregen:

cd ~/labs/lab4d/src

mkdir chipscope

cd chipscope

coregen &

The coregen home screen will appear. Go to File -> New Project and press “Save” to store the project file

in the chipscope directory. You will then need to customize the “Part” and “Generation” panels of the next
dialog to mach the screenshots:

EECS 150 Spring 2013

D @ Project Options

Part
Generation
- Advanced

~Part
Select the part for your project:
Farmily [VirtexS |vl
Device [chvallUt |v]
Package [ff1136 |vl
Speed Grade [—l |vl
l oK l [Cancel] [Apply] l Help J‘

® @ Project Options

Part
Generation
‘. Advanced

~Flow

® Design Entry [Verilng |v]

() Custom Output Products

Please refer to the online help for information about
compiling behavioral models using compxlib and using
NEO (Verilog) templates.

~Flow Settings
Vendor [Other |v]
Netlist Bus Format [B[n:m] |v]

~Simulation Files

Preferred Simulation Model Preferred Language

.

® Behavioral O VHDL

=

-

") Structural @ Verilog

iy

() None

— Other Output Products
[%] ASY Symbol File

[o<][cancel][aemy |[mep |

Lab 4

EECS 150 Spring 2013 Lab 4

Leave the defaults in the “Advanced” options panel. Click “OK” once you have entered the project
settings.

You should now be at the coregen home screen again. In the IP Catalog file tree on the left, select
“Debug & Verification” -> “ChipScope Pro” -> “ICON (ChipScope Pro - Integrated Controller)”. After
selecting this, the ICON project should appear in the main pane. Click “Customize and Generate” under
“Actions” (you may need to scroll down):

& @ @ Xilinx CORE Generator - /home/cc/cs150/spl2/staffics150-ta/labs/solutions/lab4/src/chipscope/coregen.cgp

Eile Project Wiew Help

1 @ H = CORE Generator Help K? &

IP Catalog [«]
i View by Function View by Name This core is supported at status Preduction by your chosen part.
ot |Name Inf ti
Hie |7 Automotive & Industrial nformation E
& 7 BaselP Core type: ICON (ChipScope Pro - Integrated Controller)
- |77 Basic Elements Version: 1042
& |77 Communication & Networking Core Summary: The ChipScope Pro Series Integrated Controller.
A | |7 Debug & Verification
= E-|Z¥ ChipScope Pro {3} supported Families
- {:’ ATCZ (ChipScope Pro - Agilent Trace Core 2 Current Project Options
Lurrent Project Options
5| & IBERT Spartané GTP (ChipScope Pro - IBERT)
= (;' IBERT Virtex5 GTX (ChipScope Pro - IBERT) -
& & IBERT Virtex ipScope Pro - IBERT) Actions
- 3J IBERT Virtext

The following actions are available for this core:

‘% ICON (ChipScope Pro - Integrated Controller

B4 Customize and Generate

P
- 4] ILA (ChipScope Pro - Integrated Logic Analy &
£ VIO (ChipScope Pro - Virtual Input/Output] Q’w
Bl |7 Digital Signal Processing {Z]view Data Sheet
7 FPGA Features and Design {Z] View Version information

- |7 Math Functions
7 Memaries & Storage Elements

.| Standard Bus Interfaces Copyright () 1995-2010 Xilinx, Inc. All rights reserved @
|~ video & Image Processing Show Project
Console &)X

Help system initialized
New Project Cancelled.
Wrote file for project 'coregen’.
wrote file for project '‘coregen’.

0 I | (1]
Search IP Catalog:[—][Clear

[] AllIP versions | | Only IP compatible with chosen part Information l_ﬁ Warnings | @ Errors J

m Part: xc5vIx110t-1ff1136 || Design Entry: Verilog |

L IGIMEE [

Search Consaole I Find l I Save H Clear

Use the default generation options (shown below) for the ICON. Click “Generate” to generate the module:

EECS 150 Spring 2013

® @ ® ICON (ChipScope Pro - Integrated Controller)

View Documents

IP Symbol

|»

ICON (ChipScope Pro -

Lges Integrated Controller) ...

Component Name [chipscope_icon

ICON Parameters

MNurmnber of Control Ports

[] Disable Boundary Scan Component Instance

Boundary Scan Chain | USERL n

(] g | [t |

Lab 4

The generation process will take a few minutes. Once complete, you should again be at the main coregen

window.

Next, to generate the ILA, select “Debug & Verification” -> “ChipScope Pro” -> “ILA (ChipScope Pro -
Integrated Logic Analyzer)” from the catalog tree on the left. As before, click “Customize and Generate”

under “Actions”:

EECS 150 Spring 2013

® @ @ Xilinx CORE Generator - /home/cc/cs150/sp12/staff/cs150-ta/labs/solutions/lab4/src/chipscope/coregen.cgp

File

Project View Help

[0 @ H = coreGeneratorHelp K? = ¢ i

) @59 33 &

L
B

fle) fir)

IP Catalog
View by Function View by Name

‘Name —

~ Automotive & Industrial
BaselP
Basic Elements
Communication & Networking
Debug & Verification
" ChipScope Pro
{ ATCZ2 (ChipScope Pro - Agilent Trace Corg
] |BERT Spartané GTP (ChipScope Pro - IBE
J IBERT Virtex5 GTX (C
| IBERT Virte: p
- 4] IBERT Virtex6 « (Chipsco
{ ICON (ChipScope Pro - Integrated Control

4§ VIO (ChipScope Pro - Virtual Input/Output
Digital Signal Processing

FPGA Features and Design

Math Functions

Mernories & Storage Elements E

7 —— ()

mg.fC\:RE ILA (Chipscope Pro - Show?oect
Integrated Logic
Analyzer)

This core is supported at status Production by your chosen part

Information

Core type: ILA {ChipScope Pro - Integrated Logic Analyzer)
Version 103a

Core Summary: The ChipScope Pro Series Integrated Logic Analyzer.

{¥Supported Families
Current Project Options L

Actions

The following actions are available for this core

Search IP Catalog: l Clear]

[_] AllIP versions || Only IP compatible with chosen part
Project IP

‘ Instance Name | Core Name
4] chipscope_icon ICON (ChipScepe Pro - Integrated

L = (41

Search Project IP:I H Clear

S Customize and Generate
&5 View Answer Records @

Console

Launched readme viewer. =]
Maoving files to output directory.

Finished moving files to output directory

Saved options for project 'coregen’.

-
-
Search Console :} Find Save Clear

Information [_ﬁ Warnings |) Errors

m Part: xc5vIx110t-1ff1136 || Design Entry: Verilog ‘

Lab 4

You will need to modify the options for the ILA. On the first configuration page, select 1 trigger port, 1
sequence level, uncheck all checkboxes except “Use RPMs”, sample on rising edge and set data depth to

1024.

You will need to determine the data port width yourself. This is the number of bits you capture for storage
on each cycle. You will likely want to capture the control signals and some of the data signals.

EECS 150 Spring 2013

® ©@ ® ILA (ChipScope Pro - Integrated Logic Analyzer)

Documents View
IP Symbaol

CONTROL[35:0] s
CLK
DATA[76:0]
TRIGO[:0]

Datasheet
] IP symbol| %] Core Resource Usage|

logiC .PE

ILA (ChipScope Pro -
Integrated Logic Analyzer)

103a

Component_Narme [chipscope_ila

~Trigger Port Settings

Number Of Trigger Ports
Max Seguence Lewvels

(%] Use RPMs
[] Enable Trigger Output Port

—Storage Settings
Sempleon [Rising_|-]
Sample Data Depth (1024 ||

] Enable Storage Qualification
[] Data Same As Trigger

Data Port Width Range: 1.4096

Pagelof2| Next = l [generate] [Cancel l I Help l

Lab 4

After completing the first options page, click “Next”. On the second page, set the trigger port width to 1,
match units to 1, counter width disabled, match type basic with edges and uncheck exclude trigger port

from data storage:

® @ @ ILA (ChipScope Pro - Integrated Logic Analyzer)

Documents View

IP Symbol

CONTROL [35:0]
CLK

DATA[TED]
TRIGO[:0]

Datasheet
% IP Ssymbol| '] Core Resource Usage

logiC RF

ILA (ChipScope Pro -
Integrated Logic Analyzer)

~Trigger Port 1

Trigger Port Width
Match Units
Disabled |+

Range: 1.256

Counter Width

Match Type basic with edges H
Bit Values: 0,1.xrfb
Functions: = <>

] Exclude Trigger Port from Data Storage

1.03a

Page20f2[Next =] [generatel [Cancel l l Help l

Finally, click “Generate” and wait. You should now see a litany of chipscope ICON and ILA files in the

chipscope directory.

EECS 150 Spring 2013 Lab 4

3.2 Integrating ChipScope

Now that you have generated the ChipScope modules, you need to integrate them into your design. You
should instantiate these in your datapath so that the data and control signals are accessible. Use the
following Verilog code to instantiate the modules:

// ChipScope components:
wire [35:0] chipscope control;
chipscope icon icon(
.CONTROLO (chipscope control)
) /* synthesis syn noprune=1 */;
chipscope ila ila(
.CONTROL (chipscope control),
.CLK(clk),
.DATA ({rst, addr sel, wr en, mem addr, mem dout, accum reg}),
.TRIGO (rst)
) /* synthesis syn noprune=1 */;

The comments following the module instantiation (but before the semi-colon) are synthesis directives to
indicate that the modules should not be pruned (which could happen, because they produce no externally
visible outputs).

You will likely have different variable names in your datapath (and you may want to record a different
subset of signals, depending on the data depth you selected during generation), so the DATA input is
provided as an example only.

The trigger is the reset signal - this means that 1024 cycles of the DATA input will be stored when you
press the center compass button.

After you instantiate the ChipScope modules, you will need to run make clean followed by make from
the 1ab4 directory to build the design. The build time will increase to 4-5 minutes. Finally, run make
impact to program the FPGA.

3.3 ChipScope Analyzer

With ChipScope integrated you now have the ability to probe the internals of your design. To capture and
view data, open the ChipScope Analyzer:

analyzer &
A mostly blank window with a large ChipScope Pro logo should appear. In the menu bar, select “JTAG

Chain” -> “Xilinx Platform USB Cable”. Leave the defaults in the two pop-up dialogs; just click “Okay”
twice:

EECS 150 Spring 2013

File Wiew |TAG Chain Device Window Help
=]
\New Project \:
ITAG Chain 5
ChipScope Pro Analyzer [new project]
li‘ Flatform USE Cable Parameters
e Speed Part.
[urz -] U2 1/ESh0000126F 461101 [v | | Bink Cable LED |
»
IMFO: Started ChipScope host {localhost:50001) el

IMFO: Successfully opened connection ta server: localhost: 50001 (ocalhostf127.0.0.1)
INFO: Platform USE cables connected:

UsB2 1/ESNOO00128F431101
COMMAND: update_platform_usb_esn_list
IMFO:; Started ChipScope host {localhost:S0001)
IMFO: Successfully opened connection to server: localhost: 50001 (ocalhostf127.0.0.1)
INFO: Platform USE cables connected:

USBZ 1/ESNO000128F431101

4]

You should now see a screen similar to this:

® © @ CcChipScope Pro Analyzer [new project]

File Yiew [TAG Chain Device IriggerSetup ‘Waveform Window Help

Bus{Signal X | o

DataPort [0]
DataPort[1]
DataPart [2]
DataPart [3]
DataPart [4]
DataPort[5]
DataPort[6]
DataPart [7]
DataPart [5]
DataPart [9]
DataPort [10]
DataPort[11]
DataPart [12]

© 0 0 o o o 0 o0 o o o o o
o 0o 50 50 o0 o 0 5 o o o o o

|@® | Trigger funMode: [Sinle [|| » m T1| [| |
- —
Mew Project | |}l &} Trigger Sewup - DEVe4 MyDeviced (XCSVLX110T) UNIT:D MylLAD dLA) 50 iiiiiinnnnn e s S O~(7)
Bg i my\’ge‘”tei g‘ga’": M1 Watch Unit T Function T Value Radix Counter
g evice: n - X B disabled °
ot Momor coneal ;” o M0 TriggerPoro | | en | isanle u
@ UNIT:0 MylLAO (L&)
Trigger Setup T aca [Artive I Trigger Condition Name | Trigger Condition Equation [1
Waveform = a
: L H ® | TrigaerCandiniono | Mo |2
Signals: DEV: 4 UNIT: 0 O Tvpe: |Window |+ Windows: [1 Depth: [1024 - Pasition: 0
o Data Port =l
< Trigger Ports

w44 n]4

X

o2 o

of«[r] apt-0y

0

L~ F LTI VaTSTiTT = Z U

INFO: PLD wersion = 200Dh,

INFO: Tviae = OxQ005.

INFO: ESN option: 0000128F491101

INFO: Successfully opened Xilinx Platform USE Cable

INFO: Cable: Platform Cable USE Il, Port: LSB21, Speed: 2 MHz
INFO: Found 1 Core Unit in the JTAG device Chain.

Lab 4

EECS 150 Spring 2013

Lab 4

The first step is to configure the trigger. When the conditions specified in the Trigger Setup panel are met,
the ChipScope modules begin recording data. To debug your list processor, you want to record data
when reset is pressed. Configure your trigger to match the following screenshot:

{1 Trigger Setup - DEV:4 MyDeviced (xCSVLX110T) UNIT:0 MylLAD (L&) !

1 |
= Match Unit | Function | Walue Radix | Counter N f
E 2| o M0:TriggerParto | - | 1| Bin | disabled Ij :
= | (]
E 5 Add Ative [Trigger Condition Matme [Trigger Condition Equation [l A
& oar O] | TriggerCanditiono | Mo !J 3
Eg Tuwie: = Wincows: 1 Depth: [1024 = Position: o] [
|

| |

MO:TriggerPort0 corresponds to the TRIGO port of the ILA. As such, this configures ChipScope to begin
recording data when rst == 1 (i.e. you press the center compass switch).

To capture data, press F5 or click the run button on the toolbar. This arms the trigger: press the center
compass switch on the board and watch as the waveform view is populated with data. After data capture,
you should now see:

® © @ chipScope Pro Analyzer [new project]

File Wiew |TAG Chain Device Trigger Setup Waveform Window Help
@ | Trioger Run vode: [Bincle_[~]| b m T[S § 9 S0 LR
Nef._?.miigw.“v S | v[l &3 Trigger Setup - DEV:4 MyDeviced (XCSVLX110T) UNIT:0 MylLAQ (ILA)
DEW:1 MyDevicel EXCFSZP)) 1z Match Unit [Function | Value [Ra. Counter |
DEV: 2 MyDevice2 (XC9500XL o o MO:Tri Port0 J— 1| Bin disabled -
DEV:3 MyDevice3 (System_AC| 5 riggerta | | | - Iu'
System Moniter Console 5 Add Active | Trigger Condition Mame | Trigger Condition Equation |
§ UNIT:0 MylLAD (ILA) & ® | TriggerConditiond | MO |2
Trigger Setup = 1=
Wavef I
— Zeni —— g| Type: : Windows: 1| Depth: (1024 Position: 0
T e e T e =
signals: DEV: 4 UNIT: 0 | 1 @ sample euffer is ful
¢ Data Port =H
g:= f gﬁtagogm | €1 waveform - DEV: 4 MyDevice4 (XCSVLX110T) UNIT:0 MyILAO (ILA)
: ataPo :
CH: 2 DataPort[2] : Bus/signal = @ ljo 80 160 240 320 400 480 560 640 720 800 580 960
CH: 3 DataPort[3] : | | | | | | | | | | | |
CH: 4 DataPort[4] H: DataPort[0] | |~ |
CH: 5 DataPort[5] : L
CH: 6 DataPort[5] || pataportinl 1 1] B
CH: 7 DataPort[7] :
Cht 8 Dataportis] § DataPort[2] of o I
CH: 9 DataPort[9] A DpataPortial ol of [
CH: 10 DataPort[10]
CH: 11 DataPort[11] : DataPort[4] o o |l
CH: 12 DataPort[12] :
CH: 13 DataPort[13] : BataferEls] v
CH: 14 DataFPort[14] : DataPort([6] 2] [¢]
CH: 15 DataPort[15] g
CH: 16 DatzPort[16] : DataPort[7] ol @
CH: 17 DataFPort[17] L DataPort[a a a
CH: 18 DataFPort[1E] wl ataPort(s]
INFO - Davice 4 Unit O Wave?urm captured Jan 24, 2012 11:25:27 PM el
COMMAND: reset_trigger_settings 4 0
COMMAND: set_window_capture 4001 10240
COMMAND: set_match_function4000311
COMMAND: set_trigger_condition 4 0 31 5555
COMMAND: run 4 0
COMMAND: upload 4 0
INFO - Device 4 Unit 0: Sample Buffer is full
INFO - Device 4 Unit 0: Waveform captured Jan 24, 2012 11:25:53 FM

Unfortunately, this view is not particularly useful: there are no signal names and the data isn’t grouped
into buses. You will need to do this manually: select the DataPort bits that correspond to a bus in your
design and right-click them. Select “new bus”, and then rename the bus to match the signal. For example,

EECS 150 Spring 2013

if the first 32 bits are the block ram output, they can be grouped into a new bus:

Lab 4

T O]] =1
N @ sample Buffer is fu

Signals:

DEV: 4 UNIT: 0

CH: 20 DataPort[20] FE
CH: 21 DataPort[21] | & waveform - DEV:41
CH: 22 DataPort[22]
CH: 23 DataPort[23] Bus/Signal X
CH: 24 DataPort[24] :
CH: 25 DataPort[25] L : DataPort[0] 1
CH: 25 DataPort[26] :
CH: 27 DataPort[27] DataPort[1]]
CH: 28 DataPort[28]
CH: 29 DataPort[29] ||| | DatePortl2] ‘
CH: 20 DataPort[30] uE DataPort[3] L
CH: 21 DataPort™"
CH: 32 DataPort LEName rt4] t
CH: 33 DataPort) Color
CH: 34 DataPort o N B]
CH: 35 DataPort) — rt[&] L
CH: 36 DataPory Add to View ’
CH: 37 DataPor] Add All to View b rtL7] t
Ch. 39 Datab ord MBVE EB BUS » D New s |¢
o TR Copy to Bus Bl
COMMAND: reset_tn Auto-create Buses...
COMMAND: set_win| p. oroc rder 240
COMMAND: set_mat _ 1
COMMAND: set_trig] = 555
COMMAND: run 4 0 | Bus Fa ¥

COMMAND: upload
IMNFO - Device 4 Linit 01—

Right click on the bus to rename it and optionally select a radix that is easier to read (e.g. hex, decimal).
Organize each signal you have wired into the DATA input of the ILA so that it appears in the following

manner:
Bus/Signal x| o| g ? 1|0 1|5 |
o mem_dout 3| 38| H54 o4 1 W s W & w10 % 15 4 21 % 2y &

You should now have a comprehensive view of the signals in your design. Use this to troubleshoot and
debug. You should not need to close and reconfigure ChipScope when you make bug fixes; simply run

make impact as you ordinarily would and then re-capture the data.

If you run into the problem that you analyzer does not recognize a chipscope core, you may have made a
mistake in setting one of the options when you generated the chipscope control and core. Please delete

and try remaking your chipscope infrastructure again before asking a TA why your chipscope isn’t

working.

4 Checkoff
When you have the design working on the board, show the TA:

1. The sum of small_list on the GPIO LEDs

2. Named, organized waveforms in ChipScope of your list processor running small_list

3. Your control and datapath module source files.

EECS 150 Spring 2013 Lab 4

Additionally, be prepared to answer the following questions:

1. What bugs did you find in your list processor and how did you use Chipscope to help you find those
bugs?

2. Compared to the testing you performed with Modelsim last week, which tool took more time/effort to
use?

3. When is it more appropriate to use Chipscope over testbenches/simulation?

