
EECS150 Spring 2013 Lab 3

1

Lab 3: Simulation and Testing

University of California, Berkeley

Department of Electrical Engineering and Computer Sciences

EECS150 Components and Design Techniques for Digital Systems

John Wawrzynek, James Parker, Daiwei Li

Due February 20th, 2013 @ 2PM

Table of Contents

0 Introduction ... 1

1 Prelab .. 2

2 Lab Procedure ... 2

2.1 Relevance to Your Final Project .. 2

2.1.1 Functional Specification .. 2

2.1.2 ISA Encoding .. 4

2.2 Lab Resources ... 5

2.3 Testing the Design.. 5

2.3.1 Verilog Testbench .. 5

2.3.2 Test Vector Testbench ... 6

2.3.3 Writing Test Vectors .. 6

2.4 Writing the Verilog Modules ... 7

2.5 Using Modelsim ... 8

2.6 Viewing Waveforms .. 10

3 Checkoff .. 12

0 Introduction

In this lab, you will learn how to simulate your modules and test them in software before pushing them to

the board. In the previous labs, you had to push your code through the entire tool chain and impact the bit

stream onto the FPGA before you could verify that your design worked.

This is feasible for simple designs that can quickly be synthesized and quickly verified on the board, but

this approach does not scale.

EECS150 Spring 2013 Lab 3

2

In this lab, you will learn how to simulate a hardware design and write test benches, both of which are

essential in the verification process of large and complex systems.

1 Prelab

You may want to get ahead on the lab before scheduled lab hours by writing the required Verilog

beforehand. You can simply follow the directions starting from section 2.2 Lab Resource.

2 Lab Procedure

In this lab, you will be writing the ALU that you will be using later on for the next lab and your project. You

will also be learning techniques for simulating and verifying your design which are critical aspects of the

development flow and for your project.

2.1 Relevance to Your Final Project

The ALU that we will implement in this lab is for a traditional MIPS instruction set architecture. Your

project may or may not directly make use of the ALU that we will implement in this lab but you may need

a modified or entirely new ALU depending on your project. Pay close attention to the design patterns and

how the ALU is intended to function in the context of the traditional MIPS processor. In particular it is

important to note the separation of the datapath and control used in this system which we will explore

more in the next lab.

The specific instructions that your ALU will need to support art shown in the tables below that describe

the ISA. Before you get overwhelmed by the tables, remember that you will only be implementing the ALU

and the ALU decoder, not the entire processor. These tables are here for your reference. In the event that

we were to implement a processor, the tables contain the ISAs you would be using. Also note that the

ALU doesn’t need to do anything for branch and jump instructions (i.e., it can just output 0).

2.1.1 Functional Specification

The functionality of each instruction is shown in the table below. Pay close attention to the RTL

description for each instruction as there are some subtleties, especially to some of the shift instructions

which swap the order of the operands.

 R[$x] indicates the register with address x

 SEXT indicates sign extension

 ZEXT indicates zero extension

 BMEM indicates a byte aligned access to memory

 HMEM indicates a half word aligned access to memory

 WMEM indicates a word aligned access to memory

 PC indicates the memory address of the instruction

Note that for the LUI instruction the operand to be loaded into the upper part of the immediate is

ambiguous. Thus, when implementing your ALU please load the input B into the immediate field.

EECS150 Spring 2013 Lab 3

3

Mnemonic RTL Description Notes
LB R[$rt] = SEXT(BMEM[(R[$rs]+SEXT(imm))[31:0]]) delayed

LH R[$rt] = SEXT(HMEM[(R[$rs]+SEXT(imm))[31:1]]) delayed

LW R[$rt] = WMEM[(R[$rs]+SEXT(imm))[31:2]] delayed

LBU R[$rt] = ZEXT(BMEM[(R[$rs]+SEXT(imm))[31:0]]) delayed

LHU R[$rt] = ZEXT(HMEM[(R[$rs]+SEXT(imm))[31:1]]) delayed

SB BMEM[(R[$rs]+SEXT(imm))[31:0]] = R[$rt][7:0]

SH HMEM[(R[$rs]+SEXT(imm))[31:1]] = R[$rt][15:0]

SW WMEM[(R[$rs]+SEXT(imm))[31:2]] = R[$rt]

ADDIU R[$rt] = R[$rs] + SEXT(imm)

SLTI R[$rt] = R[$rs] < SEXT(imm)

SLTIU R[$rt] = R[$rs] < SEXT(imm) unsigned

compare

ANDI R[$rt] = R[$rs] & ZEXT(imm)

ORI R[$rt] = R[$rs] | ZEXT(imm)

XORI R[$rt] = R[$rs] ^ ZEXT(imm)

LUI R[$rt] = {imm, 16'b0}

SLL R[$rd] = R[$rt] << shamt

SRL R[$rd] = R[$rt] >> shamt

SRA R[$rd] = R[$rt] >>> shamt

SLLV R[$rd] = R[$rt] << R[$rs]

SRLV R[$rd] = R[$rt] >> R[$rs]

SRAV R[$rd] = R[$rt] >>> R[$rs]

ADDU R[$rd] = R[$rs] + R[$rt]

SUBU R[$rd] = R[$rs] - R[$rt]

AND R[$rd] = R[$rs] & R[$rt]

OR R[$rd] = R[$rs] | R[$rt]

XOR R[$rd] = R[$rs] ^ R[$rt]

NOR R[$rd] = ~R[$rs] & ~R[$rt]

SLT R[$rd] = R[$rs] < R[$rt]

SLTU R[$rd] = R[$rs] < R[$rt] unsigned

compare

J PC = {PC[31:28], target, 2'b0} delayed

JAL R[31] = PC + 8; PC = {PC[31:28], target, 2'b0} delayed

JR PC = R[$rs] delayed

JALR R[$rd] = PC + 8; PC = R[$rs] delayed

BEQ PC = PC + 4 + (R[$rs] == R[$rt] ? SEXT(imm) << 2

: 0)

delayed

BNE PC = PC + 4 + (R[$rs] != R[$rt] ? SEXT(imm) << 2

: 0)

delayed

BLEZ PC = PC + 4 + (R[$rs] <= 0 ? SEXT(imm) << 2 : 0) delayed

BGTZ PC = PC + 4 + (R[$rs] > 0 ? SEXT(imm) << 2 : 0) delayed

BLTZ PC = PC + 4 + (R[$rs] < 0 ? SEXT(imm) << 2 : 0) delayed

BGEZ PC = PC + 4 + (R[$rs] >= 0 ? SEXT(imm) << 2 : 0) delayed

EECS150 Spring 2013 Lab 3

4

2.1.2 ISA Encoding

EECS150 Spring 2013 Lab 3

5

2.2 Lab Resources

To retrieve the lab resources, run the wget command and decompress the tar file. Again the extraction

command is:

% wget http://inst.eecs.berkeley.edu/~cs150/sp13/lab3/lab3.tar.gz

% tar –xvzf lab3.tar.gz

Make sure that you have both a /src and /sim folder in the /lab3 directory. Notice that there is no

Makefile on the top level as we will not be synthesizing our design to the board, only verifying it works in

simulation.

2.3 Testing the Design

Before writing any of our modules, we will first write the tests so that once you’ve written the modules

you’ll be able to test them immediately. Another reason why you should write your tests first is that if you

need to change your module design, you can always run it against your test to see if it still works. You

should also understand the expected functionality of these modules before writing any code or tests.

There are a few approaches you can use to test your design. For this lab, you will only be testing two

modules, so you will resort to unit testing. For your project, you will be expected to write unit tests for any

modules that you design and implement and write integration tests.

2.3.1 Verilog Testbench

One way of testing Verilog code is with test bench files. The skeleton of a test bench file has been

provided for you in ALUTestbench.v. There are several important parts of this file to note:

1. `timescale 1ns / 1ps - This specifies the reference time unit and the time precision. This

means that every delay in the test bench is 1ns long and the simulation should be accurate up to

1ps.

2. Clock generation is done with the code below. Since the ALU is actually only combinational logic,

this portion is not necessary. You may treat it as a reference for when you need to write a test

bench for a sequential circuit.

a. The initial block to set the clock to 0 at the beginning of the simulation. You

must start the clock at 0, otherwise you will be trying to change inputs at the same time

the clocks changes and it will cause strange behavior.

b. You must use an always block without a trigger list to cause the Clock to change by

itself

parameter Halfcycle = 5; //half period is 5ns

localparam Cycle = 2*Halfcycle;

reg Clock;

// Clock Signal generation:

initial Clock = 0;

always #(Halfcycle) Clock = ~Clock;

EECS150 Spring 2013 Lab 3

6

3. task checkOutput; - this task encapsulates some Verilog that you would otherwise

have to copy paste over and over. Note that it is not the same thing as a function (as

Verilog also has functions).

4. {$random} & 31'h7FFFFFFF - $random generates a pseudorandom 32-bit integer.

We mask the result to get it into the appropriate range.

For these two modules, the inputs and outputs that you care about are opcode, funct, A, B and Out.

Thus, to test your design thoroughly, you should work through every possible opcode and funct that you

care about, and verify that the correct Out is generated from the A and B that you pass in.

The test bench generates random values for A and B and computes REFout = A + B. It also contains

calls to checkOutput for load and store instructions, for which the ALU should perform addition. It will be

up to you to write tests for the remaining combinations of opcode and funct.

Remember to restrict A and B to reasonable values (e.g. masking them, or making sure that they are not

zero) if necessary to guarantee that a function is successfully tested. Please also write tests where the

inputs A, B, and the output are hardcoded.

2.3.2 Test Vector Testbench

An alternative way of testing is to use a test vector, which is a series of bit arrays that map to the inputs

and outputs of your module. The inputs can be all applied at once if you are testing a combinational logic

block, such as in this lab, or applied over time for a sequential logic block (e.g. an FSM).

You will write a Verilog test bench that takes the parts of the bit array that correspond to the inputs of the

module, feeds those to the module, and compares the output of the module with the output bits of the bit

array. The bit vector should be formatted as follows:

[107:102] = opcode

[101:96] = funct

[95:64] = A

[63:32] = B

[31:0] = REFout

Open up the skeleton provided to you in ALUTestVectorTestbench.v. You need to complete the module

by making use of $readmemb to read in the test vector file (named testvectors.input), writing some

assign statements to assign the parts of the test vectors to registers, and writing a for loop to iterate over

the test vectors.

The syntax for a for loop can be found in ALUTestbench.v. $readmemb takes as its arguments a

filename and a reg vector, e.g.:

reg [5:0] bar [0:20];

$readmemb(“foo.input”, bar);

2.3.3 Writing Test Vectors

Additionally, you will also have to generate actual test vectors to use in your test bench. A test vector can

EECS150 Spring 2013 Lab 3

7

either be generated in Verilog (like how we generated A, B using the random number generator and

iterated over the possible opcodes and functs), or using a scripting language. Since we have already

written a Verilog test bench for our ALU + decoder, we will tackle writing a few test vectors by hand.

Test vectors are of the following format from left to right (MSB at end):

0:5 = opcode

6:11 = funct

12:43 = A

44:75 = B

76:107 = REFout

It’s the same as the format for the test bench (they have to match or it wouldn’t work!). NOTE: Verilog

indexes the bits backwards from the way they are defined above (MSB at beginning).

Open up the file sim/tests/testvectors.input and add test vectors for the following instructions to

the end (i.e. manually type the 108 zeros and ones required for each test vector):

•. SLT

•. SLTU

•. SRA

•. SRL

We’ve also provided a test vector generator written in Python, which is a popular language used for

scripting. We used this generator to generate the test vectors provided to you. If you’re curious, you can

read the next paragraph and poke around in the file. If not, feel free to skip ahead to the next section.

The script ALUTestGen.py is located in sim/tests. Run it so that it generates a test vector file in the

/sim/tests/ folder. All the methods to generate test vectors are located in the two Python dictionaries

opcodes and functs. The lambda methods contained (separated by commas) are respectively: the

function that the operation should perform, a function to restrict the A input to a particular range, and a

function to restrict the B input to a particular range.

If you modify the Python script, run the generator again to make new test vectors. This will overwrite the

file, so don’t do this if you have hand-written test vectors in the file!

% python ALUTestGen.py

This will write the test vector into the file testvectors.input. Use this file as the target test vector file

when loading the test vectors with $readmemb.

2.4 Writing the Verilog Modules

For this lab, we’ve provided the module interfaces for you. They are logically divided into a control

(ALUdec.v) and a datapath (ALU.v). The datapath contains the functional units while control contains

the necessary logic to drive the datapath. You will be responsible for implementing these two modules.

Descriptions of what each of the inputs and outputs of the module mean can be found in the top few lines

of the files.

EECS150 Spring 2013 Lab 3

8

The ALU should take an ALUop and its two inputs A and B, and provide an output dependent on the

ALUop. The operations that it needs to support are outlined in the Functional Specification. Don’t worry

about sign extensions, they should take place outside of the ALU. The ALU decoder uses the

opcode and funct to determine the ALUop that the ALU should carry out. You will find the case

statement useful, which has the following syntax:

always@(*) begin

 case(foo)

 2’b00: // something happens here

 2’b01: // something else happens here

 2’b10, 2’b11: // you can have more than

 // one case do the same thing

 endcase

end

To make your job easier, the lab comes with two Verilog header files (Opcode.vh and ALUop.vh). They

provide, respectively, macros for the opcodes and functs in the ISA, and macros for the different ALU

operations.

You can feel free to change ALUop.vh to optimize the ALUop encoding, but if you change Opcode.vh,

you will break the test bench skeleton provided to you. You can use these macros in by placing a backtick

in front of the macro name, e.g.:

case(opcode)

 `ADDIU:

is the equivalent of:

case(opcode)

 6’b001001:

2.5 Using Modelsim

Once you’ve written your test benches as well as implemented the Verilog modules, you can now

simulate your design. In this class, you will be using ModelSim, a popular hardware simulation and

debugging environment. The staff has wrapped up the functionality that you will need from ModelSim in a

Makefile. To simulate your design, you must first compile it and fix any syntax errors that arise:

% cd ~/lab3/sim

% make compile

Once you have your design compiling, you need to run some test cases. The build system looks inside

the tests directory for test cases to run. Each test case is a .do file, which is a script in Tcl, a scripting

language used by a variety of CAD tools. For the most part you don't need to worry about the details of

Tcl; you will just be using it to issue commands directly to ModelSim. The following is the Tcl script that

runs ALUTestbench.

set MODULE ALUTestbench

start $MODULE

EECS150 Spring 2013 Lab 3

9

add wave $MODULE/*

add wave $MODULE/DUT1/*

add wave $MODULE/DUT2/*

run 100us

The first line sets the value of the variable MODULE to ALUTestbench. Its value is referenced through the

rest of the script as $MODULE. The start command tells ModelSim which Verilog module it should

simulate.

The add command is interesting. By default, ModelSim doesn't collect any waveform information from

the simulation. '*' is a shortcut for "anything", so these commands tell ModelSim to record the signals for

all the signals in the test bench as well as the signals in DUT1 and DUT2. Once you start building designs

with more complexity, you may want to look at the signals inside a given submodule. To add these

signals, simply edit the .do file by adding a new “add wave <target>” command; for example, if DUT1

and DUT2 contain a module called my_submodule:

add wave $MODULE/DUT1/my_submodule/*

add wave $MODULE/DUT2/my_submodule/*

Finally, the run command actually runs the simulation. It takes an amount of time as an argument, in this

case 100us (100 microseconds). Other units (ns, ms, s) are possible. The simulation will run for this

amount of time. In most cases this will serve as a timeout because your test benches should cause the

simulation to exit (using the $finish() system call) when they are done.

Let's try running the simulation. To run all of the cases in the tests directory:

% make

This will first recompile your design if needed, then run the simulation. Other commands that may be

useful are:

•. make clean: Sometimes you can accidentally cancel a simulation or otherwise cause make to believe

that your simulation results are up to date even if they aren’t. If you’re in doubt, run this command

before running make.

•. make results/<testcasename>.transcript: When you have multiple test benches in your

project and you only want to run one of them.

You should see the output of simulation printed to your terminal. It will also be written to

results/<testcasename>.transcript. You should see the one of the following lines in the output:

FAIL: Incorrect result for opcode 000000, funct: 100011:

A: 0xdbfa08fd, B: 0x318c32a8, DUTout: 0xaa6dd655, REFout: 0x559229ab

or

ALL TESTS PASSED!

EECS150 Spring 2013 Lab 3

10

2.6 Viewing Waveforms

After simulation completes you can view the waveforms for signals that you added in your test case script.

The waveform database is stored in .wlf files inside the results directory. To view them use the

viewwave script included in the sim directory.

% ./viewwave results/alu.wlf

This will pop open a ModelSim window that shows you a hierarchical view of the signals that your

simulation captured.

Note: ModelSim is your FRIEND! Throughout the course of the project, ModelSim will be your primary tool

for debugging your designs. It is very important that you spend the time to understand how to run tests

and use ModelSim to view the results.

The above is a screenshot of ModelSim when you first open it. The boxed screens are:

1. List of the modules involved in the test bench. You can select one of these to have its signals

show up in the object window.

2. Object window - this lists all the wires and regs in your module. You can add signals to the

waveform view by selecting them, right-clicking, and doing Add > To Wave > Selected

Signals.

3. Waveform viewer - The signals that you add from the object window show up here. You can

navigate the waves by searching for specific values, or going forward or backward one

transition at a time.

As an example of how to use the waveform viewer, suppose you get the following output when you run

ALUTestbench:

...

EECS150 Spring 2013 Lab 3

11

PASS: opcode 000000, funct 000110

A: 0x92153525, B: 0xb1f05664, DUTout: 0x058f82b3,

 REFout: 0x058f82b3

FAIL: Incorrect result for opcode 000000, funct: 000011:

A: 0x92153525, B: 0xb1f05664, DUTout: 0x058f82b3,

 REFout: 0xfd8f82b3

The $display() statement actually already tells you everything you need to know to fix your bug, but

you’ll find that this is not always the case. For example, if you have an FSM and you need to look at

multiple time steps, the waveform viewer presents the data in a much neater format. If your design had

more than one clock domain, it would also be nearly impossible to tell what was going on with only

$display() statements. Besides, you want to get some practice using ModelSim anyhow.

You add all the signals from ALUTestbench to the waveform viewer and you see the following window:

The two highlighted boxes contain the tools for navigation and zoom. You can hover over the icons to find

out more about what each of them do. You can find the location (time) in the waveform viewer where the

test bench failed by:

1. Selecting DUTout

2. Clicking Edit > Wave Signal Search > Search for Signal Value > 0x058f82b3

Now you can examine all the other signal values at this time. You notice that REFout has a value of

0xfd8f82b3. From the opcode and the funct, you know that this is supposed to be SRA instruction,

and it looks like your ALU performed a SRL instead. However, you wrote

Out = B >>> A[4:0];

That looks like it should work, but it doesn’t! It turns out you need to tell Verilog to treat B as a signed

number for SRA to work as you wish. You change the line to say:

EECS150 Spring 2013 Lab 3

12

Out = $signed(B) >>> A[4:0];

After making this change, you run the tests again and cross your fingers. Hopefully, you will see the line:

ALL TESTS PASSED! If not, you will need to debug your module until all test from the test vector file

and the hardcoded test cases pass.

ModelSim has quite a few features that may be useful in certain instances; far too many to detail here. If

you need to do something with it, and you feel like that functionality should exist already, Google it. Or

ask a TA. But try Google first. If you discover something useful, share your findings!

3 Checkoff

Congratulations! You’ve written and thoroughly tested a key component in MIPS processors and should

now be well-versed in testing Verilog modules. Please answer the following questions to be checked off

by a TA.

1. In ALUTestbench, the inputs to the ALU were generated randomly. When would it be preferable

to perform an exhaustive test rather than a random test?

2. What bugs, if any, did your test bench help you catch?

3. For one of your bugs, come up with a short assembly program that would have failed had you not

caught the bug.

Also be prepared to show your working ALU test bench files to your TA and explain your hardcoded

cases.

You should be able to show that the tests for the test vectors generated by the python script and your

hardcoded test vectors both work.

