
EECS150 Spring 2013 Lab 0

1

Lab 0: Introduction to the FPGA

Development Board

University of California, Berkeley

Department of Electrical Engineering and Computer Sciences

EECS150 Components and Design Techniques for Digital Systems

John Wawrzynek, James Parker, Daiwei Li

Table of Contents

0 Before you begin .. 1

1 Development Platform ... 2

2 Structural Verilog Introduction ... 3

2.1 Wires ... 3

2.2 Gates (Structural Primitives) .. 4

2.3 Modules ... 4

3 Lab Procedure ... 5

3.1 Acquire the lab files .. 5

3.2 Existing Functionality... 6

3.3 2-1 Mux .. 7

3.4 Full Adder.. 7

4 Checkoff ... 9

0 Before you begin

This lab is intended to both introduce the CS 150 development platform and take care of

administrative tasks. You will need to complete the following steps before you can begin

working on the lab. These are considered requirements for completion of the lab. For

this lab only, the lab is due at the end of the section.

EECS150 Spring 2013 Lab 0

2

1. Pick up a cs150-xx class account during your scheduled lab section.

2. Log into one of the CentOS lab machines (p380-{11..45}.eecs). On your

first time logging in you will need to select a session (GNOME or KDE) or it will

fail.

3. Open a terminal and run passwd to set your password.

4. Register your account for the course so you appear in glookup. In the terminal:

a. SSH into cory (glookup/register only work on Solaris machines): ssh

cory

b. Run register, enter your information, then exit the ssh connection

5. Make sure you have access to the CS 150 Piazza forum; if not, make sure to

sign up.

6. Make sure you have card key access to 125 Cory. If not, notify a TA and we’ll get

you set up.

7. Read through and understand this document before you start working!

1 Development Platform

CS 150 uses the XUPV5-LX110T development board, located on the lab bench next to

your workstation. The following image identifies important parts of the board:

EECS150 Spring 2013 Lab 0

3

1. Virtex-5 FPGA (covered by heat sink)

2. GPIO LEDs, numbered 0-7

3. NESW & center buttons, each with a corresponding LED

4. Rotary encoder

5. GPIO DIP switches, numbered 1-8 (but 0-7 in code).

6. Board power switch

7. Power connector

8. Serial port

9. JTAG header

10. DVI-I connector

2 Structural Verilog Introduction
1

Throughout the semester, you will build increasingly complex designs using Verilog, a

widely used hardware description language (HDL). For this lab, you will learn structural

Verilog, a limited subset of Verilog that allows you to describe circuits in terms of wires,

gates and modules.

2.1 Wires

Wires in structural Verilog are analogous to wires in a circuit you build by hand: they are

used to transmit values between inputs and outputs.

Wires should be declared before they are used:

wire a;

wire b, c; // declare multiple wires using commas

The wires above are scalar (i.e. represent 1 bit). They can also be vectors:

wire [7:0] d; // 8-bit wire declaration

wire [31:0] e; // 32-bit wire declaration

Wires can be assigned to other wires, concatenated, and indexed:

wire [31:0] f;

assign f = {d, e[23:0]}; // concatenate d with bottom 24

 // bits of e

1 Note: This lab assumes you have basic familiarity with logic gates and Boolean algebra. Consult this

document if you need to review either topic.

http://inst.eecs.berkeley.edu/~cs61c/resources/boolean.pdf
http://inst.eecs.berkeley.edu/~cs61c/resources/boolean.pdf

EECS150 Spring 2013 Lab 0

4

In the line above, the brackets [] are used to index a 24-bit range of e and the braces

{} concatenate comma-separated wires. Notice convention dictates that the high bits

are specified first followed by a colon, then the low bits.

2.2 Gates (Structural Primitives)

In this lab, you may use the following primitives: and, or, xor, not, nand, nor, xnor.

In general, the syntax is:

<operator> (output, input1, input2); //for two input gate

<operator> (output, input); //for not gate

For example, the following Verilog implements the Boolean equation F = a + b:

wire a, b, F;

/* … some code that assigns values to a and b */

or (F, a, b);

Complex logic functions can be implemented using intermediate wires between these

primitive gates. This can quickly become tedious; in later labs we will explore less

tedious ways to implement more complex systems.

2.3 Modules

Modules provide a means of abstraction and encapsulation for your design. They

consist of a port declaration and Verilog code to implement the desired functionality. For

example, consider a module that computes y = (a + b)(c + d):

module example_module(a, b, c, d, y);

 // Port and wire declarations:

 input wire a, b, c, d;

 output wire y;

 wire a_or_b, c_or_d;

 // Logic:

 or (a_or_b, a, b);

 or (c_or_d, c, d);

 and (y, a_or_b, c_or_d);

endmodule

There are a few things to note from this example:

•. The ports must be declared as input or output wires, but can be thought of as wires

within the module.

EECS150 Spring 2013 Lab 0

5

•. Wires declared within a module (such as a_or_b) are limited in scope to that module.

•. Modules should be created in a Verilog file (.v) where the filename matches the

module name (so the above example should be located in

example_module.v).

Then, after creating a module, you can instantiate it in other modules:

example_module unique_name(

 .a(a_in), //connects the wire a to port

 .b(b_in),

 .c(c_in),

 .d(d_in),

 .y(result));

In this example we assume that the port inputs a_in, b_in, c_in, d_in, and output

result are valid wires in the module that this instantiation occurs in. We also assume

that unique_name is globally unique.

The syntax .<input/output port>(<wire>) is used to explicitly hook up wires to the

correct input/outputs of a module.

You can also write:

// correct order ->

example_module unique_name(a, b, c, d, result);

The following declaration is also perfectly valid but is not recommended since it is

possible to mix up the order of the wires. The first form is also easier to read.

// wrong order! ->

example_module unique_name(result, a, b, c, d);

3 Lab Procedure

Follow these steps and make sure to save your work for checkoff as you progress. If

you run into any problems during the lab (e.g. design doesn’t work on the board,

compiler errors) please ask a TA to look at your code.

3.1 Acquire the lab files

You can find the lab files on the class website. First create a folder on your top level

called /labs. Then download the tar file named lab0.tar.gz into that directory.

EECS150 Spring 2013 Lab 0

6

To get the lab files, first cd to your /labs folder and run:

wget http://inst.eecs.berkeley.edu/~cs150/sp13/lab0/lab0.tar.gz

This should download the distribution onto your machine.

Once you have the tar file, run the following command to unpack the file.

tar –zxvf lab0.tar.gz

That should unpack the tar file contents into a folder named /lab0.

3.2 Existing Functionality

From the src directory, open ml505top.v in your favorite text editor (emacs, kdedit,

vim, etc.). The file ml505top.v is the “top-level” module, which essentially means the

input and output ports represent physical connections on the board. All the sub modules

in the lab will be instantiated as part of this top level module. In other words, the

ml505top.v module is the highest level in the hierarchy.

The port definition for this module contains an 8-bit input for the GPIO DIP switches (#5

in the diagram) and an 8-bit output to the GPIO LEDs (#2 in the diagram).

The skeleton files provided contain a simple example of an AND gate. This gate takes

as inputs GPIO DIP switches 1 and 2, and displays the AND of these on LED 0.

Before you implement the rest of the lab, verify this functionality in hardware:

1. Run ‘make’ in the lab0 directory. This performs several steps to interpret your

code and generate a configuration bitstream for the board. You will learn about

these steps over the next few labs.

2. Verify that the LED on the Xilinx Platform Cable (picture) is glowing green. If it

isn’t, verify that the FPGA is powered on and that there a USB cable connected

between the Xilinx Platform Cable and the computer.

3. After make completes, run ‘make impact’ from the same directory. This

programs the FPGA with the bitstream file created in step 1.

4. The design should now be on the board. Verify that LED 0 displays the AND of

GPIO switches 1 and 2.

http://inst.eecs.berkeley.edu/~cs150/sp13/lab0/lab0.tar.gz
http://sa89a.net/ele/xil-cable/pic1.jpg

EECS150 Spring 2013 Lab 0

7

3.3 2-1 Mux

You should also see an instantiation of Mux2_1 in ml505top.v. Implement this module

in Mux2_1.v (so that it conforms to the functionality in the file’s comments) and follow

the steps in section 3.2 to test this on hardware.

The two inputs A and B correspond to the GPIO switches 3 and 4 on the board. The

select input to the Mux corresponds to GPIO switch 5 and the output appears on LED 1.

You can find these port connections in the ml505top.v file where the Mux2_1.v module

is instantiated.

3.4 Full Adder

Next, examine the port definition of FA.v. Following the instructions in the comments of

ml505top.v, write the instantiation of FA in the top file. You may find it helpful to look at

the instantiation of Mux2_1 as an example.

Finally, using only structural Verilog, implement a full adder circuit in FA.v. If you are not

familiar with the functionality of a full adder, the truth table and one possible gate

diagram is shown below:

A B Cin Sum Cout

0 0 0 0 0

http://en.wikipedia.org/wiki/File:Full_Adder.svg
http://en.wikipedia.org/wiki/File:Full_Adder.svg

EECS150 Spring 2013 Lab 0

8

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Again, you should be able to follow the steps in section 3.2 to test the adder on

hardware. Currently the ml505top.v file does not have an instantiation for the FA.v

module so you will have to do it yourself. The instantiation should be very similar to the

Mux2_1.v module. Make sure to read the comments in the code for port specifications.

3.5 Extending the Design

Now that we’ve finished a single full adder, we’re going to try something a little less

boring and create a ripple adder. In the lab directory, you should also find an Adder.v

module where you are to instantiate the full adders you wrote earlier in the lab.

Disregard the BehavioralAdder.v file for now; we’re only going to deal with structural

Verilog for this lab.

We want you to create an 8 bit ripple adder which means that your circuit will contain 8

instantiations of the full adder module you wrote earlier. Instead of manually writing out

8 full adder instantiations, Verilog contains a generate structure that makes life easier

by allowing you to generate multiple copies of a module.

To use the generate statement we also need a parameter which is defined for you in the

Adder.v file.

The generate statement and parameters are declared as follows:

module foo(
input [N-1:0] x;
output [N-1:0] y;

);
// declaration of the parameter
parameter N = <default value>;

EECS150 Spring 2013 Lab 0

9

// the parameter can be used to specify wire widths
wire [N-1:0] z;
// variable to be used in generate statement
genvar i;
// declaration of a generate statement
generate for(i = 0; i < N; i = i + 1)

begin:<unique_name>
/* Here, module baz has a parameter named width*/
 baz #(.width(N))

b(.a(x[i]),
 .b(y[i]),
 .c(z[i]));
end

endgenerate
endmodule

You job is to use the generate statement to instantiate a full adder and complete the

Adder.v module. If you are confused about the generate construct, ask your TA.

When you complete the Adder.v module, run the usual make clean, make, make

impact sequence. When you finish programming the board, if you wrote your Adder.v

file correctly, the GPIO LED 5 should light up. Otherwise you will have to fix your adder.

4 Checkoff

For checkoff, you will show a TA your implementation on hardware as well as your

answers to the checkoff questions.

Please have the check off questions open in a text editor or written on paper (they are

not collected so there is no need to print if you type).

Checkoff Requirements:

1. Show the adder and mux working on the board.

2. Show the 3 Verilog files you modified.

3. How many logic gates did your adder require?

4. Show your implementation of the Adder.v file and run make impact on the board

for your TA.

