
Spring 2013 EECS150 - Lec26-faults Page

EECS150 - Digital Design
Lecture 26 - Faults and Error

Correction

April 25, 2013
John Wawrzynek

1

Spring 2013 EECS150 - Lec26-faults Page

Types of Faults in Digital Designs
• Design Bugs (function, timing, power draw)

– detected and corrected at design time through testing
and verification (simulation, static checks)

– Sometimes in 3rd party design blocks

• Manufacturing Defects (violation of design rules,
impurities in processing, statistical variations)
– post production testing for sorting
– spare on-chip resources for repair

• Runtime Failures (physical effects and
environmental conditions)
– assuming design is correct and no manufacturing defects

2

Spring 2013 EECS150 - Lec26-faults Page

Runtime Faults
• All digital systems suffer occasional runtime faults.

– Fault tolerant design methodologies are employed to
tolerate faults in critical applications (avionics, space
exploration, medical, ...)

– Error detection and correction is commonly used in memory
systems and communication networks.

• Deeply scaled CMOS devices will suffer reliability
problems due to a variety of physical effects
(processing, aging, environmental susceptibility)
– Lower supply voltage for energy efficiency makes matters

worse.

3

Spring 2013 EECS150 - Lec26-faults Page

Physical Fault Mechanisms
• IC Faults can be classified as permanent, transient, and

intermittent:
– Permanent faults reflect irreversible physical changes (like

fused wire or shorted transistor)
– Transients are induced by temporary environmental conditions

(like cosmic rays and electromagnetic interference)
– Intermittent faults occur due to unstable or marginal hardware

(temporary ΔVt resulting in timing error)

• Intermittent faults often occurs repeatedly at the
same location while transients affect random locations.

• Intermittents often occur in bursts.
• Intermittent faults track changes in voltage and

temperature, and may become permanent.
4

Spring 2013 EECS150 - Lec26-faults Page

Physical Fault Mechanisms
• Intermittent: Aging, Voltage/Temperature Dependent

– NBTI (negative bias temperature instability) & PBTI
– HCI (hot carrier injection)
– TDDB (time-dependent dielectric breakdown)
– Electromigration
– -

5

Spring 2013 EECS150 - Lec26-faults Page

Physical Fault Mechanisms
• NBTI, PBTI, & HCI increase Vt and decrease

mobility
– Leads to decreased performance, lower noise

margins, mismatching (in SRAM), …

• TDDB causes soft or hard gate shorts resulting
in degraded transistor performance and can
lead to complete transistor failure

• Electromigration reduces interconnect
conductivity and can lead to open circuit.

6

[Ghosh and Roy: Parameter Variation Tolerance and Error Resiliency: New Design Paradigm for the Nanoscale Era,
Proceedings of the IEEE | Vol. 98, No. 10, October 2010]

Spring 2013 EECS150 - Lec26-faults Page 7

Spring 2013 EECS150 - Lec26-faults Page 8

Spring 2013 EECS150 - Lec26-faults Page 98

The Physical Mechanism

The incident particle generates a dense track of electron hole pairs and
this ionization cause a transient current pulse if the strike occurs
near a sensitive volume.

2. A Description of SEE’s

CHARGE
COLLECTION
VOLUME

Spring 2013 EECS150 - Lec26-faults Page 10

Spring 2013 EECS150 - Lec26-faults Page 1111

3. Sources of SEE’s
Usually, SEE’s have been associated with space missions

because of the absence of the atmospheric shield…

Cosmic rays

Protons from
solar flares

Unfortunately, our quiet oasis seems to be vanishing since
the enemy is knocking on the door…

• Alpha particle from vestigial U or Th traces
• Atmospheric neutrons and other cosmic rays

Spring 2013 EECS150 - Lec26-faults Page 12

Spring 2013 EECS150 - Lec26-faults Page 13

Spring 2013 EECS150 - Lec26-faults Page 14

Spring 2013 EECS150 - Lec26-faults Page 15

Spring 2013 EECS150 - Lec26-faults Page 16

Spring 2013 EECS150 - Lec26-faults Page 17

Spring 2013 EECS150 - Lec26-faults Page 18

Spring 2013 EECS150 - Lec26-faults Page 19

Spring 2013 EECS150 - Lec26-faults Page 20

Spring 2013 EECS150 - Lec26-faults Page

Fault Models
• Low-level Fault Models:

For logic circuit nodes
1. Permanent stuck at 0 or 1
2. Glitches
3. Slow transitions

For memory blocks
 (and flip-flops, registers)

1. Permanent stuck at 0 or 1
2. Hold failure
3. Read upset
4. Slow read
5. Write failure

21

Spring 2013 EECS150 - Lec26-faults Page

A Fault-Tolerant Design Methodology

22

Triple Modular Redundancy (TMR)

Logic Block Logic BlockLogic Block Logic Block

Voting
Circuit

Spring 2013 EECS150 – Lec26-fault Page

Error Correction Codes (ECC)
• Memory systems exhibit errors (accidentally flipped-bits)

– Large concentration of sensitive nodes
– “Soft” errors occur occasionally when cells are struck by alpha

particles or other environmental upsets.
– Less frequently, “hard” errors can occur when chips permanently

fail.
• Where “perfect” memory is required

– servers, spacecraft/military computers, …
• Memories are protected against failures with ECCs
• Extra bits are added to each data-word

– extra bits are used to detect and/or correct faults in the memory
system

– in general, each possible data word value is mapped to a unique
“code word”. A fault changes a valid code word to an invalid one -
which can be detected.

23

Spring 2013 EECS150 – Lec26-fault Page

Simple Error Detection Coding

• Each data value, before it is
written to memory is “tagged”
with an extra bit to force the
stored word to have even parity:

• Each word, as it is read from
memory is “checked” by finding
its parity (including the parity
bit).

Parity Bit

b7b6b5b4b3b2b1b0p

+

b7b6b5b4b3b2b1b0p

+
c

• A non-zero parity indicates an error occurred:
– two errors (on different bits) is not detected (nor any even number of

errors)
– odd numbers of errors are detected.

24

Spring 2013 EECS150 – Lec26-fault Page

Hamming Error Correcting Code
• Use more parity bits to pinpoint bit(s)

in error, so they can be corrected.
• Example: Single error correction

(SEC) on 4-bit data
– use 3 parity bits, with 4-data bits

results in 7-bit code word
– 3 parity bits sufficient to identify any

one of 7 code word bits
– overlap the assignment of parity bits

so that a single error in the 7-bit word
can be corrected

• Procedure: group parity bits so they
correspond to subsets of the 7 bits:
– p1 protects bits 1,3,5,7

– p2 protects bits 2,3,6,7

– p3 protects bits 4,5,6,7

 1 2 3 4 5 6 7
 p1 p2 d1 p3 d2 d3 d4

 Bit position number
 001 = 110

 011 = 310

 101 = 510

 111 = 710

 010 = 210

 011 = 310

 110 = 610

 111 = 710

 100 = 410

 101 = 510

 110 = 610

 111 = 710

p1

p2

p3

Note:
number bits
from left to
right.

25

Spring 2013 EECS150 – Lec26-fault Page

Hamming Code Example
• Example: c = c3c2c1= 101

– error in 4,5,6, or 7 (by c3=1)

– error in 1,3,5, or 7 (by c1=1)

– no error in 2, 3, 6, or 7 (by c2=0)

• Therefore error must be in bit 5.
• Note the check bits point to 5

• By our clever positioning and
assignment of parity bits, the
check bits always address the
position of the error!

• c=000 indicates no error

 1 2 3 4 5 6 7
 p1 p2 d1 p3 d2 d3 d4

– Note: parity bits occupy power-of-
two bit positions in code-word.

– On writing to memory:
• parity bits are assigned to force

even parity over their respective
groups.

– On reading from memory:
• check bits (c3,c2,c1) are generated

by finding the parity of the group
and its parity bit. If an error
occurred in a group, the
corresponding check bit will be 1,
if no error the check bit will be 0.

• check bits (c3,c2,c1) form the
position of the bit in error.

26

Spring 2013 EECS150 – Lec26-fault Page

Hamming Error Correcting Code
• Overhead involved in single

error correction code:
– let p be the total number of

parity bits and d the number of
data bits in a p + d bit word.

– If p error correction bits are to
point to the error bit (p + d
cases) plus indicate that no
error exists (1 case), we need:

 2p >= p + d + 1,
 thus p >= log(p + d + 1)
 for large d, p approaches log(d)

• Adding on extra parity bit covering the
entire word can provide double error
detection

 1 2 3 4 5 6 7 8
 p1 p2 d1 p3 d2 d3 d4 p4

• On reading the C bits are computed
(as usual) plus the parity over the
entire word, P:

 C=0 P=0, no error
 C!=0 P=1, correctable single error
 C!=0 P=0, a double error occurred

 C=0 P=1, an error occurred in p4 bit
Typical modern codes in DRAM memory systems:
 64-bit data blocks (8 bytes) with 72-bit code words (9 bytes),
 results in SEC, DED.

27

Spring 2013 EECS150 – Lec26-fault Page

LFSRs

28

Spring 2013 EECS150 – Lec26-fault Page

Linear Feedback Shift Registers (LFSRs)
• These are n-bit counters exhibiting pseudo-random behavior.
• Built from simple shift-registers with a small number of xor gates.
• Used for:

– random number generation
– counters
– error checking and correction

• Advantages:
– very little hardware
– high speed operation

• Example 4-bit LFSR:

29

Spring 2013 EECS150 – Lec26-fault Page

4-bit LFSR

• Circuit counts through 24-1 different
non-zero bit patterns.

• Leftmost bit decides whether the
“10011” xor pattern is used to
compute the next value or if the
register just shifts left.

• Can build a similar circuit with any
number of FFs, may need more xor
gates.

• In general, with n flip-flops, 2n-1
different non-zero bit patterns.

• (Intuitively, this is a counter that
wraps around many times and in a
strange way.)

30

Spring 2013 EECS150 – Lec26-fault Page

Primitive Polynomials
x2 + x +1
x3 + x +1
x4 + x +1
x5 + x2 +1
x6 + x +1
x7 + x3 +1
x8 + x4 + x3 + x2 +1
x9 + x4 +1
x10 + x3 +1
x11 + x2 +1

x12 + x6 + x4 + x +1
x13 + x4 + x3 + x +1
x14 + x10 + x6 + x +1
x15 + x +1
x16 + x12 + x3 + x +1
x17 + x3 + 1
x18 + x7 + 1
x19 + x5 + x2 + x+ 1
x20 + x3 + 1
x21 + x2 + 1

x22 + x +1
x23 + x5 +1
x24 + x7 + x2 + x +1
x25 + x3 +1
x26 + x6 + x2 + x +1
x27 + x5 + x2 + x +1
x28 + x3 + 1
x29 + x +1
x30 + x6 + x4 + x +1
x31 + x3 + 1
x32 + x7 + x6 + x2 +1

 Galois Field Hardware
Multiplication by x ⇔ shift left
Taking the result mod p(x) ⇔ XOR-ing with the coefficients of p(x)
 when the most significant coefficient is 1.
Obtaining all 2n-1 non-zero ⇔ Shifting and XOR-ing 2n-1 times.
elements by evaluating xk

for k = 1, …, 2n-1
31

Spring 2013 EECS150 – Lec26-fault Page

Building an LFSR from a Primitive Polynomial
• For k-bit LFSR number the flip-flops with FF1 on the right.
• The feedback path comes from the Q output of the leftmost FF.
• Find the primitive polynomial of the form xk + … + 1.
• The x0 = 1 term corresponds to connecting the feedback directly to the D input

of FF 1.
• Each term of the form xn corresponds to connecting an xor between FF n and n

+1.
• 4-bit example, uses x4 + x + 1

– x4 ⇔ FF4’s Q output
– x ⇔ xor between FF1 and FF2
– 1 ⇔ FF1’s D input

• To build an 8-bit LFSR, use the primitive polynomial x8 + x4 + x3 + x2 + 1 and
connect xors between FF2 and FF3, FF3 and FF4, and FF4 and FF5.

32

Spring 2013 EECS150 – Lec26-fault Page

Error Correction with LFSRs

33

Spring 2013 EECS150 – Lec26-fault Page

Error Correction with LFSRs
• XOR Q4 with incoming bit sequence. Now values of shift-register don’t follow a

fixed pattern. Dependent on input sequence.
• Look at the value of the register after 15 cycles: “1010”
• Note the length of the input sequence is 24-1 = 15 (same as the number of

different nonzero patters for the original LFSR)
• Binary message occupies only 11 bits, the remaining 4 bits are “0000”.

– They would be replaced by the final result of our LFSR: “1010”
– If we run the sequence back through the LFSR with the replaced bits, we would get

“0000” for the final result.
– 4 parity bits “neutralize” the sequence with respect to the LFSR.
 1 1 0 0 1 0 0 0 1 1 1 0 0 0 0 ⇒ 1 0 1 0
 1 1 0 0 1 0 0 0 1 1 1 1 0 1 0 ⇒ 0 0 0 0

• If parity bits not all zero, an error occurred in transmission.
• If number of parity bits = log total number of bits, then single bit errors can be

corrected.
• Using more parity bits allows more errors to be detected.
• Ethernet uses 32 parity bits per frame (packet) with 16-bit LFSR.

34

