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Types of Faults in Digital Designs
• Design Bugs (function, timing, power draw)

– detected and corrected at design time through testing 
and verification (simulation, static checks)

– Sometimes in 3rd party design blocks

• Manufacturing Defects (violation of design rules, 
impurities in processing, statistical variations)
– post production testing for sorting
– spare on-chip resources for repair

• Runtime Failures (physical effects and 
environmental conditions)
– assuming design is correct and no manufacturing defects
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Runtime Faults
• All digital systems suffer occasional runtime faults.

– Fault tolerant design methodologies are employed to 
tolerate faults in critical applications (avionics, space 
exploration, medical, ...)

– Error detection and correction is commonly used in memory 
systems and communication networks.

• Deeply scaled CMOS devices will suffer reliability 
problems due to a variety of physical effects 
(processing, aging, environmental susceptibility)
– Lower supply voltage for energy efficiency makes matters 

worse.
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Physical Fault Mechanisms
• IC Faults can be classified as permanent, transient, and 

intermittent:
– Permanent faults reflect irreversible physical changes (like 

fused wire or shorted transistor)
– Transients are induced by temporary environmental conditions 

(like cosmic rays and electromagnetic interference)
– Intermittent faults occur due to unstable or marginal hardware 

(temporary ΔVt resulting in timing error)

• Intermittent faults often occurs repeatedly at the 
same location while transients affect random locations.

• Intermittents often occur in bursts.
• Intermittent faults track changes in voltage and 

temperature, and may become permanent.
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Physical Fault Mechanisms
• Intermittent: Aging, Voltage/Temperature Dependent

– NBTI (negative bias temperature instability) & PBTI
– HCI (hot carrier injection)
– TDDB (time-dependent dielectric breakdown)
– Electromigration
– -
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Physical Fault Mechanisms
• NBTI, PBTI, & HCI increase Vt and decrease 

mobility
– Leads to decreased performance, lower noise 

margins, mismatching (in SRAM), …

• TDDB causes soft or hard gate shorts resulting 
in degraded transistor performance and can 
lead to complete transistor failure

• Electromigration reduces interconnect 
conductivity and can lead to open circuit.
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The Physical Mechanism

The incident particle generates a dense track of electron hole pairs and 
this ionization cause a transient current pulse if the strike occurs 
near a sensitive volume.

2. A Description of SEE’s

CHARGE
COLLECTION
VOLUME
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3. Sources of SEE’s
Usually, SEE’s have been associated with space missions 

because of the absence of the atmospheric shield…

Cosmic rays

Protons from 
solar flares

Unfortunately, our quiet oasis seems to be vanishing since 
the enemy is knocking on the door…

• Alpha particle from vestigial U or Th traces
• Atmospheric neutrons and other cosmic rays
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Fault Models
• Low-level Fault Models:   

For logic circuit nodes
1. Permanent stuck at 0 or 1
2. Glitches
3. Slow transitions

For memory blocks 
  (and flip-flops, registers)

1. Permanent stuck at 0 or 1
2. Hold failure
3. Read upset
4. Slow read
5. Write failure
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A Fault-Tolerant Design Methodology
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Error Correction Codes (ECC)
• Memory systems exhibit errors (accidentally flipped-bits)

– Large concentration of sensitive nodes
– “Soft” errors occur occasionally when cells are struck by alpha 

particles or other environmental upsets.
– Less frequently, “hard” errors can occur when chips permanently 

fail.
• Where “perfect” memory is required

– servers, spacecraft/military computers, …
• Memories are protected against failures with ECCs
• Extra bits are added to each data-word

– extra bits are used to detect and/or correct faults in the memory 
system

– in general, each possible data word value is mapped to a unique 
“code word”.  A fault changes a valid code word to an invalid one - 
which can be detected.
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Simple Error Detection Coding

• Each data value, before it is 
written to memory is “tagged” 
with an extra bit to force the 
stored word to have even parity:

• Each word, as it is read from 
memory is “checked” by finding 
its parity (including the parity 
bit).  

Parity Bit

b7b6b5b4b3b2b1b0p

+

b7b6b5b4b3b2b1b0p

+
c

• A non-zero parity indicates an error occurred:
– two errors (on different bits) is not detected (nor any even number of 

errors)
– odd numbers of errors are detected.
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Hamming Error Correcting Code
• Use more parity bits to pinpoint bit(s) 

in error, so they can be corrected.
• Example: Single error correction 

(SEC) on 4-bit data 
– use 3 parity bits, with 4-data bits 

results in 7-bit code word
– 3 parity bits sufficient to identify any 

one of 7 code word bits
– overlap the assignment of parity bits 

so that a single error in the 7-bit word 
can be corrected

• Procedure: group parity bits so they 
correspond to subsets of the 7 bits:
– p1 protects bits 1,3,5,7

– p2 protects bits 2,3,6,7

– p3 protects bits 4,5,6,7

 1    2    3    4    5    6    7 
 p1  p2   d1   p3   d2   d3  d4

 Bit position number
  001 = 110

  011 = 310

  101 = 510

  111 = 710

  010 = 210

  011 = 310

  110 = 610

  111 = 710

  100 = 410

  101 = 510

  110 = 610

  111 = 710

 

p1

p2

p3

Note: 
number bits 
from left to 
right.
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Hamming Code Example
• Example: c = c3c2c1= 101

– error in 4,5,6, or 7 (by c3=1)

– error in 1,3,5, or 7 (by c1=1)

– no error in 2, 3, 6, or 7 (by c2=0)

• Therefore error must be in bit 5.
• Note the check bits point to 5

• By our clever positioning and 
assignment of parity bits, the 
check bits always address the 
position of the error!

• c=000 indicates no error

 1    2    3    4    5    6    7 
 p1  p2   d1   p3   d2   d3  d4

– Note: parity bits occupy power-of-
two bit positions in code-word.

– On writing to memory:
• parity bits are assigned to force 

even parity over their respective 
groups.

– On reading from memory:
• check bits (c3,c2,c1) are generated 

by finding the parity of the group 
and its parity bit.  If an error 
occurred in a group, the 
corresponding check bit will be 1, 
if no error the check bit will be 0.

• check bits (c3,c2,c1) form the 
position of the bit in error. 
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Hamming Error Correcting Code
• Overhead involved in single 

error correction code:
– let p be the total number of 

parity bits and d the number of 
data bits in a p + d bit word.

– If p error correction bits are to 
point to the error bit (p + d 
cases) plus indicate that no 
error exists (1 case), we need:

  2p >= p + d + 1,
 thus p >= log(p + d + 1)
 for large d, p approaches log(d)

• Adding on extra parity bit covering the 
entire word can provide double error 
detection

     1    2    3    4    5    6    7   8 
     p1  p2   d1   p3   d2   d3  d4   p4

• On reading the C bits are computed 
(as usual) plus the parity over the 
entire word, P:

 

 C=0  P=0, no error
 C!=0 P=1, correctable single error
 C!=0 P=0, a double error occurred

 C=0  P=1, an error occurred in p4 bit
Typical modern codes in DRAM memory systems:
 64-bit data blocks (8 bytes) with 72-bit code words (9 bytes), 
             results in SEC, DED.
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LFSRs

28



Spring 2013 EECS150 – Lec26-fault Page 

Linear Feedback Shift Registers (LFSRs)
• These are n-bit counters exhibiting pseudo-random behavior.
• Built from simple shift-registers with a small number of xor gates.
• Used for:

– random number generation
– counters
– error checking and correction

• Advantages:
– very little hardware
– high speed operation

• Example 4-bit LFSR:
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4-bit LFSR

• Circuit counts through 24-1 different 
non-zero bit patterns.

• Leftmost bit decides whether the 
“10011” xor pattern is used to 
compute the next value or if the 
register just shifts left.

• Can build a similar circuit with any 
number of FFs, may need more xor 
gates.

• In general, with n flip-flops, 2n-1 
different non-zero bit patterns. 

• (Intuitively, this is a counter that 
wraps around many times and in a 
strange way.)
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Primitive Polynomials
x2 + x +1
x3 + x +1
x4 + x +1
x5 + x2 +1
x6 + x +1
x7 + x3 +1
x8 + x4 + x3 + x2 +1
x9 + x4 +1
x10 + x3 +1
x11 + x2 +1

x12 + x6 + x4 + x +1
x13 + x4 + x3 + x +1
x14 + x10 + x6 + x +1
x15 + x +1
x16 + x12 + x3 + x +1
x17 + x3 + 1
x18 + x7 + 1
x19 + x5 + x2 + x+ 1
x20 + x3 + 1
x21 + x2 + 1

x22 + x +1
x23 + x5 +1
x24 + x7 + x2 + x +1
x25 + x3 +1
x26 + x6 + x2 + x +1
x27 + x5 + x2 + x +1
x28 + x3 + 1
x29 + x +1
x30 + x6 + x4 + x +1
x31 + x3 + 1
x32 + x7 + x6 + x2 +1

   Galois Field               Hardware
Multiplication by x       ⇔ shift left
Taking the result mod  p(x)  ⇔ XOR-ing with the coefficients of p(x)
      when the most significant coefficient is 1.
Obtaining all 2n-1 non-zero ⇔ Shifting and XOR-ing 2n-1 times.
elements by evaluating xk

for k = 1, …, 2n-1 
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Building an LFSR from a Primitive Polynomial
• For k-bit LFSR number the flip-flops with FF1 on the right.
• The feedback path comes from the Q output of the leftmost FF.
• Find the primitive polynomial of the form xk + … + 1.
• The x0 = 1 term corresponds to connecting the feedback directly to the D input 

of FF 1.
• Each term of the form xn corresponds to connecting an xor between FF n and n

+1.
• 4-bit example, uses x4 + x + 1

–  x4 ⇔ FF4’s Q output
–  x ⇔ xor between FF1 and FF2
–  1 ⇔ FF1’s D input

• To build an 8-bit LFSR, use the primitive polynomial x8 + x4 + x3 + x2 + 1 and 
connect xors between FF2 and FF3, FF3 and FF4, and FF4 and FF5.
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Error Correction with LFSRs
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Error Correction with LFSRs
• XOR Q4 with incoming bit sequence. Now values of shift-register don’t follow a 

fixed pattern.  Dependent on input sequence.
• Look at the value of the register after 15 cycles: “1010”
• Note the length of the input sequence is 24-1 = 15 (same as the number of 

different nonzero patters for the original LFSR)
• Binary message occupies only 11 bits, the remaining 4 bits are “0000”.

– They would be replaced by the final result of our LFSR: “1010”
– If we run the sequence back through the LFSR with the replaced bits, we would get 

“0000” for the final result.
– 4 parity bits “neutralize” the sequence with respect to the LFSR.
  1 1 0 0 1 0 0 0 1 1 1   0 0 0 0   ⇒  1 0 1 0
  1 1 0 0 1 0 0 0 1 1 1   1 0 1 0   ⇒  0 0 0 0

• If parity bits not all zero, an error occurred in transmission.
• If number of parity bits = log total number of bits, then single bit errors can be 

corrected.
• Using more parity bits allows more errors to be detected.
• Ethernet uses 32 parity bits per frame (packet) with 16-bit LFSR.
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