EECS150 - Digital Design
Lecture 26 - Faults and Error

Correction

April 25, 2013
John Wawrzynek

Spring 2013 EECS150 - Lec26-faults Page 1

Types of Faults in Digital Designs

- Design Bugs (function, timing, power draw)

- detected and corrected at design time through testing
and verification (simulation, static checks)

- Sometimes in 3rd party design blocks
* Manufacturing Defects (violation of design rules,

impurities in processing, statistical variations)
- post production testing for sorting

- spare on-chip resources for repair

* Runtime Failures (physical effects and
environmental conditions)

- assuming design is correct and no manufacturing defects

Spring 2013 EECS150 - Lec26-faults Page 2

Runtime Faults

All digital systems suffer occasional runtime faults.

- Fault tolerant design methodologies are employed to
tolerate faults in critical applications (avionics, space
exploration, medical, ...)

- Error detection and correction is commonly used in memory
systems and communication networks.

Deeply scaled CMOS devices will suffer reliability

problems due to a variety of physical effects

(processing, aging, environmental susceptibility)

- Lower supply voltage for energy efficiency makes matters
worse.

Spring 2013 EECS150 - Lec26-faults Page 3

Physical Fault Mechanisms

IC Faults can be classified as permanent, transient, and
intermittent:

- Permanent faults reflect irreversible physical changes (like
fused wire or shorted transistor)

- Transients are induced by temporary environmental conditions
(like cosmic rays and electromagnetic interference)

- Intermittent faults occur due to unstable or marginal hardware
(temporary AV, resulting in timing error)
Intermittent faults often occurs repeatedly at the
same location while transients affect random locations.

Intermittents often occur in bursts.

Intermittent faults track changes in voltage and
temperature, and may become permanent.

Spring 2013 EECS150 - Lec26-faults Page 4

Physical Fault Mechanisms
Intermittent: Aging, Voltage/ Temperature Dependent
NBTI (negative bias temperature instability) & PBTI
HCT (hot carrier injection)

TDDB (time-dependent dielectric breakdown)

- Electromigration
' Substrate Oxide Poly =
m Oxide 4 | nnnnnnnnn
H \ ooq.o O
i H H e o —>
. /' Hard BD
i~1H - -
\ = 0] |)
SiH + h* - Si* + ViH, |mpact ionization HETRRE —
£ 5 phase
Q |
z g i
> Relaxation 5) tow ts
Stress Stress 2 N - z'
01 1
time-> Time
(a) (b) (c)

Fig. 5. Temporal variations: (a) NBTI degradation process in PMOS. Breaking of hydrogen bonds creates dangling Si that acts as a defect trap near

Si-Si0, interface—inc ing Vy of the t istor. V., degradation and recovery mechanism under NBTI stress is also shown. (b) Impact
ionization due to HCI. (c) Percolation path due to TDDB. The behavior of leakage current after soft and hard breakde is also pl d.
Spring 2013 EECS150 - Lec26-faults Page 5

Physical Fault Mechanisms

- NBTI, PBTI, & HCT increase Vt and decrease
mobility
- Leads to decreased performance, lower noise
margins, mismatching (in SRAM), ...
+ TDDB causes soft or hard gate shorts resulting
in degraded transistor performance and can
lead to complete transistor failure

Electromigration reduces interconnect
conductivity and can lead to open circuit.

[Ghosh and Roy: Parameter Variation Tolerance and Error Resiliency: New Design Paradigm for the Nanoscale Era,
Proceedings of the IEEE | Vol. 98, No. 10, October 2010]

Spring 2013 EECS150 - Lec26-faults Page 6

Single Event Effects
on digital integrated circuits:
Origins and Mitigation Techniques

Dr. Raoul Velazco
TIMA Laboratory
ARIS (Reliable Architectures of Integrated Systems)
Grenoble — France
http://tima.imag.fr
raoul.velazco@imag.fr

Ecole de Microélectronique et Microsystémes
Fréjus, 19/5/2011

2. A Description of SEE’s

What you always wanted to know about
Single Event Effects (SEE’s)

* What are they?:
One of the result of the interaction between the radiation
and the electronic devices

How do they act?:

Creating free charge in the silicon bulk that, in practical,
behaves as a short-life but intense current pulse

Which are the ultimate consequences?

From simple bitflips or noise-like signals until the
physical destruction of the device

2. A Description of SEE’s

The Physical Mechanism

CHARGE
COLLECTION
VOLUME

The incident particle generates a dense track of electron hole pairs and
this ionization cause a transient current pulse if the strike occurs
near a sensitive volume.

2. A Description of SEE’s
The Classification of SEE’s

SINGLE EVENT UPSET (SEU): CHANGE OF DATA OF MEMORY CELLS

MULTIPLE BIT UPSET (MBU): SEVERAL SIMULTANEOUS SEU’S
SINGLE EVENT TRANSIENT (SET): PEAKS IN COMBINATIONAL IC’s
FUNCTIONAL INTERRUPTION (SEFI): PHENOMENA IN CRITICAL PARTS

SINGLE EVENT LATCH-UP (SEL): PARASITIC THYRISTOR TRIGGER

AND OTHERS...

HARD ERRORS vs SOFT ERRORS

3. Sources of SEE’s

Usually, SEE’s have been associated with space missions
because of the absence of the atmospheric shield...

Protons, Electrons, Heavy Ions

Unfortunately, our quiet oasis seems to be vanishing since
the enemy is knocking on the door...

» Alpha particle from vestigial U or Th traces
» Atmospheric neutrons and other cosmic rays

3. Sources of SEE’s

Alpha Particles

— Sometimes, they appeared without a warning and, after some
months and spending a lot of money, the source is detected*.

* In 1978, Intel had to stop a factory because water was extracted from a
nearby river that, upstream, is too close to an old uranium mine.

*J. F. Ziegler and H. Puchner, “SER — History, Trends and Challenges. A guide for Designing with Memory ICs”,
Cypress Semiconductor, USA, 2004.

3. Sources of SEE’s

Alpha Particles

— Sometimes, they appeared without a warning and, after some
months and spending a lot of money, the source is detected®.

* In 1986, IBM detected a high rate of useless devices and related it to
the phosphoric acid, the bottles of which were cleaned with a 2P
deionizer gadget...hundreds of kms far.

3 b4 LRe)

1AL |

\ wuﬂ.ﬁ :

I

s

”

*J. F. Ziegler and H. Puchner, “SER — History, Trends and Challenges. A guide for Designing with Memory ICs”,
Cypress Semiconductor, USA, 2004.

3. Sources of SEE’s

Alpha Particles

— Sometimes, they appeared without a warning and, after some
months and spending a lot of money, the source is detected*.

* In 1992, the problem came from the use of bat droppings living in
cavern with traces of Th and U to obtain phosphorus.

= T

*J. F. Ziegler and H. Puchner, “SER — History, Trends and Challenges. A guide for Designing with Memory ICs”,
Cypress Semiconductor, USA, 2004.

3. Sources of SEE’s

Alpha Particles

— But sometimes, we are a little naive...

» Solder balls are usually made from Sn and Pb, which come from
minerals where there may be uranium and thorium traces.

Nevertheless, the designer forgets this detail and places
the solder balls too close to critical nodes!

3. Sources of SEE’s

Cosmic Rays

Usually, they had been a headache for the designers of
electronics boarded in space missions...

Here you are some of their practical jokes*...

* Cassini Mission (1997).- Some information was lost because of MBUs.

» Deep Space 1.- An SEU caused a solar panel to stop opening out.

» Mars Odyssey (2001).- Two weeks after the launch, alarms went off
because some errors lately attributed to an SEU.

* GPS satellite network.- One of the satellites is out of work, probably
because of a latch-up.

* B. E. Pritchard, IEEE NSREC 2002 Data Workshop Proceedings, pp. 7-17, 2002

3. Sources of SEE’s

Cosmic Rays at Ground Level

* The highest fluence is reached between 15-20 km of altitude.
* Less than 1% of this particle rain reaches the sea level.
 The composition has also changed...

» Basically, neutrons and some pions

Usually, the neutron flux is referenced to that of New York City, its
value been of (in appearance) only 15 n/cm?/h

This value depends on the altitude (approximately, x10 each 3 km until
saturation at 15-20 km).

And also on latitude, since the nearer the Poles, the higher rate.
South America Anomaly (SAA), close to Argentina
1.5 m of concrete reduces the flux to a half.

What a weak foe, really should be we afraid of?

3. Sources of SEE’s

Cosmics Rays at Ground Level

Perhaps, we may believe that we are in a safe shelter but...

— 1992.- The PERFORM system, used by airplanes to manage
the taking-off manoeuvre had to be suddenly replaced
because of the SEUs in their SRAMs*.

S,

— 1998.- A study reported that, every day, the 1 out of 10000
SRAMs attached to pacemakers underwent bitflips**.

This factor being 300 times higher if the patient had taken an
transoceanic aircraft.

*J. Olsen, IEEE Trans. Nucl. Sci., 1993, 40, 74-77
** P. D. Bradley, IEEE Trans. Nucl. Sci., 45 (6), 2829-2940

3. Sources of SEE’s

Cosmic Rays at Ground Level

— The call of the Thousand (2000).- Sun Unix server systems crashed
in dozens of places all over the USA because of SEU’s happening
in their cache memory, costing several millions of dollars™.

— 2005.- After 102 days, the ASC Q Cluster supercomputer showed
7170 errors in its 81-Gb cache memory, 243 of which led to a crash
of the programs or the operating system™**.

9
N

*FORBES, 2000
** K. W. Harris, IEEE Trans. Dev. Mat. Reliab., 2005, 5, 336-342

4. Mitigation of SEE’s

First of all, Where must we expect SEEs?

— All the combinational stages are supposed to be affected by
SETs.

— Everything having SRAM cells is a candidate to show SEUs,
MBU’s:
— SRAM'’s, Microprocessors, FPGAs, ASICs, etc.
— Other devices seem to be quite SEE-tolerant because of
their way of building:
— DRAMSs, PSRAMs, NAND memories, etc.

Which are the strategies to mitigate SEE’s?
1. Technological
2. Design
3. Software and Hardware Redundancy :

Fault Models

- Low-level Fault Models:

For logic circuit nodes

1.
2.
3.

Permanent stuck at O or 1

Glitches
\o

Slow transitions

For memory blocks

(and flip-flops, registers)

1.

ohwmN

Permanent stuck at O or 1
Hold failure

Read upset

Slow read

Write failure

Spring 2013 EECS150 - Lec26-faults

— =D

‘nn
A —p—
V_D;t_‘ ﬁv_[l_

=y

\

_ -
o b

P

+
=

€
t

Page 21

A Fault-Tolerant Design Methodology

Triple Modular Redundancy (TMR)

' !

\/

\/

Logic Block Logic Block Logic Block

Logic Block

* 3 4

Spring 2013 EECS150 - Lec26-faults

W

Voting
Circuit

Page 22

Error Correction Codes (ECQ)

Memory systems exhibit errors (accidentally flipped-bits)
— Large concentration of sensitive nodes

— “Soft” errors occur occasionally when cells are struck by alpha
particles or other environmental upsets.

— Less frequently, “hard” errors can occur when chips permanently
fail.

Where “perfect” memory is required

— servers, spacecraft/military computers, ...

Memories are protected against failures with ECCs

Extra bits are added to each data-word

— extra bits are used to detect and/or correct faults in the memory
system

— in general, each possible data word value is mapped to a unique
‘code word”. A fault changes a valid code word to an invalid one -
which can be detected.

Spring 2013 EECS150 — Lec26-fault Page 23

Simple Error Detection Codin

Parity Bit
Each data value, before it is + Each word, as it is read from
written to memory is “tagged” memory is “checked” by finding
with an extra bit to force the its parity (including the parity
stored word to have even parity: bit).
b/bebsb,bsb,b,bop bbebsb,bsb,b,bop
N\Z Y4

C

* A non-zero parity indicates an error occurred:

— two errors (on different bits) is not detected (nor any even number of
errors)

— odd numbers of errors are detected.

Spring 2013 EECS150 — Lec26-fault Page 24

Hamming Error Correcting Code

Use more parity bits to pinpointbit(s) 1 2 3 4 5 6 7
in error, so they can be corrected. Py P, d; py d, dy d, \>
Example: Single error correction
_bi . - Note:
(SEC) on 4 F"t qata . . Bit position number number bits
— use 3 parity bits, with 4-data bits 001 =14 from left to
results in 7-bit code word 011 = 3,, right.
— 3 parity bits sufficient to identify any 101 =5 P4
one of 7 code word bits i 10
— overlap the assignment of parity bits o
so that a single error in the 7-bit word 010 =2,
can be corrected 011 =34, D
Procedure: group parity bits so they 110 =64 2
correspond to subsets of the 7 bits: M1 =7,
— p, protects bits 1,3,5,7 100 =4,,
— p, protects bits 2,3,6,7 101 =5, 0
— p; protects bits 4,5,6,7 110 =64 3
1M11=7,
Spring 2013 EECS150 — Lec26-fault Page 25

Hamming Code Example
1 2 3 4 5 6 7

« Example: ¢ = c;c,c4= 101
Py P dy p3 d; d; d,

— errorin 4,5,6, or 7 (by c;=1)

o — errorin 1,3,5, or 7 (by c,=1)
— Note: parity bits occupy power-of-

two bit positions in code-word. — noerrorin 2, 3, 6, or 7 (by ¢,=0)
— On writing to memory: » Therefore error must be in bit 5.
* parity bits are assigned to force « Note the check bits point to 5
even parity over their respective
groups.

— On reading from memory: * By our clever posi.tioni.ng and
assignment of parity bits, the

check bits always address the
position of the error!

« check bits (c;,c,,c,) are generated
by finding the parity of the group
and its parity bit. If an error
occurred in a group, the

corresponding check bit willbe 1, « =000 indicates no error
if no error the check bit will be 0.

« check bits (c;,c,,c,) form the

position of the bit in error.
Spring 2013 EECS150 — Lec26-fault Page 26

Hamming Error Correcting Code

* Overhead involved in single » Adding on extra parity bit covering the
error correction code: entire word can provide double error
— let p be the total number of detection
parity bits and d the number of 1.2 3 4 5 6 738
data bits in a p + d bit word. p; P, dy p3 d, d; dy py

— If p error correction bits are to
point to the error bit (p + d
cases) plus indicate that no
error exists (1 case), we need:

2r>=p+d+1,
thus p>=log(p +d + 1)
for large d, p approaches log(d)

* On reading the C bits are computed
(as usual) plus the parity over the
entire word, P:

C=0 P=0, no error

C!=0 P=1, correctable single error
C!=0 P=0, a double error occurred
C=0 P=1, an error occurred in p, bit

Typical modern codes in DRAM memory systems:
64-bit data blocks (8 bytes) with 72-bit code words (9 bytes),

results in SEC, DED.
Spring 2013 EECS150 — Lec26-fault Page 27

LFSRs

Spring 2013 EECS150 — Lec26-fault Page 28

Linear Feedback Shift Reqisters (LFSRs)

These are n-bit counters exhibiting pseudo-random behavior.

Built from simple shift-registers with a small number of xor gates.

Used for:

— random number generation

— counters

— error checking and correction
Advantages:

— very little hardware

— high speed operation
Example 4-bit LFSR:

Q D+ Q D‘J—@*Q D

Q D[+
Q4™ Q3™ , Q2™ , Q1|7
CLK
Spring 2013 EECS150 — Lec26-fault
4-bit LFSR
. A
Q4|9 O" a3 P 2@, a1|9,P
CLK
Circuit counts through 2¢-7 different [oJo]o]x]o
non-zero bit patterns. xor 0000 0
Leftmost bit decides whether the o[ofo]1]o]o
“10011” xor pattern is used to xor 0 0 0 00
compute the next value or if the o[oJ1]o]o]o
register just shifts left. xor EI%"%"%, .
Can build a similar circuit with any xor 1001 1
number of FFs, may need more xor o[oJoJ1]1]o
gates. xor 00000
In general, with n flip-flops, 21-1 0 @@g
different non-zero bit patterns. xor
o[1]z 0

(Intuitively, this is a counter that xor @91
gzﬁz :C(v)ggc)i many times and in a o[1]o]1]1]
Spring 2013 EECS150 — Lec26-fault

Page 29

0001
0010
0100
1000
0011
0110
1100
1011
0101
1010
0111
1110
1111
1101
1001
0001

Page 30

Primitive Polynomials

x?+x+1 xI2+x0+x?+x +1 X2 +x+1
X+ x +1 xB3+xt+x3+x+1 X3 +x+1
x*+x+1 x4 4+ x10 4+ x6 + x +] X4+ +x2+x +1
x5 +x? +1 x5 +x +1 xP +x +1
x6+x +1 X6+ x12 + 3 + x +] X26 + x6 + x2 4+ x +1
x7 +x3 +1 xI7+x3+] X7+ x5+ x2+x +1
X +xt+x3+x?+1 X8+ x7 +] 28 +x3+ 1]
X+ x? +1 X9+ x5+ x2 +x+ 1 x29 4+ x +]
x10+x3 +1 X204+ 3 +] 330+ X6+ x4 + x +1
x+x2 +1 24+ x2+] B+ x3+1]
32 7 6 2
- X372 +x7+x0+x7+1
Galois Field Hardware

Multiplication by x < shift left

Taking the result mod p(x) « XOR-ing with the coefficients of p(x)
when the most significant coefficient is 1.
Obtaining all 27-1 non-zero < Shifting and XOR-ing 27-1 times.
elements by evaluating x*
fork=1, ..., 21
Spring 2013 EECS150 — Lec26-fault Page 31

Building an LFSR from a Primitive Polynomial

* For k-bit LFSR number the flip-flops with FF1 on the right.

+ The feedback path comes from the Q output of the leftmost FF.

* Find the primitive polynomial of the form x* + ... + [.

+ The x? = I term corresponds to connecting the feedback directly to the D input
of FF 1.

» Each term of the form x” corresponds to connecting an xor between FF » and n
+1.

* 4-bit example, uses x* +x + 1 L

- x* < FF4’s Q output 92]Q D*—a3l@ Dzl of< LQ DJ

Q1

e J l |

— x < xor between FF1 and FF2
— [< FF1’s D input

* To build an 8-bit LFSR, use the primitive polynomial x® + x* + x> + x> + 1 and
connect xors between FF2 and FF3, FF3 and FF4, and FF4 and FF5.

QGQDWQD QD QD QD

Q8 Q7 Q4 Q3 Q2 Q1

CLK

Spring 2013 EECS150 — Lec26-fault Page 32

Error Correction with LFSRs

11 message bits 4 check bits

bit sequence: 11 0010001110000

l
@@@@1‘
xor 0 0 0 0 0

ofofofoJa]a

xor 00 00O

o [ofofz]1]o

xor 0 0 00O

o[o]1]1]o]o

xor 0 0 00O

o[1]1JoJo]a

xor 1 0011

o[1]oJ1]o]o

xor 1 0011

ofofa]z]1]

[1To]1]o]

serial_in

Spring 2013 EECS150 — Lec26-fault Page 33

Error Correction with LFSRs

+ XOR Q4 with incoming bit sequence. Now values of shift-register don’t follow a
fixed pattern. Dependent on input sequence.

* Look at the value of the register after 15 cycles: “1010”

* Note the length of the input sequence is 24-1 = 15 (same as the number of
different nonzero patters for the original LFSR)
* Binary message occupies only 11 bits, the remaining 4 bits are “0000”.
— They would be replaced by the final result of our LFSR: “1010”

— If we run the sequence back through the LFSR with the replaced bits, we would get
“0000” for the final result.

— 4 parity bits “neutralize” the sequence with respect to the LFSR.
11001000111 0000 = 1010
11001000111 1010 = 0000

* If parity bits not all zero, an error occurred in transmission.

* If number of parity bits = log total number of bits, then single bit errors can be
corrected.

+ Using more parity bits allows more errors to be detected.
+ Ethernet uses 32 parity bits per frame (packet) with 16-bit LFSR.

Spring 2013 EECS150 — Lec26-fault Page 34

