EECS150 - Digital Design Lecture 25 - Latches \& Flip-flops

April 23, 2012
John Wawrzynek

CMOS "Transparent" Latches

Positive level-sensitive latch:

Latch Implementation:

Designing with Latches

Cross-coupled NOR gates

remember,

- If both R=0 \& $S=0$, then cross-couped NORs

NOR	
00	1
01	0
10	0
11	0

- If either R or S becomes $=1$ then state may change:

- What happens if R or S or both become $=1$?

Asynchronous State Transition Diagram

Transitions triggered by input changes.

QQ'=00 is often called a "forbidden state"

Nand-gate based SR latch

S	R	Q	Q^{\prime}
1	0	0	1
1	1	0	1

(a) Logic diagram
(b) Function table

Fig. 5-4 $S R$ Latch with NAND Gates

- Same behavior as cross-coupled NORs with inverted inputs.

Level-sensitive SR Latch

(a) Logic diagram

C	S	R	Next state of Q
0	X	X	No change
1	0	0	No change
1	0	1	$Q=0 ;$ Reset state
1	1	0	$Q=1 ;$ set state
1	1	1	Indeterminate

(b) Function table

Fig. 5-5 SR Latch with Control Input

- The input " C " works as an "enable" signal, latch only changes output when C is high.
- Usually connected to clock.

D-latch

Fig. 5-6 D Latch
Compare to transistor version:

Spring 2013

2 Alternative Flip-flops

Fig. 5-10 D-Type Positive-Edge-Triggered Flip-Flop

J-K FF

- Add logic to eliminate "indeterminate" action of RS FF.
- New action is "toggle"
- J = "jam"
- $\mathrm{K}=$ "kill"

$J \mathrm{~K} Q(t)$	$Q(t+\Delta)$
000	0 hold
001	1 -
010	0
011	O _ reset
100	1 set
101	1
110	1
111	0 toggle

Storage Element Taxonomy

Design Example with RS FF

- With D-type FF state elements, new state is computed based on inputs \& present state bits - reloaded each cycle.
- With RS (or JK) FF state elements, inputs are used to determine conditions under which to set or reset state bits.
- Example: bit-serial adder (LSB first)
n-bit shift registers

Bit-serial adder with RS FF

- RS FF stores the carry:

