EECS150 - Digital Design

Lecture 17 - Boolean Algebra and Representation of Combinational Logic Circuits

April 16, 2013 John Wawrzynek

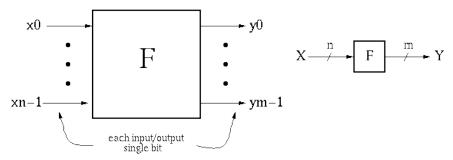
 Spring 2013
 EECS150 - Lec23-Boolean
 Page 1

Outline

- Review of three representations for combinational logic:
 - truth tables,
 - graphical (logic gates), and
 - algebraic equations
- · Relationship among the three
- · Adder example
- · Laws of Boolean Algebra
- · Canonical Forms
- Boolean Simplification

 Spring 2013
 EECS150 - Lec23-Boolean
 Page 2

Combinational Logic (CL) Defined

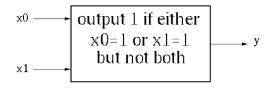


 $y_i = f_i(x0, ..., xn-1)$, where x, y are {0,1}. Y is a function of only X.

- If we change X, Y will change immediately (well almost!).
- There is an implementation dependent delay from X to Y.

Spring 2013 EECS150 - Lec23-Boolean Page 3

CL Block Example #1



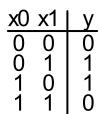
Boolean Equation:

$$y_{0} = (x_{0} AND not(x_{1}))$$

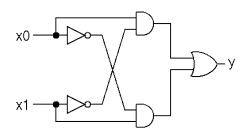
$$OR (not(x_{0}) AND x_{1})$$

$$y_{0} = x_{0}x_{1}' + x_{0}'x_{1}$$

Truth Table Description:



Gate Representation:



How would we prove that all three representations are equivalent?

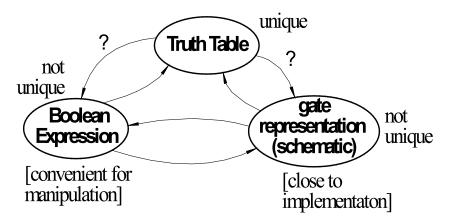
Boolean Algebra/Logic Circuits

- · Why are they called "logic circuits"?
- · Logic: The study of the principles of reasoning.
- The 19th Century Mathematician, George Boole, developed a math. system (algebra) involving logic, Boolean Algebra.
- His variables took on TRUE, FALSE
- Later Claude Shannon (father of information theory) showed (in his Master's thesis!) how to map Boolean Algebra to digital circuits:

•	Primitive functions	ı					
		<u>a b</u>	AND	<u>a b</u>	OR	a	NOT
		0 0	0	0 0	0	0	0
		0 1	0	0 1	1	1	0
		1 0	0	10	1	ı	
		11	1	11	1	-[>-
		1)-	1	>		
	Spring 2013	EECS150 - Lec23-Boolear	1			ı	Page 5

Relationship Among Representations

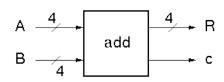
* Theorem: Any Boolean function that can be expressed as a truth table can be written as an expression in Boolean Algebra using AND, OR, NOT.



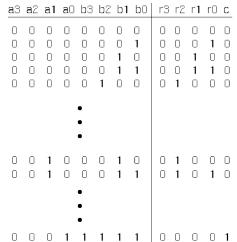
How do we convert from one to the other?

CL Block Example #2

• 4-bit adder:



• Truth Table Representation:



In general: 2ⁿ rows for n inputs.

R = A + B

c is carry out

256 rows!

Is there a more efficient (compact) way to specify this function?

Spring 2013 EECS150 - Lec23-Boolean Page 7

4-bit Adder Example

 Motivate the adder circuit design by hand addition:

· Add a0 and b0 as follows:

a	b	r	С	*	carry to
0	0	0	0		next stage
0	1 0	0 1	0		TICKL Stage
1	0	1	0		
1	1	0	1		

$$r = a XOR b = a \oplus b$$

 $c = a AND b = ab$

Add a1 and b1 as follows:

ci	а	b	r	CO
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

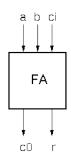
$$r = a \oplus b \oplus c_i$$

 $co = ab + ac_i + bc_i$

4-bit Adder Example

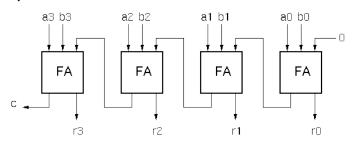
· In general:

$$\begin{aligned} & r_i = a_i \oplus b_i \oplus c_{in} \\ & c_{out} = a_i c_{in} + a_i b_i + b_i c_{in} = c_{in} (a_i + b_i) + a_i b_i \end{aligned}$$



"Full adder cell"

· Now, the 4-bit adder:



"ripple" adder

 Spring 2013
 EECS150 - Lec23-Boolean
 Page 9

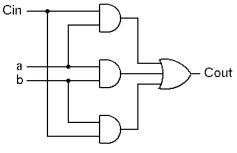
4-bit Adder Example

Cin

 Graphical Representation of FAcell

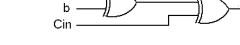
$$r_i = a_i \oplus b_i \oplus c_{in}$$

$$c_{out} = a_i c_{in} + a_i b_i + b_i c_{in}$$



å D

Page 10



 Alternative Implementation (with 2-input gates):

$$r_i = (a_i \oplus b_i) \oplus c_{in}$$

$$c_{out} = c_{in}(a_i + b_i) + a_ib_i$$

Spring 2013 EECS150 - Lec23-Boolean

Boolean Algebra

Defined as:

Set of elements B, binary operators $\{+, \bullet\}$, unary operation $\{'\}$, such that the following axioms hold:

- 1. B contains at least two elements a, b such that $a \neq b$.
- 2. Closure : a,b in B, a+b in B, $a \cdot b$ in B, a' in B.
- 3. Communitive laws:

$$a+b=b+a$$
, $a \bullet b=b \bullet a$.

- 4. Identities: 0, 1 in *B* a + 0 = a, $a \cdot 1 = a$.
- 5. Distributive laws:

$$a + (b \bullet c) = (a + b) \bullet (a + c), \ a \bullet (b + c) = a \bullet b + a \bullet c.$$

6. Complement:

$$a + a' = 1$$
, $a \cdot a' = 0$.

Spring 2013

EECS150 - Lec23-Boolean

Page 11

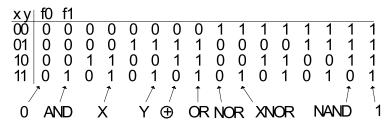
Logic Functions

$$B = \{0,1\}, + = OR, \bullet = AND, ' = NOT$$
 is a valid Boolean Algebra.

Do the axioms hold?

- Ex: communitive law: 0+1 = 1+0?

Other logic functions of 2 variables (x,y)



Look at NOR and NAND:

- Theorem: Any Boolean function that can be expressed as a truth table can be expressed using NAND and NOR.
 - Proof sketch: \longrightarrow = NOT \longrightarrow = AND \longrightarrow = OR
 - How would you show that either NAND or NOR is sufficient?

Spring 2013 EECS150 - Lec23-Boolean Page 13

Laws of Boolean Algebra

Duality: A dual of a Boolean expression is derived by interchanging OR and AND operations, and Os and 1s (literals are left unchanged).

$$\{F(x_1, x_2, ..., x_n, 0, 1, +, \bullet)\}^D = \{F(x_1, x_2, ..., x_n, 1, 0, \bullet, +)\}$$

Any law that is true for an expression is also true for its dual.

Operations with 0 and 1:

$$1. x + 0 = x x 1 = x$$

$$2. x + 1 = 1 x * 0 = 0$$

Idempotent Law:

3.
$$x + x = x$$
 $x = x$

Involution Law:

$$4. (x')' = x$$

Laws of Complementarity:

5.
$$x + x' = 1$$
 $x x' = 0$

Commutative Law:

6.
$$x + y = y + x \quad x \quad y = y \quad x$$

Spring 2013

Laws of Boolean Algebra (cont.)

Associative Laws:

$$(x + y) + z = x + (y + z)$$
 $x y z = x (y z)$

$$x y z = x (y z)$$

Distributive Laws:

$$\times (y + z) = (x y) + (x z)$$

$$x + (y z) = (x + y)(x + z)$$

"Simplification" Theorems:

$$(x + y) (x + y') = x$$

 $x (x + y) = x$

DeMorgan's Law:

$$(x + y + z + ...)' = x'y'z'$$
 $(x y z ...)' = x' + y' + z'$

$$(x y z ...)' = x' + y' + z'$$

Theorem for Multiplying and Factoring:

$$(x + y) (x' + z) = x z + x' y$$

Consensus Theorem:

$$x y + y z + x' z = (x + y) (y + z) (x' + z)$$

 $x y + x' z = (x + y) (x' + z)$

Spring 2013

EECS150 - Lec23-Boolean

Page 15

Proving Theorems via axioms of Boolean Algebra

Ex: prove the theorem: x y + x y' = x

$$xy + xy' = x(y + y')$$
 distributive law

$$x (y + y') = x (1)$$
 complementary law

$$x(1) = x$$
 identity

Ex: prove the theorem: X + X Y = X

$$x + xy = x1 + xy$$
 identity

$$x 1 + x y = x (1 + y)$$
 distributive law

$$x(1+y) = x(1)$$
 identity

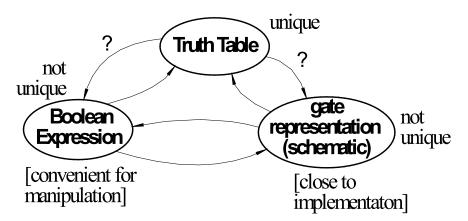
$$x(1) = x$$
 identity

DeMorgan's Law

Spring 2013 EECS150 - Lec23-Boolean Page 17

Relationship Among Representations

* Theorem: Any Boolean function that can be expressed as a truth table can be written as an expression in Boolean Algebra using AND, OR, NOT.



How do we convert from one to the other?

Canonical Forms

- Standard form for a Boolean expression unique algebraic expression directly from a true table (TT) description.
- Two Types:
 - * Sum of Products (SOP)
 - * Product of Sums (POS)
- Sum of Products (disjunctive normal form, minterm expansion).

Example:

minterms	<u>abc f f'</u>	
a'b'c'	00001	
a'b'c	001 01	
a'bc'	01001	
a'bc	011 10	One product (and) term for each 1 in f:
ab'c'	100 10	f = a'bc + ab'c' + ab'c +abc' +abc
ab'c	101 10	f' = a'b'c' + a'b'c + a'bc'
abc'	110 10	
abc	111 10	

Spring 2013 EECS150 - Lec23-Boolean Page 19

Sum of Products (cont.)

Canonical Forms are usually not minimal:

Our Example:

Page 20

EECS150 - Lec23-Boolean

Canonical Forms

• Product of Sums (conjunctive normal form, maxterm expansion). Example:

```
maxterms a b c f f'

a+b+c 0 0 0 0 1

a+b+c' 0 0 1 0 1

a+b'+c 0 1 0 0 1

a+b'+c' 0 1 1 1 0

a'+b+c' 1 0 1 1 0

a'+b+c' 1 1 0 1 0

a'+b'+c' 1 1 1 1 0

a'+b'+c' a'+b'+c' a'+b'+c' a'+b'+c' a'+b'+c' a'+b'+c' a'+b'+c' a'+b'+c'
```

Mapping from SOP to POS (or POS to SOP): Derive truth table then proceed.

Spring 2013 EECS150 - Lec23-Boolean Page 21

Algebraic Simplification Example

Ex: full adder (FA) carry out function (in canonical form):

$$Cout = a'bc + ab'c + abc' + abc$$

Spring 2013 EECS150 - Lec23-Boolean Page 22

Algebraic Simplification

```
Cout = a'bc + ab'c + abc' + abc

= a'bc + ab'c + abc' + abc + abc

= a'bc + abc + ab'c + abc' + abc

= (a' + a)bc + ab'c + abc' + abc

= (1)bc + ab'c + abc' + abc

= bc + ab'c + abc' + abc + abc

= bc + ab'c + abc + abc' + abc

= bc + a(b' + b)c + abc' + abc

= bc + a(1)c + abc' + abc

= bc + ac + ab(c' + c)

= bc + ac + ab(1)

= bc + ac + ab
```

Spring 2013 EECS150 - Lec23-Boolean Page 23

Outline for remaining CL Topics

- K-map method of two-level logic simplification
- · Multi-level Logic
- NAND/NOR networks
- EXOR revisited

Spring 2013

Algorithmic Two-level Logic Simplication

Key tool: The Uniting Theorem:

$$xy' + xy = x (y' + y) = x (1) = x$$

$$\frac{ab}{00} \frac{f}{0}$$

$$0 = ab' + ab = a(b'+b) = a$$

$$b \text{ values change within the on-set rows}$$

$$a \text{ values don't change}$$

$$b \text{ is eliminated, a remains}$$

$$\frac{ab}{11} \frac{g}{11}$$

$$g = a'b'+ab' = (a'+a)b' = b'$$

$$0 = a'b'+ab' = a'b'+ab' = a'b'+ab' = b'$$

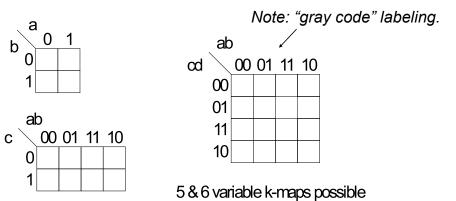
$$0 = a'b'+ab' = a'b'+ab' = a'b'+ab' = b'$$

$$0 = a'b'+ab' = a'b'+ab$$

Spring 2013 EECS150 - Lec23-Boolean Page 25

Karnaugh Map Method

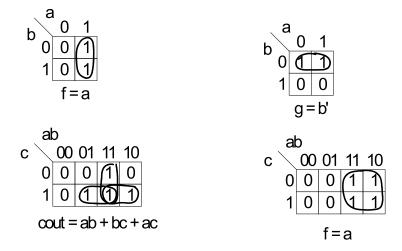
 K-map is an alternative method of representing the TT and to help visual the adjacencies.



 Spring 2013
 EECS150 - Lec23-Boolean
 Page 26

Karnaugh Map Method

Adjacent groups of 1's represent product terms

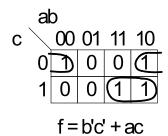


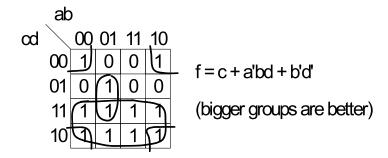
 Spring 2013
 EECS150 - Lec23-Boolean
 Page 27

K-map Simplification

- 1. Draw K-map of the appropriate number of variables (between 2 and 6)
- 2. Fill in map with function values from truth table.
- 3. Form groups of 1's.
 - ✓ Dimensions of groups must be even powers of two (1x1, 1x2, 1x4, ..., 2x2, 2x4, ...)
 - ✓ Form as large as possible groups and as few groups as possible.
 - ✓ Groups can overlap (this helps make larger groups)
 - ✓ Remember K-map is periodical in all dimensions (groups can cross over edges of map and continue on other side)
- 4. For each group write a product term.
 - the term includes the "constant" variables (use the uncomplemented variable for a constant 1 and complemented variable for constant 0)
- 5. Form Boolean expression as sum-of-products.

K-maps (cont.)





 Spring 2013
 EECS150 - Lec23-Boolean
 Page 29

Product-of-Sums Version

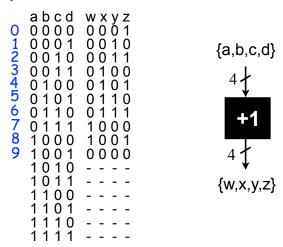
- 1. Form groups of 0's instead of 1's.
- 2. For each group write a sum term.
 - the term includes the "constant" variables (use the uncomplemented variable for a constant 0 and complemented variable for constant 1)
- 3. Form Boolean expression as product-of-sums.

$$f = (b' + c + d)(a' + c + d')(b + c + d')$$

Spring 2013

BCD incrementer example

Binary Coded Decimal



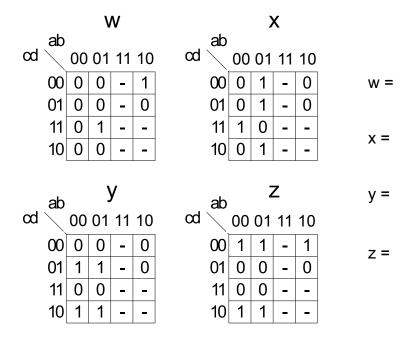
 Spring 2013
 EECS150 - Lec23-Boolean
 Page 31

BCD Incrementer Example

- · Note one map for each output variable.
- Function includes "don't cares" (shown as "-" in the table).
 - These correspond to places in the function where we don't care about its value, because we don't expect some particular input patterns.
 - We are free to assign either 0 or 1 to each don't care in the function, as a means to increase group sizes.
- In general, you might choose to write product-ofsums or sum-of-products according to which one leads to a simpler expression.

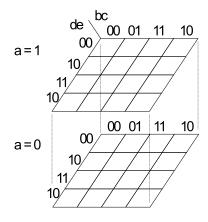
 Spring 2013
 EECS150 - Lec23-Boolean
 Page 32

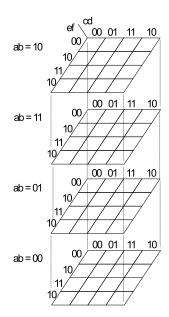
BCD incrementer example



Spring 2013 EECS150 - Lec23-Boolean Page 33

Higher Dimensional K-maps





Multi-level Combinational Logic

- Example: reduced sum-of-products form
 x = adf + aef + bdf + bef + cdf + cef + g
- Implementation in 2-levels with gates:

cost: 1 7-input OR, 6 3-input AND

=> 50 transistors

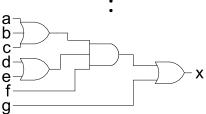
delay: 3-input OR gate delay + 7-input AND gate delay

$$x = (a + b + c)(d + e)f + g$$

cost: 1 3-input OR, 2 2-input OR, 1 3-input AND

=> 20 transistors

delay: 3-input OR + 3-input AND + 2-input OR



Footnote: NAND would be used in place of all ANDs and ORs.

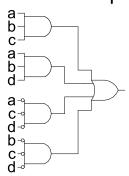
Which is faster?

In general: Using multiple levels (more than 2) will reduce the cost. Sometimes also delay. Sometimes a tradeoff between cost and delay.

Spring 2013 EECS150 - Lec23-Boolean Page 35

Multi-level Combinational Logic

Another Example: F = abc + abd +a'c'd' + b'c'd'



let
$$x = ab$$
 $y = c+d$

y Incorporates fanout.

No convenient hand methods exist for multi-level logic simplification:

- a) CAD Tools use sophisticated algorithms and heuristics
- b) Humans and tools often exploit some special structure (example adder)

Are these optimizations still relevant for LUT implementations?

NAND-NAND & NOR-NOR Networks

DeMorgan's Law Review:

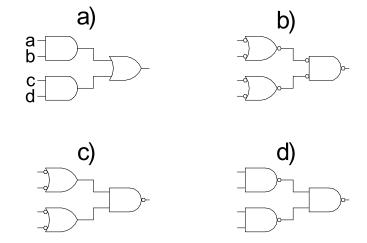
$$(a + b)' = a' b'$$
 $a + b = (a' b')'$
 $(a b)' = a' + b'$
 $(a b) = (a' + b')'$
 $(a b) = (a' + b')'$

push bubbles or introduce in pairs or remove pairs: (x')' = x.

Spring 2013 EECS150 - Lec23-Boolean Page 37

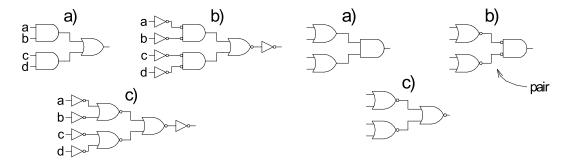
NAND-NAND & NOR-NOR Networks

Mapping from AND/OR to NAND/NAND

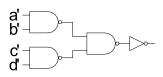


NAND-NAND & NOR-NOR Networks

- Mapping AND/OR to NOR/NOR
- Mapping OR/AND to NOR/NOR



 OR/AND to NAND/NAND (by symmetry with above)



Spring 2013

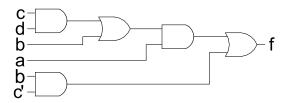
EECS150 - Lec23-Boolean

Page 39

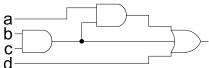
Multi-level Networks

Convert to NANDs:

$$F = a(b + cd) + bc'$$



(note fanout)



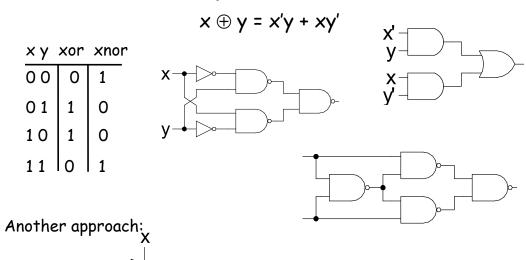
Spring 2013

EECS150 - Lec23-Boolean

Page 40

EXOR Function

Parity, addition mod 2



 $y \rightarrow 0$ if x=0 then y else y'

Spring 2013 EECS150 - Lec23-Boolean Page 41