
Spring 2013 EECS150 - Lec22-counters Page

EECS150 - Digital Design
Lecture 22 - Counters

April 11, 2013
John Wawrzynek

1

Spring 2013 EECS150 - Lec22-counters Page

Counters
• Special sequential circuits (FSMs) that repeatedly

sequence through a set of outputs.
• Examples:

– binary counter: 000, 001, 010, 011, 100, 101, 110, 111, 000,
– gray code counter:
 000, 010, 110, 100, 101, 111, 011, 001, 000, 010, 110, …
– one-hot counter: 0001, 0010, 0100, 1000, 0001, 0010, …
– BCD counter: 0000, 0001, 0010, …, 1001, 0000, 0001
– pseudo-random sequence generators: 10, 01, 00, 11, 10,

01, 00, ...
• Moore machines with “ring” structure in State

Transition Diagram:
S3

S0

S2

S1

2

Spring 2013 EECS150 - Lec22-counters Page

What are they used?
• Counters are commonly used in hardware designs because most (if

not all) computations that we put into hardware include iteration
(looping). Examples:
– Shift-and-add multiplication scheme.
– Bit serial communication circuits (must count one “words worth” of

serial bits.
• Other uses for counter:

– Clock divider circuits

– Systematic inspection of data-structures
• Example: Network packet parser/filter control.

• Counters simplify “controller” design by:
– providing a specific number of cycles of action,
– sometimes used with a decoder to generate a sequence of timed

control signals.
– Consider using a counter when many FSM states with few branches.

÷6416MHz

3

Spring 2013 EECS150 - Lec22-counters Page

Controller using Counters
• Example, Bit-serial multiplier (n2 cycles, one bit of result per n

cycles):

• Control Algorithm:
repeat n cycles { // outer (i) loop
 repeat n cycles{ // inner (j) loop
 shiftA, selectSum, shiftHI
 }
 shiftB, shiftHI, shiftLOW, reset
}

Note: The occurrence of a control
signal x means x=1. The absence
of x means x=0.

4

Spring 2013 EECS150 - Lec22-counters Page

Controller using Counters
• State Transition Diagram:

– Assume presence of two
binary counters. An “i”
counter for the outer loop and
“j” counter for inner loop.

TC is asserted when the counter
reaches it maximum count value.
CE is “count enable”. The counter
increments its value on the rising
edge of the clock if CE is asserted.

5

Spring 2013 EECS150 - Lec22-counters Page

Controller using Counters
• Controller circuit

implementation:
• Outputs:

 CEi = q2

 CEj = q1

 RSTi = q0

 RSTj = q2

 shiftA = q1

 shiftB = q2

 shiftLOW = q2

 shiftHI = q1 + q2

 reset = q2

 selectSUM = q1

6

Spring 2013 EECS150 - Lec22-counters Page

How do we design counters?
• For binary counters (most common case) incrementer circuit would

work:

• In Verilog, a counter is specified as: x = x+1;
– This does not imply an adder
– An incrementer is simpler than an adder
– And a counter might be simpler yet.

• In general, the best way to understand counter design is to think
of them as FSMs, and follow general procedure, however some
special cases can be optimized.

register

+
1

7

Spring 2013 EECS150 - Lec22-counters Page

Synchronous Counters

• Binary Counter Design:
 Start with 3-bit version and

generalize:

c b a c+ b+ a+

0 0 0 0 0 1
0 0 1 0 1 0
0 1 0 0 1 1
0 1 1 1 0 0
1 0 0 1 0 1
1 0 1 1 1 0
1 1 0 1 1 1
1 1 1 0 0 0

a+ = a’
b+ = a ⊕ b

c+ = abc’ + a’b’c + ab’c + a’bc
 = a’c + abc’ + b’c
 = c(a’+b’) + c’(ab)
 = c(ab)’ + c’(ab)
 = c ⊕ ab

All outputs change with clock edge.

8

Spring 2013 EECS150 - Lec22-counters Page

Synchronous Counters
• How do we extend to n-bits?
• Extrapolate c+: d+ = d ⊕ abc, e+ = e ⊕ abcd

• Has difficulty scaling (AND gate inputs grow with n)

• CE is “count enable”, allows external control of counting,
• TC is “terminal count”, is asserted on highest value, allows

cascading, external sensing of occurrence of max value.

TC

9

Spring 2013 EECS150 - Lec22-counters Page

Synchronous Counters
TC

• How does this one scale?
! Delay grows α n

• Generation of TC signals very similar to
generation of carry signals in adder.

• “Parallel Prefix” circuit reduces delay:

log2n

log2n

10

Spring 2013 EECS150 - Lec22-counters Page

Up-Down Counter

c b a c+ b+ a+

0 0 0 1 1 1
0 0 1 0 0 0
0 1 0 0 0 1
0 1 1 0 1 0
1 0 0 0 1 1
1 0 1 1 0 0
1 1 0 1 0 1
1 1 1 1 1 0

Down-count

11

Spring 2013 EECS150 - Lec22-counters Page

Odd Counts
• Extra combinational logic can

be added to terminate count
before max value is reached:

• Example: count to 12

• Alternative:

12

Spring 2013 EECS150 - Lec22-counters Page

Ring Counters
• “one-hot” counters
0001, 0010, 0100, 1000, 0001, …

“Self-starting” version:

• What are these good for?

13

Spring 2013 EECS150 - Lec22-counters Page

Johnson Counter

14

Spring 2013 EECS150 - Lec22-counters Page

Asynchronous “Ripple” counters
A3 A2 A1 A0

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

time

• Each stage is ÷2 of
previous.

• Look at output
waveforms:

• Often called
“asynchronous”
counters.

• A “T” flip-flop is a
“toggle” flip-flop.
Flips it state on
cycles when T=1.

CLK
A0

A1

A2

A3

15

Usually
forbidden in
Synchronous
Design

Spring 2012 EECS150 – Lec21-db3 Page

Linear Feedback Shift Registers (LFSRs)
• These are n-bit counters exhibiting pseudo-random behavior.
• Built from simple shift-registers with a small number of xor gates.
• Used for:

– random number generation
– counters
– error checking and correction

• Advantages:
– very little hardware
– high speed operation

• Example 4-bit LFSR:

16

Spring 2012 EECS150 – Lec21-db3 Page

4-bit LFSR

• Circuit counts through 24-1 different
non-zero bit patterns.

• Leftmost bit decides whether the
“10011” xor pattern is used to
compute the next value or if the
register just shifts left.

• Can build a similar circuit with any
number of FFs, may need more xor
gates.

• In general, with n flip-flops, 2n-1
different non-zero bit patterns.

• (Intuitively, this is a counter that
wraps around many times and in a
strange way.)

17

Spring 2012 EECS150 – Lec21-db3 Page

Applications of LFSRs
• Performance:

– In general, xors are only ever 2-
input and never connect in series.

– Therefore the minimum clock period
for these circuits is:

 T > T2-input-xor + clock overhead
– Very little latency, and independent

of n!
• This can be used as a fast counter,

if the particular sequence of count
values is not important.
– Example: micro-code micro-pc

• Can be used as a random
number generator.
– Sequence is a pseudo-

random sequence:
• numbers appear in a

random sequence
• repeats every 2n-1 patterns

– Random numbers useful in:
• computer graphics
• cryptography
• automatic testing

• Used for error detection and
correction

• CRC (cyclic redundancy
codes)

• ethernet uses them

18

Spring 2012 EECS150 – Lec21-db3 Page

Galois Fields - the theory behind LFSRs
• LFSR circuits performs

multiplication on a field.
• A field is defined as a set with the

following:
– two operations defined on it:

• “addition” and “multiplication”
– closed under these operations
– associative and distributive laws

hold
– additive and multiplicative identity

elements
– additive inverse for every

element
– multiplicative inverse for every

non-zero element

• Example fields:
– set of rational numbers
– set of real numbers
– set of integers is not a field

(why?)
• Finite fields are called Galois

fields.
• Example:

– Binary numbers 0,1 with XOR
as “addition” and AND as
“multiplication”.

– Called GF(2).

19

Spring 2012 EECS150 – Lec21-db3 Page

Galois Fields - The theory behind LFSRs
• Consider polynomials whose coefficients come from GF(2).
• Each term of the form xn is either present or absent.
• Examples: 0, 1, x, x2, and x7 + x6 + 1
 = 1·x7 + 1· x6 + 0 · x5 + 0 · x4 + 0 · x3 + 0 · x2 + 0 · x1 + 1· x0

• With addition and multiplication these form a field:
• “Add”: XOR each element individually with no carry:
 x4 + x3 + + x + 1
 + x4 + + x2 + x
 x3 + x2 + 1
• “Multiply”: multiplying by xn is like shifting to the left.

 x2 + x + 1
 × x + 1
 x2 + x + 1
 x3 + x2 + x
 x3 + 1

20

Spring 2012 EECS150 – Lec21-db3 Page

Galois Fields - The theory behind LFSRs
• These polynomials form a

Galois (finite) field if we take the
results of this multiplication
modulo a prime polynomial p(x).
– A prime polynomial is one that

cannot be written as the product
of two non-trivial polynomials
q(x)r(x)

– Perform modulo operation by
subtracting a (polynomial)
multiple of p(x) from the result.
If the multiple is 1, this
corresponds to XOR-ing the
result with p(x).

• For any degree, there exists at
least one prime polynomial.

• With it we can form GF(2n)

• Additionally, …
• Every Galois field has a primitive

element, α, such that all non-zero
elements of the field can be
expressed as a power of α. By
raising α to powers (modulo p(x)),
all non-zero field elements can be
formed.

• Certain choices of p(x) make the
simple polynomial x the primitive
element. These polynomials are
called primitive, and one exists for
every degree.

• For example, x4 + x + 1 is primitive.
So α = x is a primitive element and
successive powers of α will
generate all non-zero elements of
GF(16). Example on next slide.

21

Spring 2012 EECS150 – Lec21-db3 Page

Galois Fields - The theory behind LFSRs
α0 = 1
α1 = x
α2 = x2

α3 = x3

α4 = x + 1
α5 = x2 + x
α6 = x3 + x2

α7 = x3 + x + 1
α8 = x2 + 1
α9 = x3 + x
α10 = x2 + x + 1
α11 = x3 + x2 + x

α12 = x3 + x2 + x + 1
α13 = x3 + x2 + 1
α14 = x3 + 1
α15 = 1

• Note this pattern of coefficients
matches the bits from our 4-bit
LFSR example.

• In general finding primitive
polynomials is difficult. Most people
just look them up in a table, such
as:

α4 = x4 mod x4 + x + 1
 = x4 xor x4 + x + 1
 = x + 1

22

Spring 2012 EECS150 – Lec21-db3 Page

Primitive Polynomials
x2 + x +1
x3 + x +1
x4 + x +1
x5 + x2 +1
x6 + x +1
x7 + x3 +1
x8 + x4 + x3 + x2 +1
x9 + x4 +1
x10 + x3 +1
x11 + x2 +1

x12 + x6 + x4 + x +1
x13 + x4 + x3 + x +1
x14 + x10 + x6 + x +1
x15 + x +1
x16 + x12 + x3 + x +1
x17 + x3 + 1
x18 + x7 + 1
x19 + x5 + x2 + x+ 1
x20 + x3 + 1
x21 + x2 + 1

x22 + x +1
x23 + x5 +1
x24 + x7 + x2 + x +1
x25 + x3 +1
x26 + x6 + x2 + x +1
x27 + x5 + x2 + x +1
x28 + x3 + 1
x29 + x +1
x30 + x6 + x4 + x +1
x31 + x3 + 1
x32 + x7 + x6 + x2 +1

 Galois Field Hardware
Multiplication by x ⇔ shift left
Taking the result mod p(x) ⇔ XOR-ing with the coefficients of p(x)
 when the most significant coefficient is 1.
Obtaining all 2n-1 non-zero ⇔ Shifting and XOR-ing 2n-1 times.
elements by evaluating xk

for k = 1, …, 2n-1
23

Spring 2012 EECS150 – Lec21-db3 Page

Building an LFSR from a Primitive Polynomial
• For k-bit LFSR number the flip-flops with FF1 on the right.
• The feedback path comes from the Q output of the leftmost FF.
• Find the primitive polynomial of the form xk + … + 1.
• The x0 = 1 term corresponds to connecting the feedback directly to the D input

of FF 1.
• Each term of the form xn corresponds to connecting an xor between FF n and n

+1.
• 4-bit example, uses x4 + x + 1

– x4 ⇔ FF4’s Q output

– x ⇔ xor between FF1 and FF2

– 1 ⇔ FF1’s D input

• To build an 8-bit LFSR, use the primitive polynomial x8 + x4 + x3 + x2 + 1 and
connect xors between FF2 and FF3, FF3 and FF4, and FF4 and FF5.

24

Spring 2012 EECS150 – Lec21-db3 Page

Error Correction with LFSRs

25

Spring 2012 EECS150 – Lec21-db3 Page

Error Correction with LFSRs
• XOR Q4 with incoming bit sequence. Now values of shift-register don’t follow a

fixed pattern. Dependent on input sequence.
• Look at the value of the register after 15 cycles: “1010”
• Note the length of the input sequence is 24-1 = 15 (same as the number of

different nonzero patters for the original LFSR)
• Binary message occupies only 11 bits, the remaining 4 bits are “0000”.

– They would be replaced by the final result of our LFSR: “1010”
– If we run the sequence back through the LFSR with the replaced bits, we would get

“0000” for the final result.
– 4 parity bits “neutralize” the sequence with respect to the LFSR.
 1 1 0 0 1 0 0 0 1 1 1 0 0 0 0 ⇒ 1 0 1 0
 1 1 0 0 1 0 0 0 1 1 1 1 0 1 0 ⇒ 0 0 0 0

• If parity bits not all zero, an error occurred in transmission.
• If number of parity bits = log total number of bits, then single bit errors can be

corrected.
• Using more parity bits allows more errors to be detected.
• Ethernet uses 32 parity bits per frame (packet) with 16-bit LFSR.

26

