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EECS150 - Digital Design
Lecture 22 - Counters
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Counters
• Special sequential circuits (FSMs) that repeatedly 

sequence through a set of outputs.  
• Examples:

– binary counter:  000, 001, 010, 011, 100, 101, 110, 111, 000, 
– gray code counter: 
 000, 010, 110, 100, 101, 111, 011, 001, 000, 010, 110, …
– one-hot counter: 0001, 0010, 0100, 1000, 0001, 0010, …
– BCD counter: 0000, 0001, 0010, …, 1001, 0000, 0001
– pseudo-random sequence generators:  10, 01, 00, 11, 10, 

01, 00, ...
• Moore machines with “ring” structure in State 

Transition Diagram: 
S3

S0

S2

S1
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What are they used?
• Counters are commonly used in hardware designs because most (if 

not all) computations that we put into hardware include iteration 
(looping).  Examples:
– Shift-and-add multiplication scheme.
– Bit serial communication circuits (must count one “words worth” of 

serial bits.
• Other uses for counter:

– Clock divider circuits

– Systematic inspection of data-structures
• Example: Network packet parser/filter control.

• Counters simplify “controller” design by:
– providing a specific number of cycles of action,
– sometimes used with a decoder to generate a sequence of timed 

control signals.
– Consider using a counter when many FSM states with few branches.

÷6416MHz
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Controller using Counters
• Example, Bit-serial multiplier (n2 cycles, one bit of result per n 

cycles):

• Control Algorithm:
repeat n cycles {  // outer (i) loop
 repeat n cycles{   // inner (j) loop
  shiftA, selectSum, shiftHI
 }
 shiftB, shiftHI, shiftLOW, reset
}

Note: The occurrence of a control
signal x means x=1.  The absence
of x means x=0.
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Controller using Counters
• State Transition Diagram:

– Assume presence of two 
binary counters.  An “i” 
counter for the outer loop and 
“j” counter for inner loop.

TC is asserted when the counter 
reaches it maximum count value.
CE is “count enable”.  The  counter
increments its value on the rising 
edge of the clock if CE is asserted.
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Controller using Counters
• Controller circuit 

implementation:
• Outputs:
 
 CEi = q2

 CEj = q1

 RSTi = q0

 RSTj = q2

 shiftA = q1

 shiftB = q2

 shiftLOW = q2

 shiftHI = q1 + q2

 reset = q2

 selectSUM = q1
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How do we design counters?
• For binary counters (most common case) incrementer circuit would 

work:

• In Verilog, a counter is specified as:  x = x+1;
– This does not imply an adder
– An incrementer is simpler than an adder
– And a counter might be simpler yet.

• In general, the best way to understand counter design is to think 
of them as FSMs, and follow general procedure, however some 
special cases can be optimized.

register

+
1

7

Spring 2013 EECS150 - Lec22-counters Page 

Synchronous Counters

• Binary Counter Design:
 Start with 3-bit version and 

generalize:

c  b  a   c+ b+ a+

0  0  0   0  0  1
0  0  1   0  1  0
0  1  0   0  1  1
0  1  1   1  0  0
1  0  0   1  0  1
1  0  1   1  1  0
1  1  0   1  1  1
1  1  1   0  0  0

a+ = a’
b+ = a ⊕ b
 
 
c+ = abc’ + a’b’c + ab’c + a’bc
    = a’c + abc’ + b’c
    = c(a’+b’) + c’(ab)
    = c(ab)’ + c’(ab)
    = c ⊕ ab

All outputs change with clock edge.
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Synchronous Counters
• How do we extend to n-bits?
• Extrapolate c+:  d+ = d ⊕ abc,  e+ = e ⊕ abcd

• Has difficulty scaling (AND gate inputs grow with n)

• CE is “count enable”, allows external control of counting, 
• TC is “terminal count”, is asserted on highest value, allows 

cascading, external sensing of occurrence of max value.

TC
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Synchronous Counters
TC

• How does this one scale?
! Delay grows α n

• Generation of TC signals very similar to 
generation of carry signals in adder.  

• “Parallel Prefix” circuit reduces delay: 

log2n

log2n
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Up-Down Counter

c  b  a   c+ b+ a+

0  0  0   1  1  1
0  0  1   0  0  0
0  1  0   0  0  1
0  1  1   0  1  0
1  0  0   0  1  1
1  0  1   1  0  0
1  1  0   1  0  1
1  1  1   1  1  0

Down-count
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Odd Counts
• Extra combinational logic can 

be added to terminate count 
before max value is reached:

• Example: count to 12

• Alternative:
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Ring Counters
• “one-hot” counters
0001, 0010, 0100, 1000, 0001, …

“Self-starting” version:

• What are these good for?
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Johnson Counter
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Asynchronous “Ripple” counters
A3 A2 A1 A0

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

time

• Each stage is ÷2 of 
previous.

• Look at output 
waveforms:

• Often called 
“asynchronous” 
counters.

• A “T” flip-flop is a 
“toggle” flip-flop.  
Flips it state on 
cycles when T=1.

CLK
A0

A1

A2

A3

15

Usually 
forbidden in 
Synchronous 
Design

Spring 2012 EECS150 – Lec21-db3 Page 

Linear Feedback Shift Registers (LFSRs)
• These are n-bit counters exhibiting pseudo-random behavior.
• Built from simple shift-registers with a small number of xor gates.
• Used for:

– random number generation
– counters
– error checking and correction

• Advantages:
– very little hardware
– high speed operation

• Example 4-bit LFSR:
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4-bit LFSR

• Circuit counts through 24-1 different 
non-zero bit patterns.

• Leftmost bit decides whether the 
“10011” xor pattern is used to 
compute the next value or if the 
register just shifts left.

• Can build a similar circuit with any 
number of FFs, may need more xor 
gates.

• In general, with n flip-flops, 2n-1 
different non-zero bit patterns. 

• (Intuitively, this is a counter that 
wraps around many times and in a 
strange way.)
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Applications of LFSRs
• Performance:

– In general, xors are only ever 2-
input and never connect in series.

– Therefore the minimum clock period 
for these circuits is:

  T > T2-input-xor + clock overhead
– Very little latency, and independent 

of n!
• This can be used as a fast counter, 

if the particular sequence of count 
values is not important.  
– Example: micro-code micro-pc

• Can be used as a random 
number generator.  
– Sequence is a pseudo-

random sequence:
• numbers appear in a 

random sequence
• repeats every 2n-1 patterns

– Random numbers useful in:
• computer graphics
• cryptography
• automatic testing

• Used for error detection and 
correction

• CRC (cyclic redundancy 
codes)

• ethernet uses them
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Galois Fields - the theory behind LFSRs
• LFSR circuits performs 

multiplication on a field.
• A field is defined as a set with the 

following:
– two operations defined on it:

• “addition” and “multiplication”
– closed under these operations 
– associative and distributive laws 

hold
– additive and multiplicative identity 

elements
– additive inverse for every 

element
– multiplicative inverse for every 

non-zero element

• Example fields:
– set of rational numbers
– set of real numbers
– set of integers is not a field 

(why?)
• Finite fields are called Galois 

fields.  
• Example:  

– Binary numbers 0,1 with XOR 
as “addition” and AND as 
“multiplication”.

– Called GF(2).
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Galois Fields - The theory behind LFSRs
• Consider polynomials whose coefficients come from GF(2).
• Each term of the form xn is either present or absent.
• Examples: 0, 1, x, x2, and x7 + x6 + 1 
   = 1·x7 + 1· x6 + 0 · x5 + 0 · x4 + 0 · x3 + 0 · x2 + 0 · x1 + 1· x0 

• With addition and multiplication these form a field:
• “Add”: XOR each element individually with no carry:
   x4 + x3 +      + x + 1
         +    x4  +     + x2  + x
          x3  + x2        + 1 
• “Multiply”: multiplying by xn is like shifting to the left. 
 
   x2 + x + 1
         ×            x + 1
   x2 + x + 1
         x3 + x2 + x
         x3               + 1
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Galois Fields - The theory behind LFSRs
• These polynomials form a 

Galois (finite) field if we take the 
results of this multiplication 
modulo a prime polynomial p(x).
– A prime polynomial is one that 

cannot be written as the product 
of two non-trivial polynomials 
q(x)r(x)

– Perform modulo operation by 
subtracting a (polynomial) 
multiple of p(x) from the result.  
If the multiple is 1, this 
corresponds to XOR-ing the 
result with p(x).

• For any degree, there exists at 
least one prime polynomial.

• With it we can form GF(2n)

• Additionally, …
• Every Galois field has a primitive 

element, α, such that all non-zero 
elements of the field can be 
expressed as a power of α.  By 
raising α to powers (modulo p(x)), 
all non-zero field elements can be 
formed.

• Certain choices of p(x) make the 
simple polynomial x the primitive 
element.  These polynomials are 
called primitive, and one exists for 
every degree.

• For example, x4 + x + 1 is primitive.  
So α = x is a primitive element and 
successive powers of α will 
generate all non-zero elements of 
GF(16).  Example on next slide.
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Galois Fields - The theory behind LFSRs
α0  =                        1
α1  =                 x
α2  =         x2

α3  = x3

α4  =                x  + 1
α5  =         x2 + x
α6  = x3 + x2

α7  = x3         + x  + 1
α8  =         x2        + 1
α9  = x3         + x
α10 =         x2 + x  + 1
α11 = x3 + x2 + x 

α12 = x3 + x2 + x  + 1
α13 = x3 + x2        + 1
α14 = x3                + 1
α15 =                       1

• Note this pattern of coefficients 
matches the bits from our 4-bit 
LFSR example.

• In general finding primitive 
polynomials is difficult.  Most people 
just look them up in a table, such 
as:

α4  = x4 mod x4 + x + 1
     = x4 xor x4 + x + 1
      = x + 1
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Primitive Polynomials
x2 + x +1
x3 + x +1
x4 + x +1
x5 + x2 +1
x6 + x +1
x7 + x3 +1
x8 + x4 + x3 + x2 +1
x9 + x4 +1
x10 + x3 +1
x11 + x2 +1

x12 + x6 + x4 + x +1
x13 + x4 + x3 + x +1
x14 + x10 + x6 + x +1
x15 + x +1
x16 + x12 + x3 + x +1
x17 + x3 + 1
x18 + x7 + 1
x19 + x5 + x2 + x+ 1
x20 + x3 + 1
x21 + x2 + 1

x22 + x +1
x23 + x5 +1
x24 + x7 + x2 + x +1
x25 + x3 +1
x26 + x6 + x2 + x +1
x27 + x5 + x2 + x +1
x28 + x3 + 1
x29 + x +1
x30 + x6 + x4 + x +1
x31 + x3 + 1
x32 + x7 + x6 + x2 +1

   Galois Field               Hardware
Multiplication by x       ⇔ shift left
Taking the result mod  p(x)  ⇔ XOR-ing with the coefficients of p(x)
      when the most significant coefficient is 1.
Obtaining all 2n-1 non-zero ⇔ Shifting and XOR-ing 2n-1 times.
elements by evaluating xk

for k = 1, …, 2n-1 
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Building an LFSR from a Primitive Polynomial
• For k-bit LFSR number the flip-flops with FF1 on the right.
• The feedback path comes from the Q output of the leftmost FF.
• Find the primitive polynomial of the form xk + … + 1.
• The x0 = 1 term corresponds to connecting the feedback directly to the D input 

of FF 1.
• Each term of the form xn corresponds to connecting an xor between FF n and n

+1.
• 4-bit example, uses x4 + x + 1

–  x4 ⇔ FF4’s Q output

–  x ⇔ xor between FF1 and FF2

–  1 ⇔ FF1’s D input

• To build an 8-bit LFSR, use the primitive polynomial x8 + x4 + x3 + x2 + 1 and 
connect xors between FF2 and FF3, FF3 and FF4, and FF4 and FF5.
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Error Correction with LFSRs
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Error Correction with LFSRs
• XOR Q4 with incoming bit sequence. Now values of shift-register don’t follow a 

fixed pattern.  Dependent on input sequence.
• Look at the value of the register after 15 cycles: “1010”
• Note the length of the input sequence is 24-1 = 15 (same as the number of 

different nonzero patters for the original LFSR)
• Binary message occupies only 11 bits, the remaining 4 bits are “0000”.

– They would be replaced by the final result of our LFSR: “1010”
– If we run the sequence back through the LFSR with the replaced bits, we would get 

“0000” for the final result.
– 4 parity bits “neutralize” the sequence with respect to the LFSR.
  1 1 0 0 1 0 0 0 1 1 1   0 0 0 0   ⇒  1 0 1 0
  1 1 0 0 1 0 0 0 1 1 1   1 0 1 0   ⇒  0 0 0 0

• If parity bits not all zero, an error occurred in transmission.
• If number of parity bits = log total number of bits, then single bit errors can be 

corrected.
• Using more parity bits allows more errors to be detected.
• Ethernet uses 32 parity bits per frame (packet) with 16-bit LFSR.
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