EECS150 - Digital Design Lecture 22 - Counters

April 11, 2013 John Wawrzynek

Spring 2013

EECS150 - Lec22-counters

Page 1

Counters

- Special sequential circuits (FSMs) that repeatedly sequence through a set of outputs.
- Examples:
 - binary counter: 000,001,010,011,100,101,110,111,000,
 - gray code counter:
 - 000, 010, 110, 100, 101, 111, 011, 001, 000, 010, 110, ...
 - one-hot counter: 0001, 0010, 0100, 1000, 0001, 0010, ...
 - BCD counter: 0000, 0001, 0010, ..., 1001, 0000, 0001
 - pseudo-random sequence generators: 10, 01, 00, 11, 10, 01, 00, ...
- Moore machines with "ring" structure in State **Transition Diagram:** S0) (S1)

Spring 2013

EECS150 - Lec22-counters

Page 2

S3

What are they used?

- Counters are commonly used in hardware designs because most (if not all) computations that we put into hardware include iteration (looping). Examples:
 - Shift-and-add multiplication scheme.
 - Bit serial communication circuits (must count one "words worth" of serial bits.
- Other uses for counter:
 - Clock divider circuits

- Systematic inspection of data-structures
 - Example: Network packet parser/filter control.
- Counters simplify "controller" design by:
 - providing a specific number of cycles of action,
 - sometimes used with a decoder to generate a sequence of timed control signals.
 - Consider using a counter when many FSM states with few branches.

```
Spring 2013
```

EECS150 - Lec22-counters

Page 3

Controller using Counters

Example, Bit-serial multiplier (n² cycles, one bit of result per n cycles):

Controller using Counters

• State Transition Diagram:

 Assume presence of two binary counters. An "i" counter for the outer loop and "j" counter for inner loop.


```
Spring 2013
```

EECS150 - Lec22-counters

Page 5

Controller using Counters

How do we design counters?

 For binary counters (most common case) incrementer circuit would work:

- In Verilog, a counter is specified as: x = x+1;
 - This does not imply an adder
 - An incrementer is simpler than an adder
 - And a counter might be simpler yet.
- In general, the best way to understand counter design is to think of them as FSMs, and follow general procedure, however some special cases can be optimized.

Spring 2013

EECS150 - Lec22-counters

Page 7

Synchronous Counters

All outputs change with clock edge.

Binary Counter Design: c b a | c⁺ b⁺ a⁺ ٠ 0 0 0 0 1 a+ = a' Start with 3-bit version and 0 0 1 0 1 0 b⁺ = a ⊕ b 0 1 0 0 1 1 generalize: 0 1 0 0 1 1 10 0 1 0 1 $c^+ = abc' + a'b'c + ab'c + a'bc$ 101 1 1 0 = a'c + abc' + b'c1 1 0 1 1 1 = c(a'+b') + c'(ab)1 1 1 0 0 0 = c(ab)' + c'(ab)= c ⊕ ab C а b С

Synchronous Counters

- How do we extend to n-bits? ٠
- Extrapolate c^+ : $d^+ = d \oplus abc$, $e^+ = e \oplus abcd$

Has difficulty scaling (AND gate inputs grow with n) •

- CE is "count enable", allows external control of counting, ٠
- TC is "terminal count", is asserted on highest value, allows • cascading, external sensing of occurrence of max value. Spring 2013 EECS150 - Lec22-counters Page 9

TC_a TC_b

тС

TC_c

log₂n

тС

тĊ,

Odd Counts

٠

- Extra combinational logic can be added to terminate count before max value is reached:
- Example: count to 12

Alternative:

Ring Counters

• "one-hot" counters • What are these good for? 0001, 0010, 0100, 1000, 0001, ...

"Self-starting" version:

Spring 2013

EECS150 - Lec22-counters

Page 13

Johnson Counter

Sequence	Flip-flop outputs				AND gate required
number	Ā	В	С	E	for output
1	0	0	0	0	A'E'
2	1	0	0	0	AB'
3	1	1	0	0	BC'
4	1	1	1	0	CE'
5	1	1	1	1	AE
6	0	1	1	1	A'B
7	0	0	1	1	B'C
8	0	0	0	1	C'E

(b) Count sequence and required decoding

Fig. 6-18 Construction of a Johnson Counter

Linear Feedback Shift Registers (LFSRs)

- These are n-bit counters exhibiting *pseudo-random* behavior.
- Built from simple shift-registers with a small number of xor gates.
- Used for:
 - random number generation
 - counters
 - error checking and correction
- Advantages:
 - very little hardware
 - high speed operation
- Example 4-bit LFSR:

Applications of LFSRs

- Performance:
 - In general, xors are only ever 2input and never connect in series.
 - Therefore the minimum clock period for these circuits is:

 $T > T_{2-input-xor} + clock overhead$

- Very little latency, and independent of n!
- This can be used as a <u>fast counter</u>, if the particular sequence of count values is not important.
 - Example: micro-code micro-pc

- Can be used as a <u>random</u> <u>number generator</u>.
 - Sequence is a pseudorandom sequence:
 - numbers appear in a random sequence
 - repeats every 2ⁿ-1 patterns
 - Random numbers useful in:
 - computer graphics
 - cryptography
 - automatic testing
- Used for error detection and correction
 - CRC (cyclic redundancy codes)
 - ethernet uses them

Galois Fields - the theory behind LFSRs

- LFSR circuits performs multiplication on a *field*.
- A field is defined as a *set* with the following:
 - two operations defined on it:
 - "addition" and "multiplication"
 - closed under these operations
 - associative and distributive laws hold
 - additive and multiplicative identity elements
 - additive inverse for every element
 - multiplicative inverse for every non-zero element

- Example fields:
 - set of rational numbers
 - set of real numbers
 - set of integers is not a field (why?)
- <u>Finite</u> fields are called *Galois* fields.
- Example:
 - Binary numbers 0,1 with XOR as "addition" and AND as "multiplication".
 - Called GF(2).

Spring 2012

EECS150 - Lec21-db3

Page 19

Galois Fields - The theory behind LFSRs

- Consider *polynomials* whose coefficients come from GF(2).
- Each term of the form x^n is either present or absent.
- Examples: 0, 1, x, x², and x⁷ + x⁶ + 1

$$= 1 \cdot x^7 + 1 \cdot x^6 + 0 \cdot x^5 + 0 \cdot x^4 + 0 \cdot x^3 + 0 \cdot x^2 + 0 \cdot x^1 + 1 \cdot x^0$$

- With addition and multiplication these form a field:
- "Add": XOR each element individually with no carry:

$$\frac{x^4 + x^3 + \dots + x + 1}{x^4 + \dots + x^2 + x}$$

• "Multiply": multiplying by x^n is like shifting to the left.

$$\frac{x^{2} + x + 1}{x + 1}$$

$$\frac{x^{2} + x + 1}{x^{2} + x + 1}$$

$$\frac{x^{3} + x^{2} + x}{x^{3} + 1}$$

Spring 2012

Galois Fields - The theory behind LFSRs

- These polynomials form a ٠ Galois (finite) field if we take the results of this multiplication modulo a prime polynomial p(x).
 - A prime polynomial is one that cannot be written as the product of two non-trivial polynomials q(x)r(x)
 - Perform modulo operation by subtracting a (polynomial) multiple of p(x) from the result. If the multiple is 1, this corresponds to XOR-ing the result with p(x).
- For any degree, there exists at least one prime polynomial.
- With it we can form $GF(2^n)$

Spring 2012

• Additionally, ...

- Every Galois field has a primitive • element, α , such that all non-zero elements of the field can be expressed as a power of α . By raising α to powers (modulo p(x)), all non-zero field elements can be formed.
- Certain choices of p(x) make the simple polynomial *x* the primitive element. These polynomials are called *primitive*, and one exists for every degree.
- For example, $x^4 + x + 1$ is primitive. So $\alpha = x$ is a primitive element and successive powers of α will generate all non-zero elements of GF(16). Example on next slide.

EECS150-Lec21-db3

Page 21

Galois Fields - The theory behind LFSRs

$\alpha^{0} = I$ $\alpha^{1} = x$ $\alpha^{2} = x^{2}$ $\alpha^{3} = x^{3}$ $\alpha^{4} = x + I$ $\alpha^{5} = x^{2} + x$ $\alpha^{6} = x^{3} + x^{2}$ $\alpha^{7} = x^{3} + x + I$	•	Note this pattern of coefficients matches the bits from our 4-bit LFSR example.				
$\alpha^8 = x^2 + 1$		$\alpha^4 = x^4 \mod x^4 + x + 1$				
$\alpha^{9} = x^{3} + x$		$= x^4 \operatorname{xor} x^4 + x + 1$				
$\alpha^{10} = x^2 + x + 1$		= x + I				
$\alpha^{11} = x^3 + x^2 + x$		In general finding primitive				
$\alpha^{12} = x^3 + x^2 + x + 1$	•	polynomials is difficult. Most people				
$\alpha^{13} = x^3 + x^2 \qquad + 1$		just look them up in a table, such				
$\alpha^{14} = x^3 \qquad \qquad + 1$		as:				
$\alpha^{15} = 1$						
Spring 2012	EECS150 – Lec2	Page 22				

Primitive Polynomials

$x^{2} + x + 1$ $x^{3} + x + 1$ $x^{4} + x + 1$ $x^{5} + x^{2} + 1$ $x^{6} + x + 1$ $x^{7} + x^{3} + 1$ $x^{8} + x^{4} + x^{3} + x^{2} + 1$ $x^{9} + x^{4} + 1$ $x^{10} + x^{3} + 1$ $x^{11} + x^{2} + 1$	$x^{13} + x^4 + x^{14} + x^{10} - x^{15} + x + x^{16} + x^{12} - x^{16} + x^{12} - x^{17} + x^3 + x^{18} + x^7 + x^{18} + x^7 + x^{18} + x^7 + x^{18} + x^7 + x^{18} + x^{18}$	$x^{3} + x^{3} + x + 1$ $x^{2} + 1$ $x^{2} + x + 1$ $x^{2} + 1$	$x^{22} + x + 1$ $x^{23} + x^5 + 1$ $x^{24} + x^7 + x^2 + x + 1$ $x^{25} + x^3 + 1$ $x^{26} + x^6 + x^2 + x + 1$ $x^{27} + x^5 + x^2 + x + 1$ $x^{28} + x^3 + 1$ $x^{29} + x + 1$ $x^{30} + x^6 + x^4 + x + 1$ $x^{31} + x^3 + 1$	
Galois Field		Hardware	$x^{32} + x^7 + x^6 + x^2 + l$	
Multiplication by x	¢	shift left		
Taking the result mod	$p(x) \Leftrightarrow$	XOR-ing with the coefficients of $p(x)$ when the most significant coefficient is 1.		
Obtaining all 2 ⁿ -1 non		Shifting and XOF	R-ing 2^n -1 times.	
elements by evaluatin	$\log x^k$			
for $k = 1,, 2^n - 1$	FFC	20150 L - 21 #2	D 22	
Spring 2012	EEC	CS150 – Lec21-db3	Page 23	

Building an LFSR from a Primitive Polynomial

- For *k-bit* LFSR number the flip-flops with FF1 on the right.
- The feedback path comes from the Q output of the leftmost FF.
- Find the primitive polynomial of the form $x^k + ... + 1$.
- The $x^0 = I$ term corresponds to connecting the feedback directly to the D input of FF 1.
- Each term of the form x^n corresponds to connecting an xor between FF *n* and *n* +1.
- 4-bit example, uses $x^4 + x + 1$
 - − $x^4 \Leftrightarrow FF4$'s Q output

- $x \Leftrightarrow$ xor between FF1 and FF2 - $l \Leftrightarrow$ FF1's D input
- To build an 8-bit LFSR, use the primitive polynomial $x^8 + x^4 + x^3 + x^2 + 1$ and connect xors between FF2 and FF3, FF3 and FF4, and FF4 and FF5.

Error Correction with LFSRs

- XOR Q4 with incoming bit sequence. Now values of shift-register don't follow a fixed pattern. Dependent on input sequence.
- Look at the value of the register after 15 cycles: "1010"
- Note the length of the input sequence is 2⁴-1 = 15 (same as the number of different nonzero patters for the original LFSR)
- Binary message occupies only 11 bits, the remaining 4 bits are "0000".
 - They would be replaced by the final result of our LFSR: "1010"
 - If we run the sequence back through the LFSR with the replaced bits, we would get "0000" for the final result.
 - 4 parity bits "neutralize" the sequence with respect to the LFSR.

 $11001000111 0000 \Rightarrow 1010$

 $1100100011111010 \Rightarrow 0000$

- If parity bits not all zero, an error occurred in transmission.
- If number of parity bits = log total number of bits, then single bit errors can be corrected.
- Using more parity bits allows more errors to be detected.
- Ethernet uses 32 parity bits per frame (packet) with 16-bit LFSR.