<u>EECS150 - Digital Design</u> <u>Lecture 21 - Multipliers & Shifters</u>

April 9, 2013 John Wawrzynek

Spring 2013

EECS150 - Lec21-mult-shift

Page 1

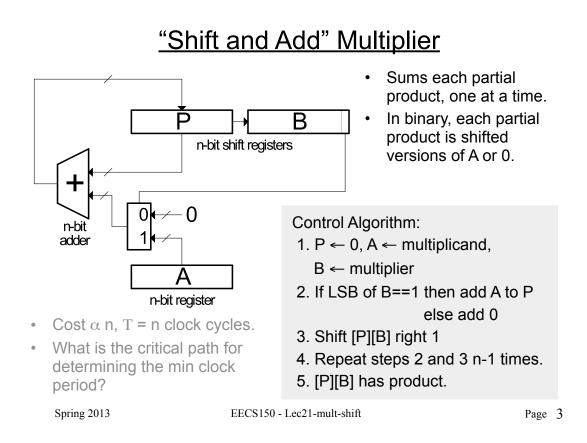
Multiplication

			a ₃ b ₃	a ₂ b ₂	a ₁ b ₁	$a_0 \leftarrow Multiplicand$ $b_0 \leftarrow Multiplier$
a ₃ b ₃	a ₃ b ₂ a ₂ b ₃	a_2b_2	a ₂ b ₁ a ₁ b ₂	a ₁ b ₁		a ₀ b ₀ Partial products

 $a_1b_0+a_0b_1a_0b_0 \leftarrow Product$

Many different circuits exist for multiplication. Each one has a different balance between speed (performance) and amount of logic (cost).

. . .



"Shift and Add" Multiplier

Signed Multiplication:

Remember for 2's complement numbers MSB has negative weight:

$$X = \sum_{i=0}^{N-2} x_i 2^i - x_{n-1} 2^{n-1}$$

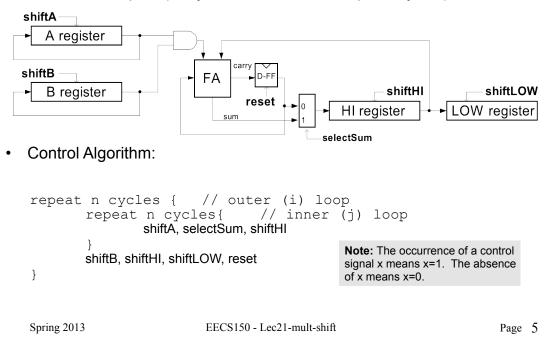
ex: $-6 = 11010_2 = 0.2^0 + 1.2^1 + 0.2^2 + 1.2^3 - 1.2^4$ = 0 + 2 + 0 + 8 - 16 = -6

- Therefore for multiplication:
 - a) subtract final partial product
 - b) sign-extend partial products
- Modifications to shift & add circuit:
 - a) adder/subtractor
 - b) sign-extender on P shifter register

Spring 2013

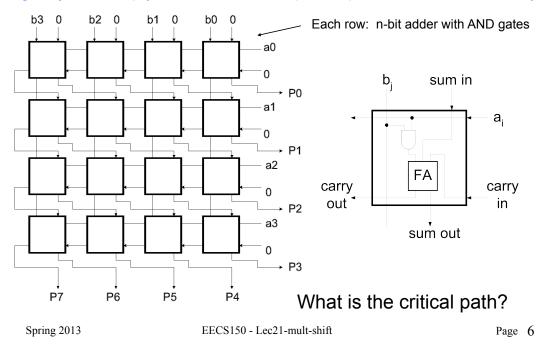
Bit-serial Multiplier

• Bit-serial multiplier (n² cycles, one bit of result per n cycles):



Array Multiplier

Single cycle multiply: Generates all n partial products simultaneously.



Carry-Save Addition

- Speeding up multiplication is a ٠ matter of speeding up the summing of the partial products.
- Example: sum three numbers, ٠ $3_{10} = 0011, 2_{10} = 0010, 3_{10} = 0011$
- "Carry-save" addition can help.
- Carry-save addition passe (saves) the carries to the rather than propagating th

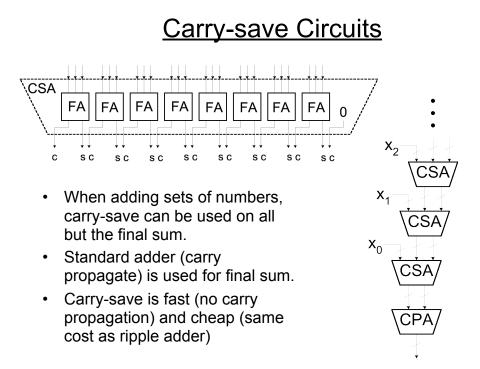
tion can help.
a)
$$3_{10}$$
 0011
b) passes
s to the output,
gating them.
carry-save add
carry-propagate add

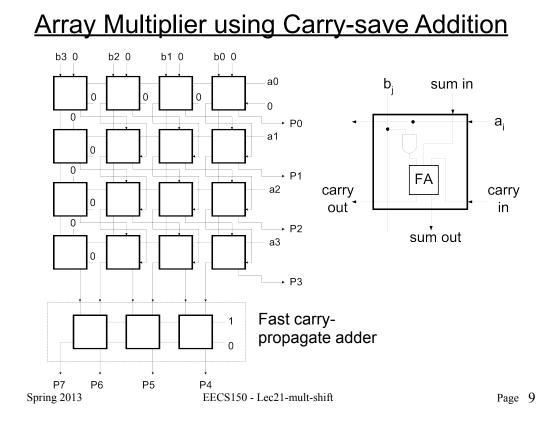
$$\begin{cases}
3_{10} & 0010 \\
0100 &= 4_{10} \\
s & 0001 &= 1_{10}
\end{cases}$$
carry-save add
 $3_{10} & 0011 \\
c & 0011 \\
c & 0010 &= 2_{10} \\
s & 0110 &= 6_{10} \\
1000 &= 8_{10}
\end{cases}$
carry-save add

- In general, carry-save addition takes in 3 numbers and produces 2. ٠
- Whereas, carry-propagate takes 2 and produces 1.

са

• With this technique, we can avoid carry propagation until final addition EECS150 - Lec21-mult-shift Spring 2013 Page 7





Carry-save Addition

CSA is associative and communitive. For example:

$$(((X_0 + X_1) + X_2) + X_3) = ((X_0 + X_1) + (X_2 + X_3))$$



- A balanced tree can be used to reduce the logic delay.
- This structure is the basis of the Wallace Tree Multiplier.
- · Partial products are summed with the CSA tree. Fast CPA (ex: CLA) is used for final sum.
 - Multiplier delay $\alpha \log_{3/2} N + \log_2 N$

Spring 2013

Constant Multiplication

- Our discussion so far has assumed both the multiplicand (A) and the multiplier (B) can vary at runtime.
- What if one of the two is a constant?

Y = C * X

• "Constant Coefficient" multiplication comes up often in signal processing and other hardware. Ex:

 $y_i = \alpha y_{i-1} + x_i$ $x_i \longrightarrow y_i$

where $\,\alpha$ is an application dependent constant that is hard-wired into the circuit.

• How do we build and array style (combinational) multiplier that takes advantage of the constancy of one of the operands?

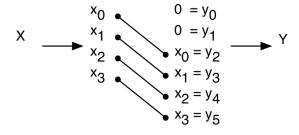
```
Spring 2013
```

EECS150 - Lec21-mult-shift

Page 11

Multiplication by a Constant

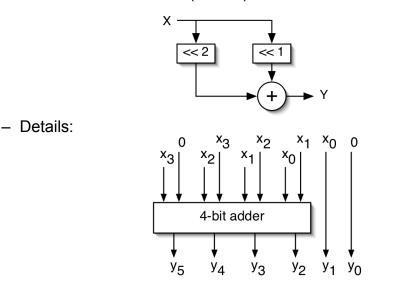
- If the constant C in C*X is a power of 2, then the multiplication is simply a shift of X.
- Ex: 4*X



- What about division?
- What about multiplication by non- powers of 2?

Multiplication by a Constant

In general, a combination of fixed shifts and addition:
 Ex: 6*X = 0110 * X = (2² + 2¹)*X



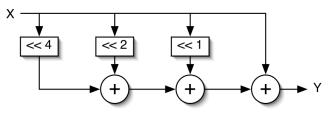
Spring 2013

EECS150 - Lec21-mult-shift

Page 13

Multiplication by a Constant

• Another example: C = 23₁₀ = 010111



- In general, the number of additions equals the number of 1's in the constant minus one.
- Using carry-save adders (for all but one of these) helps reduce the delay and cost, but the number of adders is still the number of 1's in C minus 2.
- Is there a way to further reduce the number of adders (and thus the cost and delay)?

Spring 2013

Multiplication using Subtraction

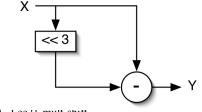
- Subtraction is ~ the same cost and delay as addition.
- Consider C*X where C is the constant value 15₁₀ = 01111.
 C*X requires 3 additions.
- We can "recode" 15

from
$$01111 = (2^3 + 2^2 + 2^1 + 2^0)$$

to $1000\overline{1} = (2^4 - 2^0)$

where 1 means negative weight.

• Therefore, 15*X can be implemented with only one subtractor.



Spring 2013

EECS150 - Lec21-mult-shift

Page 15

Canonic Signed Digit Representation

- CSD represents numbers using 1, 1, & 0 with the least possible number of non-zero digits.
 - Strings of 2 or more non-zero digits are replaced.
 - Leads to a unique representation.
- To form CSD representation might take 2 passes:
 - First pass: replace all occurrences of 2 or more 1's:

- Second pass: same as a above, plus replace $0\overline{1}10$ by $00\overline{1}0$
- Examples:

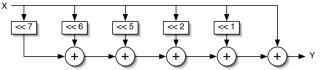
011101 = 290010111 = 230110110 = 54100T01 = 32 - 4 + 1001100T10T10T0010T00T = 32 - 8 - 1100T0T0 = 64 - 8 - 2

• Can we further simplify the multiplier circuits?

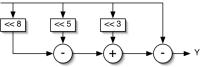
Spring 2013

"Constant Coefficient Multiplication" (KCM)

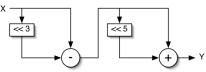
Binary multiplier: $Y = 231^*X = (2^7 + 2^6 + 2^5 + 2^2 + 2^1 + 2^0)^*X$



- CSD helps, but the multipliers are limited to shifts followed by adds.
 - CSD multiplier: $Y = 231*X = (2^8 2^5 + 2^3 2^0)*X$



- How about shift/add/shift/add ...?
 - KCM multiplier: Y = 231*X = 7*33*X = (2³ 2⁰)*(2⁵ + 2⁰)*X



- No simple algorithm exists to determine the optimal KCM representation.
- Most use exhaustive search method.
 Spring 2013 EECS150 Lec21-mult-shift

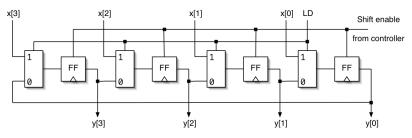
Page 17

Fixed Shifters / Rotators

"fixed" shifters • ×6 ×5 ×4 x₃ x2 Хı x₀ "hardwire" the shift 1 ſ Logical Shift amount into the circuit. 0 0 У₂ У₇ У₆ У₅ У4 УЗ У₁ y₀ Ex: verilog: X >> 2 ×6 ×7 ×5 x₄ x₂ x₁ x₀ - (right shift X by 2 places) x₃ Rotate Fixed shift/rotator is • У₇ У_б У₅ У4 УЗ У₂ Уı y₀ nothing but wires! ×2 ×1 ×₀ x_4 ×6 ×5 x₃ X7 So what? 1 T Arithmetic Shift y₆ y₅ y₄ y₃ У7 ^y2 ^y1 Уn

<u>Variable Shifters / Rotators</u>

- Example: X >> S, where S is unknown when we synthesize the circuit.
- Uses: shift instruction in processors (ARM includes a shift on every instruction), floating-point arithmetic, division/multiplication by powers of 2, etc.
- One way to build this is a simple shift-register:
 - a) Load word, b) shift enable for S cycles, c) read word.



- Worst case delay O(N), not good for processor design.
- Can we do it in O(logN) time and fit it in one cycle?

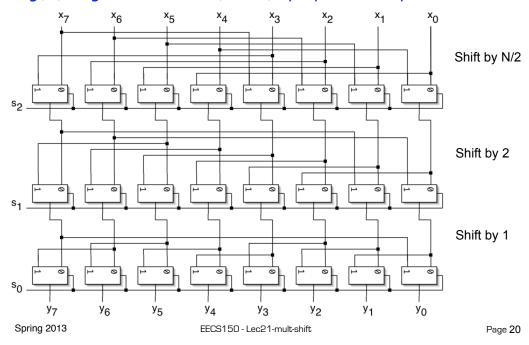
Spring 2013

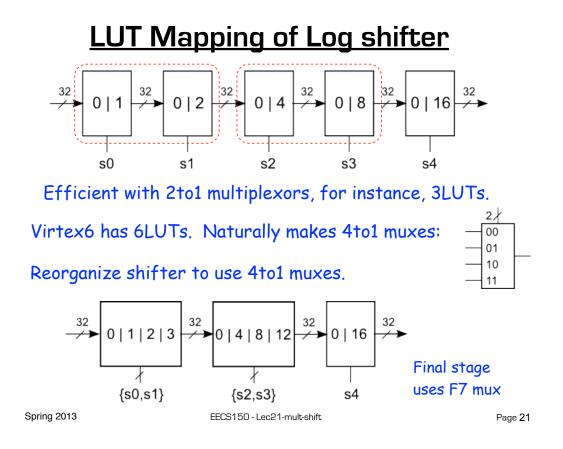
EECS150 - Lec21-mult-shift

Page 19

Log Shifter / Rotator

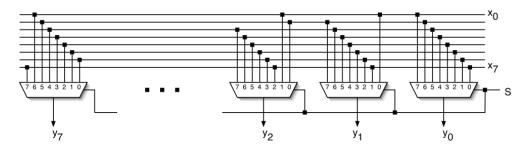
• Log(N) stages, each shifts (or not) by a power of 2 places,





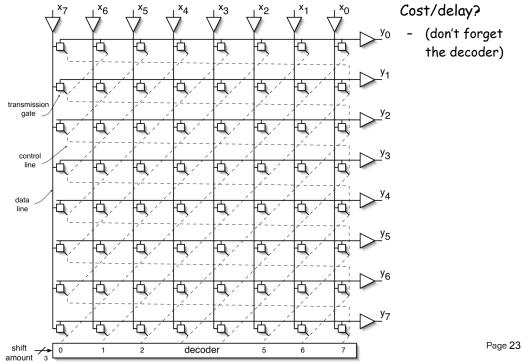
<u> "Improved" Shifter / Rotator</u>

• How about this approach? Could it lead to even less delay?

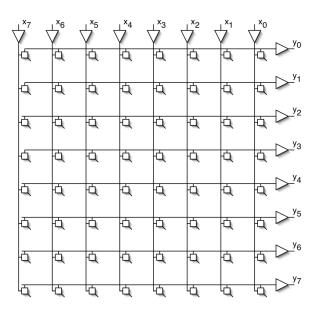


- What is the delay of these big muxes?
- Look a transistor-level implementation?

Barrel Shifter



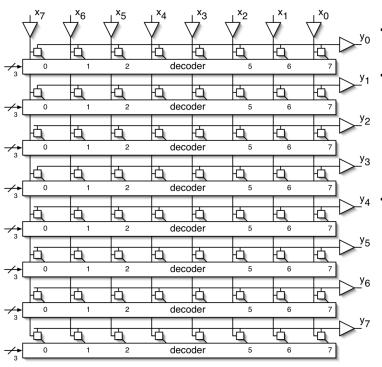
Connection Matrix



Generally useful structure:

- N² control points.
- What other interesting functions can it do?

<u>Cross-bar Switch</u>



Nlog(N) control signals.

- Supports all interesting permutations
- All one-to-one and one-to-many connections.
- Commonly used in communication hardware (switches, routers).

Page 25