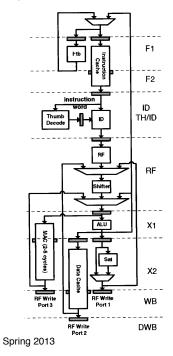

EECS150 - Digital Design

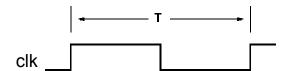
Lecture 16 - Circuit Timing

March 14, 2013 John Wawrzynek

 Spring 2013
 EECS150 - Lec16-timing1
 Page 1

Performance, Cost, Power


- How do we measure performance? operations/sec? cycles/sec?
- Performance is directly proportional to clock frequency.
 Although it may not be the entire story:

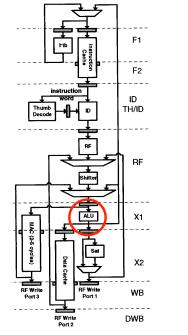

Ex: CPU performance

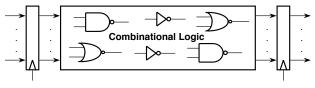
= # instructions X CPI X clock period

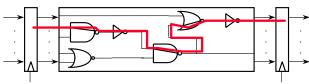
Timing Analysis

ARM processor Microarch

Timing Analysis

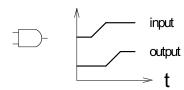

What is the smallest T that produces correct operation?


f	T	
1 MHz	1 μs	
10 MHz	100 ns	
100 MHz	10 ns	
1 GHz	1 ns	


EECS150 - Lec16-timing1

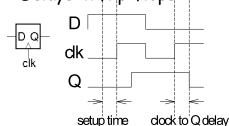
Page 3

Timing Analysis and Logic Delay



If T > worst-case delay through CL, does this ensures correct operation?

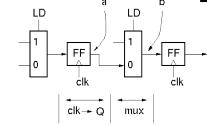
4


Limitations on Clock Rate

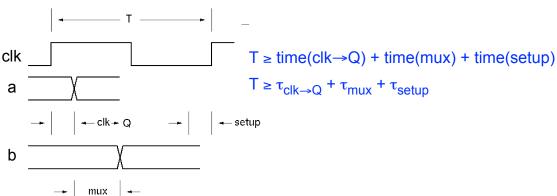
1 Logic Gate Delay

What are typical delay values?

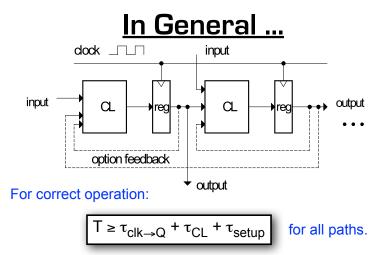
2 Delays in flip-flops



Both times contribute to limiting the clock period.


- · What must happen in one clock cycle for correct operation?
 - All signals connected to FF (or memory) inputs must be ready and "setup" before rising edge of clock.
 - For now we assume perfect clock distribution (all flip-flops see the clock at the same time).

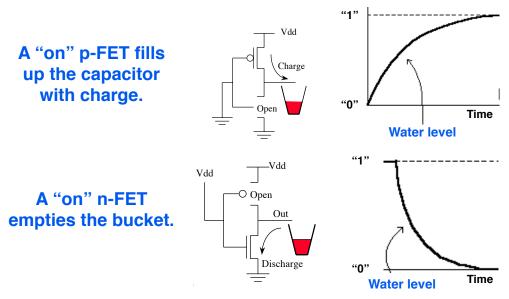
 Spring 2013
 EECS150 - Lec16-timing1
 Page 5


Parallel to serial converter circuit

Spring 2013

EECS150 - Lec16-timing1

Page 6

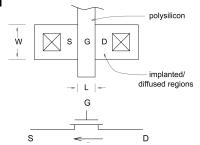


- How do we enumerate all paths?
 - Any circuit input or register output to any register input or circuit output?
- · Note:
 - "setup time" for outputs is a function of what it connects to.
 - "clk-to-q" for circuit inputs depends on where it comes from.

 Spring 2013
 EECS150 - Lec16-timing1
 Page 7

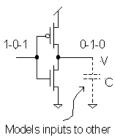
CMOS Delay: Transistors as water valves

If electrons are water molecules, and a capacitor a bucket ...

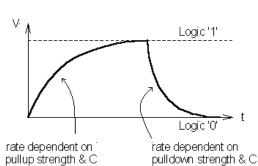


Spring 2013

This model is often good enough ...

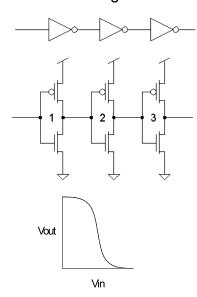

Transistors as Conductors

 Improved Transistor Model: nFET


- We refer to transistor "strength" as the amount of current that flows for a given Vds and Vgs.
- The strength is linearly proportional to the ratio of W/L.

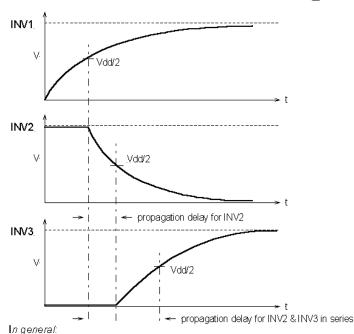
Models inputs to other gates & wire capacitance

Spring 2013



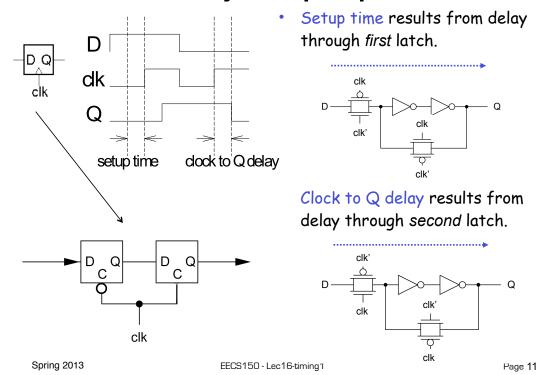
Page 9

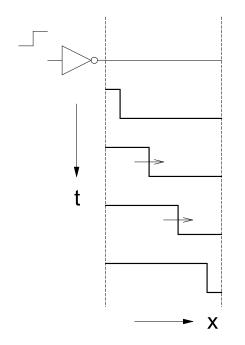
Gate Delay is the Result of Cascading


EECS150 - Lec16-timing1

· Cascaded gates:

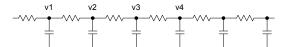
"transfer curve" for inverter.


Spring 2013

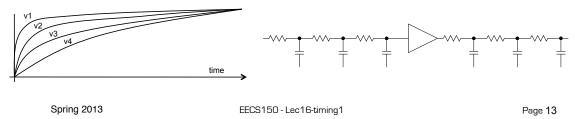

prop. delay = sum of individual prop. delays of gates in series.

EECS150 - Lec16-timing1

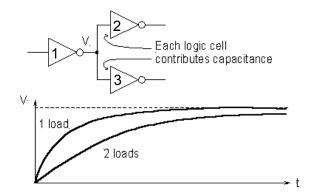
Delay in Flip-flops


Wire Delay

- Ideally, wires behave as "transmission lines":
 - signal wave-front moves close to the speed of light
 - ~1ft/ns
 - Time from source to destination is called the "transit time".
 - In ICs most wires are short, and the transit times are relatively short compared to the clock period and can be ignored.
 - Not so on PC boards.

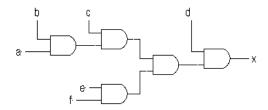

Wire Delay

- Even in those cases where the transmission line effect is negligible:
 - Wires posses distributed resistance and capacitance



 Time constant associated with distributed RC is proportional to the square of the length

- For short wires on ICs, resistance is insignificant (relative to effective R of transistors), but C is important.
 - Typically around half of C of gate load is in the wires.
- For long wires on ICs:
 - busses, clock lines, global control signal, etc.
 - Resistance is significant, therefore distributed RC effect dominates.
 - signals are typically "rebuffered" to reduce delay:


Delay and "Fan-out"

- The delay of a gate is proportional to its output capacitance.
 Connecting the output of gate to more than one other gate increases it's output capacitance. It takes increasingly longer for the output of a gate to reach the switching threshold of the gates it drives as we add more output connections.
- Driving wires also contributes to fan-out delay.
- What can be done to remedy this problem in large fan-out situations?

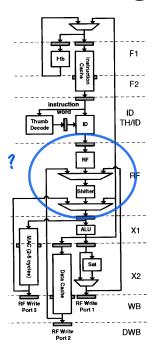
"Critical" Path

- Critical Path: the path in the entire design with the maximum delay.
 - This could be from state element to state element, or from input to state element, or state element to output, or from input to output (unregistered paths).
- For example, what is the critical path in this circuit?

· Why do we care about the critical path?

 Spring 2013
 EECS150 - Lec16-timing1
 Page 15

Components of Path Delay


- 1. # of levels of logic
- 2. Internal cell delay
- 3. wire delay
- 4. cell input capacitance
- 5. cell fanout
- 6. cell output drive strength

Who controls the delay?

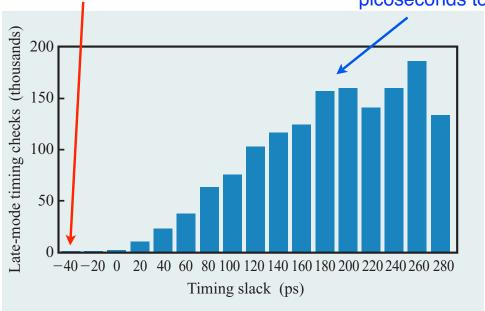
	Silicon foundary engineer	Cell Library Developer, FPGA- chip designer	CAD Tools (logic synthesis, place and route	Designer (you)
1. # of levels			synthesis	RTL
2. Internal cell delay	physical parameters	cell topology, trans sizing	cell selection	
3. Wire delay	physical parameters		place & route	layout generator
4. Cell input capacitance	physical parameters	cell topology, trans sizing	cell selection	
5. Cell fanout			synthesis	RTL
6. Cell drive strength	physical parameters	transistor sizing	cell selection	instantiation (ASIC)

Spring 2013 EECS150 - Lec16-timing1 Page 17

Searching for processor critical path

Must consider all connected register pairs, paths from input to register, register to output. Don't forget the controller.

- Design tools help in the search.
- Synthesis tools report delays on paths,
- Special static timing analyzers accept a design netlist and report path delays,
- and, of course, **simulators** can be used to determine timing performance.

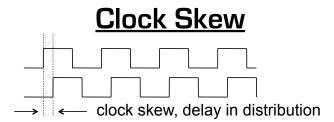

Tools that are expected to **do something** about the timing behavior (such as synthesizers), also include provisions for specifying input arrival times (relative to the clock), and output requirements (set-up times of next stage).

Spring 2013 EECS150 - Lec16-timing1 Page

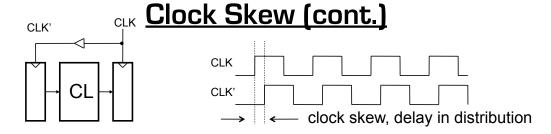
Real Stuff: Timing Analysis

The critical path

Most paths have hundreds of picoseconds to spare.

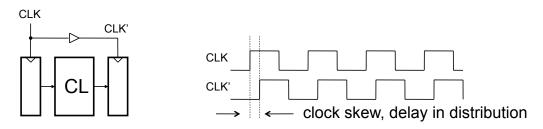


From "The circuit and physical design of the POWER4 microprocessor", IBM J Res and Dev, 46:1, Jan 2002, J.D. Warnock et al.

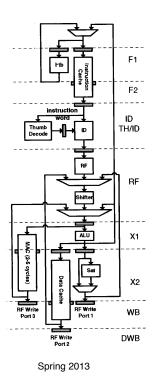

Spring 2013

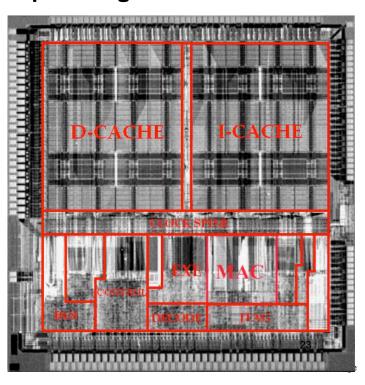
EECS150 - Lec16-timing1

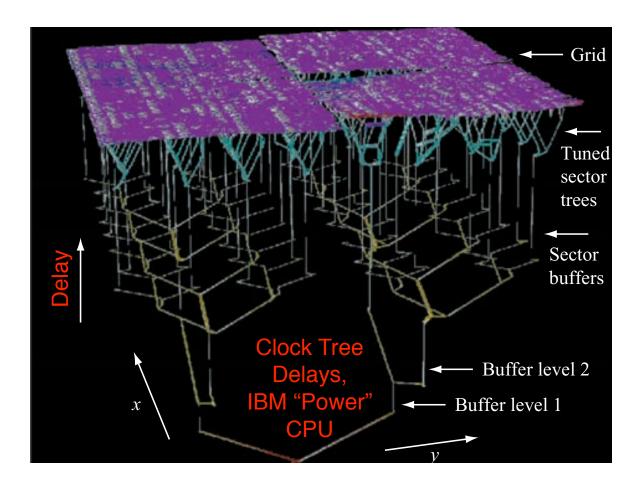
Page 19

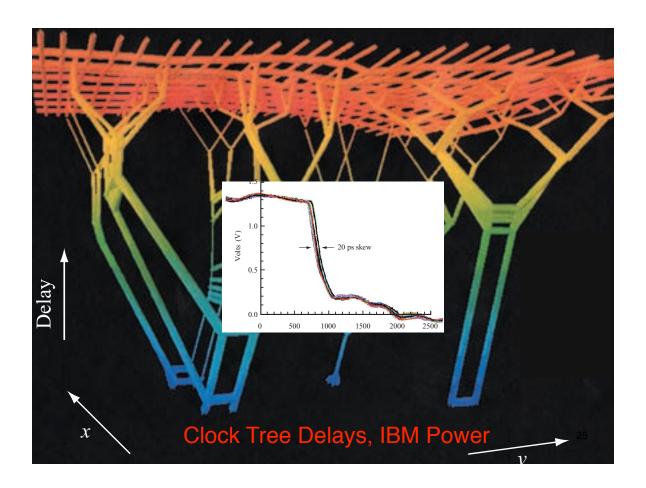

- Unequal delay in distribution of the clock signal to various parts of a circuit:
 - if not accounted for, can lead to erroneous behavior.
 - Comes about if:
 - clock wires have different delay,
 - circuit is designed with a different number of clock buffers from the clock source to the various clock loads, or
 - · buffers have unequal delay.
 - All synchronous circuits experience some clock skew:
 - more of an issue for high-performance designs operating with very little extra time per clock cycle.

- If clock period $T = T_{CL} + T_{\text{setup}} + T_{\text{clk} \to Q}$, circuit will fail.
- Therefore:
 - 1. Control clock skew
 - a) Careful clock distribution. Equalize path delay from clock source to all clock loads by controlling wires delay and buffer delay.
 - b) don't "gate" clocks in a non-uniform way.
 - 2. $T \ge T_{CL} + T_{setup} + T_{clk \to Q} + worst case skew.$
- Most modern large high-performance chips (microprocessors)
 control end to end clock skew to a small fraction of the clock period.


Spring 2013 EECS150 - Lec16-timing1 Page 21


Clock Skew (cont.)




- Note reversed buffer.
- In this case, clock skew actually provides extra time (adds to the effective clock period).
- This effect has been used to help run circuits as higher clock rates. Risky business!

Real Stuff: Floorplanning Intel XScale 80200

