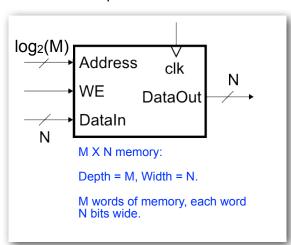
EECS150 - Digital Design

<u>Lecture 11 - Static Random Access</u> <u>Memory (SRAM)</u>

Feb 26, 2013 John Wawrzynek

 Spring 2013
 EECS150 - Lec11-sram
 Page 1

Memory-Block Basics


Uses:

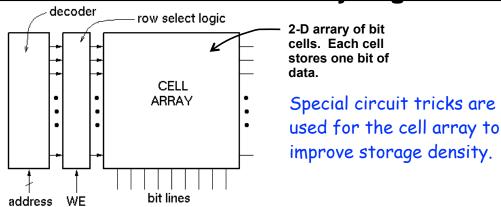
Whenever a large collection of state elements is required.

- data & program storage
- general purpose registers
- data buffering
- table lookups
- CL implementation

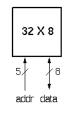
Basic Types:

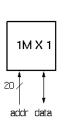
- RAM random access memory
- ROM read only memory
- EPROM, FLASH electrically programmable read only memory

Memory Components Types:

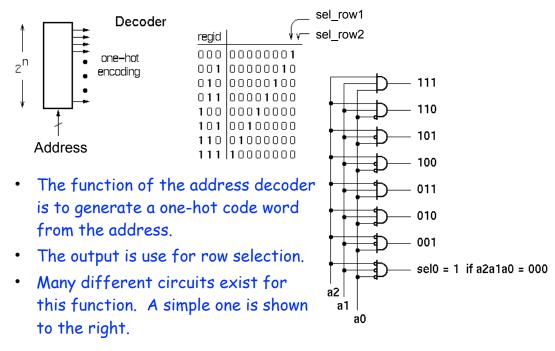

- · Volatile:
 - Random Access Memory (RAM):
 - · DRAM "dynamic"
 - SRAM "static"

Focus Today

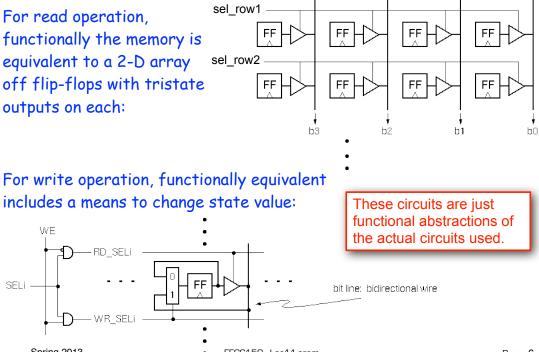

- · Non-volatile:
 - Read Only Memory (ROM):
 - Mask ROM "mask programmable"
 - EPROM "electrically programmable"
 - EEPROM "erasable electrically programmable"
 - FLASH memory similar to EEPROM with programmer integrated on chip


All these types are available as stand alone chips or as blocks in other chips.

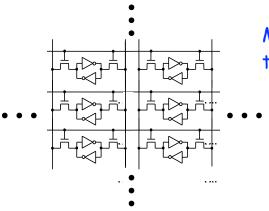
Standard Internal Memory Organization



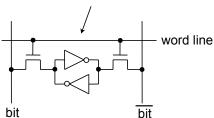
- · RAM/ROM naming convention:
 - examples: 32 X 8, "32 by 8" => 32 8-bit words
 - 1M X 1, "1 meg by 1" => 1M 1-bit words


Address Decoding

Spring 2013 EECS150 - Lec11-sram Page 5


Memory Block Internals

functionally the memory is equivalent to a 2-D array off flip-flops with tristate outputs on each:


Spring 2013 EECS150 - Lec11-sram Page 6

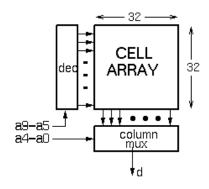
SRAM Cell Array Details

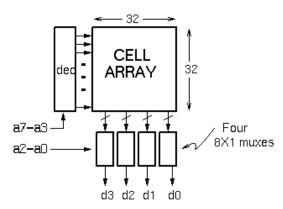
Most common is 6transistor (6T) cell array.

Word selects this cell, and all others in a row.

For write operation, column bit lines are driven differentially (0 on one, 1 on the other). Values overwrites cell state.

For read operation, column bit lines are equalized (set to same voltage), then released. Cell pulls down one bit line or the other.

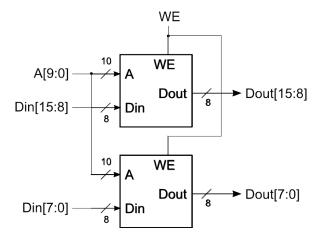

Spring 2013


EECS150-Lec11-sram

Page 7

Column MUX in ROMs and RAMs:

- · Permits input/output data widths different from row width.
- · Controls physical aspect ratio
 - Important for physical layout and to control delay on wires.

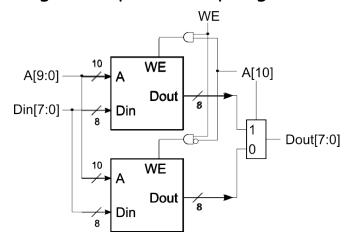

Technique illustrated for read operation. Similar approach for write.

Spring 2013 EECS150 - Lec11-sram Page 8

Cascading Memory-Blocks

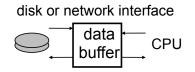
How to make larger memory blocks out of smaller ones.

Increasing the width. Example: given 1Kx8, want 1Kx16



 Spring 2013
 EECS150 - Lec11-sram
 Page 9

Cascading Memory-Blocks


How to make larger memory blocks out of smaller ones.

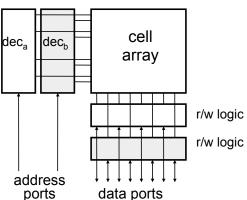
Increasing the depth. Example: given 1Kx8, want 2Kx8

Multi-ported Memory

- Motivation:
 - Consider CPU core register file:
 - 1 read or write per cycle limits processor performance.
 - Complicates pipelining. Difficult for different instructions to simultaneously read or write regfile.
 - Common arrangement in pipelined CPUs is 2 read ports and 1 write port.
 - I/O data buffering:

dual-porting
allows both sides
to simultaneously
access memory at
full bandwidth.

Dual-port Memory


Dout_a

Dout_b

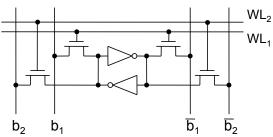
 Spring 2013
 EECS150 - Lec11-sram
 Page 11

Dual-ported Memory Internals

 Add decoder, another set of read/write logic, bits lines, word lines:

Example cell: SRAM

 \mathbf{A}_{a}

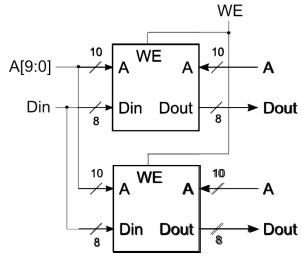

 Din_a

 WE_a

 A_b

Din_h

 WE_b

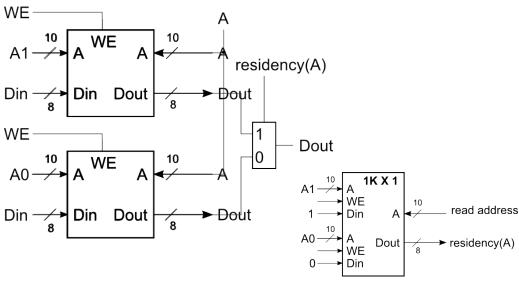


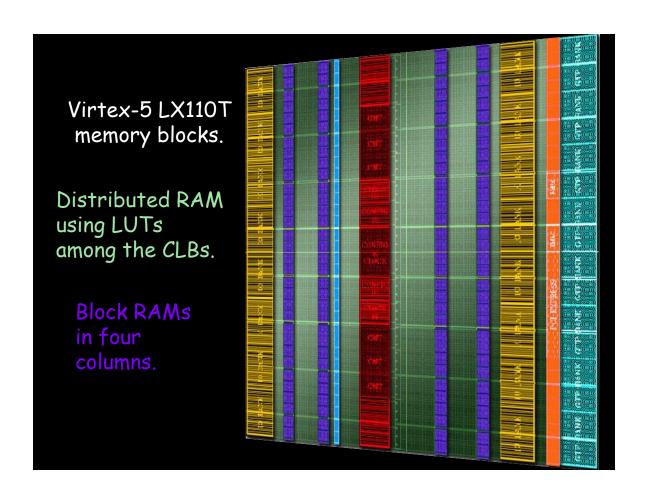
- Repeat everything but crosscoupled inverters.
- This scheme extends up to a couple more ports, then need to add additional transistors.

Adding Ports to Primitive Memory Blocks

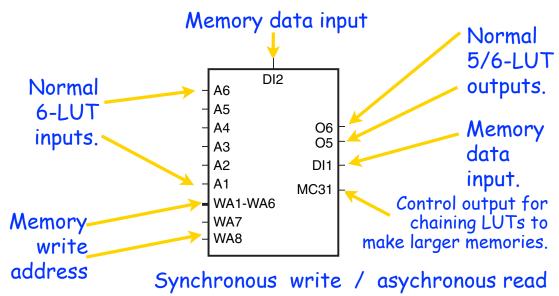
Adding a read port to a simple dual port (SDP) memory.

Example: given 1Kx8 SDP, want 1 write & 2 read ports.

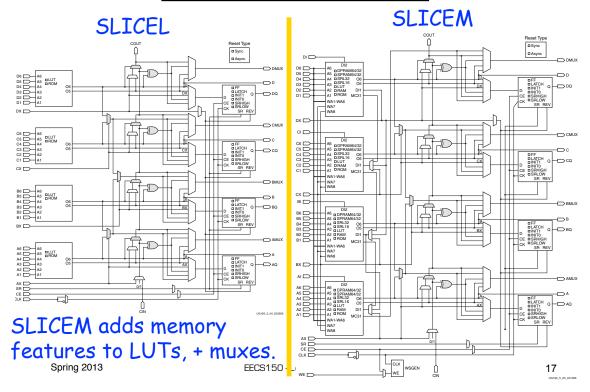



Spring 2013 EECS150 - Lec11-sram Page 13

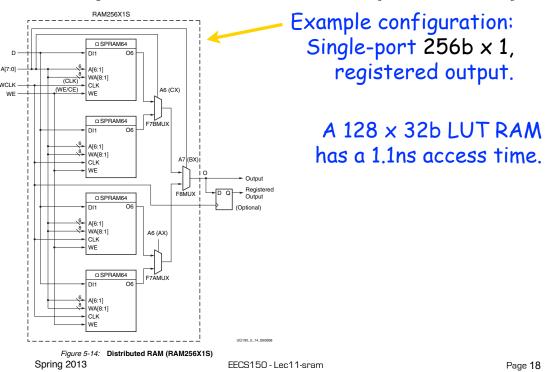
Adding Ports to Primitive Memory Blocks


How to add a write port to a simple dual port memory.

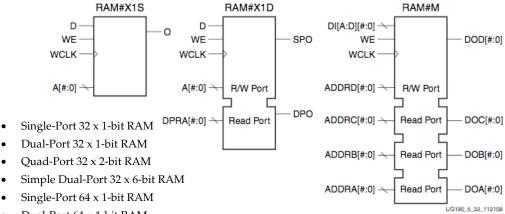
Example: given 1Kx8 SDP, want 1 read & 2 write ports.



A SLICEM 6-LUT ...



A 1.1 Mb distributed RAM can be made if all SLICEMs of an LX110T are used as RAM.


SLICEL vs SLICEM ...

Example Distributed RAM (LUT RAM)

Distributed RAM Primitives

- Dual-Port 64 x 1-bit RAM
- Quad-Port 64 x 1-bit RAM All are built from a single slice or less.
- Simple Dual-Port 64 x 3-bit RAM
- Single-Port 128 x 1-bit RAM Remember, though, that the SLICEM LUT
- Dual-Port 128 x 1-bit RAM
- Single-Port 256 x 1-bit RAM

is naturally only 1 read and 1 write port.

Spring 2013 EECS150 - Lec11-sram Page 19

Example Dual Port Configurations

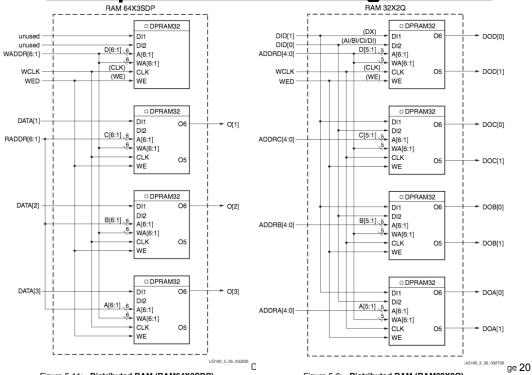


Figure 5-11: Distributed RAM (RAM64X3SDP)

Figure 5-6: Distributed RAM (RAM32X2Q)

Distributed RAM Timing

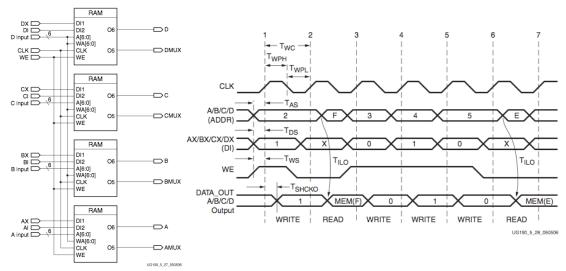
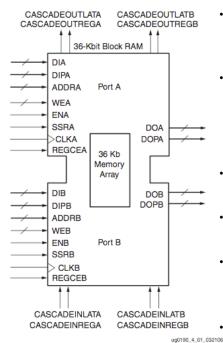
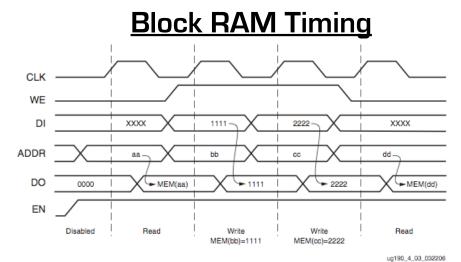



Figure 5-27: Simplified Virtex-5 FPGA SLICEM Distributed RAM

Table 1: Virtex-5 FPGA Family Members


Device	Configurable Logic Blocks (CLBs)				Block RAM Blocks				PowerPC	Endpoint		Max RocketlO Transceivers(6)		Total	Max
	Array (Row x Col)	Virtex-5 Slices ⁽¹⁾	Max Distributed RAM (Kb)	DSP48E Slices ⁽²⁾	18 Kb ⁽³⁾	36 Kb	Max (Kb)	CMTs ⁽⁴⁾	Processor Blocks	Blocks for PCI Express	Ethernet MACs ⁽⁵⁾	GTP	GTX	I/O Banks ⁽⁸⁾	User
XC5VLX30	80 x 30	4,800	320	32	64	32	1,152	2	N/A	N/A	N/A	N/A	N/A	13	400
XC5VLX50	120 x 30	7,200	480	48	96	48	1,728	6	N/A	N/A	N/A	N/A	N/A	17	560
XC5VLX85	120 x 54	12,960	840	48	192	96	3,456	6	N/A	N/A	N/A	N/A	N/A	17	560
XC5VLX110	160 x 54	17,280	1,120	64	256	128	4,608	6	N/A	N/A	N/A	N/A	N/A	23	800
XC5VLX155	160 x 76	24,320	1,640	128	384	192	6,912	6	N/A	N/A	N/A	N/A	N/A	23	800
XC5VLX220	160 x 108	34,560	2,280	128	384	192	6,912	6	N/A	N/A	N/A	N/A	N/A	23	800
XC5VLX330	240 x 108	51,840	3,420	192	576	288	10,368	6	N/A	N/A	N/A	N/A	N/A	33	1,200
XC5VLX20T	60 x 26	3,120	210	24	52	26	936	1	N/A	1	2	4	N/A	7	172
XC5VLX30T	80 x 30	4,800	320	32	72	36	1,296	2	N/A	1	4	8	N/A	12	360
XC5VLX50T	120 x 30	7,200	480	48	120	60	2,160	6	N/A	1	4	12	N/A	15	480
XC5VLX85T	120 x 54	12,960	840	48	216	108	3,888	6	N/A	1	4	12	N/A	15	480
XC5VLX110T	160 x 54	17,280	1,120	64	296	148	5,328	6	N/A	1	4	16	N/A	20	680
XC5VLX155T	160 x 76	24,320	1,640	128	424	212	7,632	6	N/A	1	4	16	N/A	20	680
XC5VLX220T	160 x 108	34,560	2,280	128	424	212	7,632	6	N/A	1	4	16	N/A	20	680
XC5VLX330T	240 x 108	51,840	3,420	192	648	324	11,664	6	N/A	1	4	24	N/A	27	960
XC5VSX35T	80 x 34	5,440	520	192	168	84	3,024	2	N/A	1	4	8	N/A	12	360
XC5VSX50T	120 x 34	8,160	780	288	264	132	4,752	6	N/A	1	4	12	N/A	15	480
XC5VSX95T	160 x 46	14,720	1,520	640	488	244	8,784	6	N/A	1	4	16	N/A	19	640
XC5VSX240T	240 x 78	37,440	4,200	1,056	1,032	516	18,576	6	N/A	1	4	24	N/A	27	960
XC5VTX150T	200 x 58	23,200	1,500	80	456	228	8,208	6	N/A	1	4	N/A	40	20	680
XC5VTX240T	240 x 78	37,440	2,400	96	648	324	11,664	6	N/A	1	4	N/A	48	20	680
XC5VFX30T	80 x 38	5,120	380	64	136	68	2,448	2	1	1	4	N/A	8	12	360
XC5VFX70T	160 x 38	11,200	820	128	296	148	5,328	6	1	3	4	N/A	16	19	640
XC5VFX100T	160 x 56	16,000	1,240	256	456	228	8,208	6	2	3	4	N/A	16	20	680
XC5VFX130T	200 x 56	20,480	1,580	320	596	298	10,728	6	2	3	6	N/A	20	24	840
XC5VFX200T	240 x 68	30,720	2,280	384	912	456	16,416	6	2	4	8	N/A	24	27	960

Block RAM Overview

Spring 2013

- 36K bits of data total, can be configured as:
 - 2 independent 18Kb RAMs, or one 36Kb RAM.
- Each 36Kb block RAM can be configured as:
 - 64Kx1 (when cascaded with an adjacent 36Kb block RAM), 32Kx1, 16Kx2, 8Kx4, 4Kx9, 2Kx18, or 1Kx36 memory.
- Each 18Kb block RAM can be configured as:
 - 16Kx1, 8Kx2, 4Kx4, 2Kx9, or 1Kx18 memory.
- Write and Read are synchronous operations.
- The two ports are symmetrical and totally independent (can have different clocks), sharing only the stored data.
- Each port can be configured in one of the available widths, independent of the other Page 23

- Note this is in the default mode, "WRITE_FIRST". Other possible modes are "READ_FIRST", and "NO_CHANGE".
- Optional output register, would delay appearance

Verilog Synthesis Notes

- Block RAMS and LUT RAMS all exist as primitive library elements. However, it is much more convenient to use inference.
- Depending on how you write your verilog, you will get either a collection of block RAMs, a collection of LUT RAMs, or a collection of flip-flops.
- The synthesizer uses size, and read style (synch versus asynch) to determine the best primitive type to use.
- It is possible to force mapping to a particular primitive by using synthesis directives. However, if you write your verilog correctly, you will not need to use directives.
- The synthesizer has limited capabilities (eg., it can combine primitives for more depth and width, but is limited on porting options). Be careful, as you might not get what you want.
- See XST User Guide for examples.

Spring 2013 EECS150 - Lec11-sram Page 25

Inferring RAMs in Verilog

Dual-read-port LUT RAM

```
//
// Multiple-Port RAM Descriptions
module v_rams_17 (clk, we, wa, ra1, ra2, di, do1, do2);
   input clk;
   input we;
   input [5:0] wa;
   input [5:0] ra1;
   input [5:0] ra2;
input [15:0] di;
   output [15:0] do1;
   output [15:0] do2;
   reg [15:0] ram [63:0];
   always @(posedge clk)
   begin
       if (we)
          ram[wa] <= di;
   assign do2 = ram[ra2];
endmodule
```

 Spring 2013
 EECS150 - Lec11-sram
 Page 27

Block RAM Inference

```
//
// Single-Port RAM with Synchronous Read
11
module v_rams_07 (clk, we, a, di, do);
    input clk;
    input we;
    input [5:0] a;
    input [15:0] di;
    output [15:0] do;
    reg [15:0] ram [63:0];
    reg
           [5:0] read_a;
    always @(posedge clk) begin
        if (we)
            ram[a] <= di;
                                     Synchronous read
       read_a <= a; ..... (registered read address)
                                      infers Block RAM
    assign do = ram[read a];
endmodule
```

Block RAM initialization

```
module RAMB4_S4 (data_out, ADDR, data_in, CLK, WE);
   output[3:0] data out;
   input [2:0] ADDR;
   input [3:0] data_in;
   input CLK, WE;
   reg [3:0] mem [7:0];
   reg [3:0] read_addr;
   initial
                                              "data.dat" contains initial RAM
     begin
                                      contents, it gets put into the bitfile
       $readmemb("data.dat", mem);
                                             and loaded at configuration time.
     end
                                            (Remake bits to change contents)
   always@(posedge CLK)
     read addr <= ADDR;
   assign data out = mem[read addr];
   always @(posedge CLK)
     if (WE) mem[ADDR] = data_in;
   endmodule
  Spring 2013
                              EECS150 - Lec11-sram
                                                                        Page 29
```

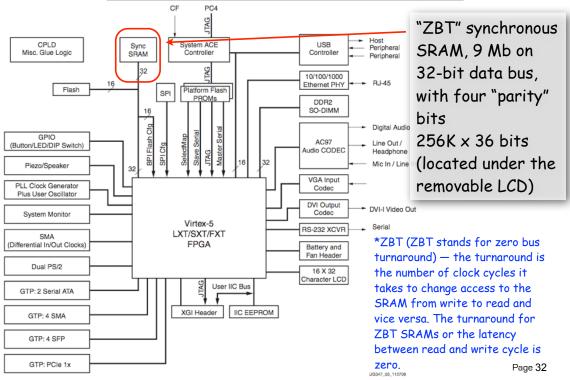
Dual-Port Block RAM

```
module test (data0,data1,waddr0,waddr1,we0,we1,clk0, clk1, q0, q1);
   parameter d_width = 8; parameter addr_width = 8; parameter mem_depth = 256;
   input [d_width-1:0] data0, data1;
   input [addr_width-1:0] waddr0, waddr1;
   input we0, we1, clk0, clk1;
   reg [d_width-1:0] mem [mem_depth-1:0]
   reg [addr_width-1:0] reg_waddr0, reg_waddr1;
   output [d_width-1:0] q0, q1;
   assign q0 = mem[reg_waddr0];
   assign q1 = mem[reg_waddr1];
   always @(posedge clk0)
     begin
       if (we0)
         mem[waddr0] <= data0;</pre>
         reg_waddr0 <= waddr0;</pre>
   always @(posedge clk1)
     begin
       if (we1)
         mem[waddr1] <= data1;</pre>
         reg_waddr1 <= waddr1;
   endmodule
```

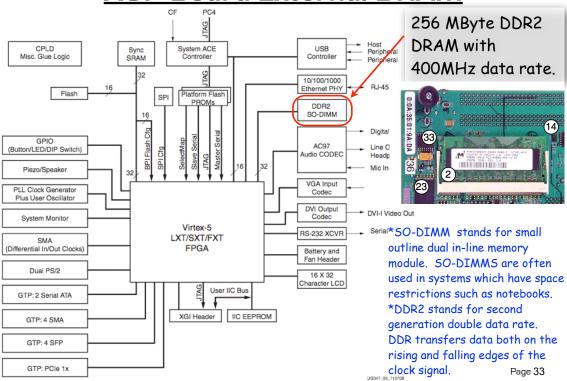
Processor Design Considerations (1/2)

· Register File: Consider distributed RAM (LUT RAM)

- Size is close to what is needed: distributed RAM primitive configurations are 32 or 64 bits deep. Extra width is easily achieved by parallel arrangements.
- LUT-RAM configurations offer multi-porting options useful for register files.
- Asynchronous read, might be useful by providing flexibility on where to put register read in the pipeline.


Instruction / Data Caches : Consider Block RAM

- Higher density, lower cost for large number of bits
- A single 36kbit Block RAM implements 1K 32-bit words.
- Configuration stream based initialization, permits a simple "boot strap" procedure.


· Other Memories? FIFOs? Video "Frame Buffer"? How big?

Spring 2013 EECS150 - Lec11-sram Page 31

XUP Board External SRAM

XUP Board External DRAM

