
Spring 2013 EECS150 - Lec10-interfacing Page

EECS150 - Digital Design
Lecture 10 - Interfacing

Feb 21, 2013
John Wawrzynek

1

Spring 2013 EECS150 - Lec10-interfacing Page

Topics

• How do components (modules)
communicate?

• Combining Hardware with Processors next
week.

2

Spring 2013 EECS150 – Lec10-interfacing Page

Synchronous Data Transfer
• In synchronous systems, the clock signal is used to coordinate the

movement of data around the system.
• Take for example, transferring from module to module:

• By design, the clock period is sufficiently long to accommodate wire
delay and time to get the data into the receiver.

• Assumes:
– sender is ready to send data on each cycle & receiver is ready to

receive data on each cycle
• What if the communication is sporadic?

3

Spring 2013 EECS150 – Lec10-interfacing Page

Data Transfer with Control

• After checking to see if the receiver is ready to receive, the
sender asserts the “valid” signal to indicate that the data
lines hold data for transferring

• As with synchronous transfer, the sender assumes that the
transfer happens successfully

• Design constraint: the ready signal needs to be stable early
enough in the cycle to allow the sender to respond with
data and the valid signal before set-up time of receiver.

• Can we pipeline the control?

4

DinDout
valid

ready
Sender Receiver

Spring 2013 EECS150 - Lec10-interfacing Page

First-in-first-out (FIFO) Memory
• Used to implement queues.
• These find common use in

computers and communication
circuits.

• Generally, used to “decouple”
actions of producer and consumer:

• Producer can perform many writes
without consumer performing any
reads (or vis versa). However,
because of finite buffer size, on
average, need equal number of
reads and writes.

• Typical uses:
– interfacing I/O devices.

Example network interface.
Data bursts from network, then
processor bursts to memory
buffer (or reads one word at a
time from interface).
Operations not synchronized.

– Example: Audio output.
Processor produces output
samples in bursts (during
process swap-in time). Audio
DAC clocks it out at constant
sample rate.

stating state

after write

after read

abc

abcd

bcd

5

Spring 2013 EECS150 - Lec10-interfacing Page

FIFO Interfaces

• After write or read operation, FULL
and EMPTY indicate status of buffer.

• Used by external logic to control own
reading from or writing to the buffer.

• FIFO resets to EMPTY state.
• HALF FULL (or other indicator of

partial fullness) is optional.

• Address pointers are used internally
to keep next write position and next
read position into a dual-port
memory.

• If pointers equal after write ⇒ FULL:

• If pointers equal after read ⇒ EMPTY:

DIN

DOUT

WE

RE
EMPTY

FULL
HALF FULL

RST CLK

FIFO
write ptr

read ptr

write ptr read ptr

write ptr read ptr

6

Spring 2013 EECS150 – Lec10-interfacing Page

Decoupled Communication

• Allow sender and receiver to transfer data independently
• Assumes, on average, equal number of sends and receives
• FIFO buffer must be large enough to accommodate

instantaneous difference in send and receive rate

7

DinDout

Sender ReceiverFIFO
emptyfull

REWE

Spring 2013 EECS150 - Lec10-interfacing Page

Communicating Across Clock Boundaries

• Many synchronous systems need to interface to
asynchronous input signals:
– Consider a computer system running at some clock

frequency, say 1GHz with:
• Interrupts from I/O devices, keystrokes, etc.
• Data transfers from devices with their own clocks

– Ethernet has its own 100MHz clock
– PCI bus transfers, 66MHz standard clock.

– These signals could have no known timing relationship with
the system clock of the CPU.

8

Spring 2013 EECS150 - Lec10-interfacing Page

“Synchronizer” Circuit
• For a single asynchronous input, we use a simple flip-flop to bring the

external input signal into the timing domain of the system clock:

• The D flip-flop samples the asynchronous input at each cycle and produces
a synchronous output that meets the setup time of the next stage.

9

Spring 2013 EECS150 - Lec10-interfacing Page

“Synchronizer” Circuit
• It is essential for asynchronous inputs to be synchronized at only one

place.

• Two flip-flops may not receive the clock and input signals at precisely the
same time (clock and data skew).

• When the asynchronous changes near the clock edge, one flip-flop may
sample input as 1 and the other as 0.

10

Spring 2013 EECS150 - Lec10-interfacing Page

“Synchronizer” Circuit
• Single point of synchronization is even more important when input

goes to a combinational logic block (ex. FSM)
• The CL block can accidentally hide the fact that the signal is

synchronized at multiple points.
• The CL magnifies the chance of the multiple points of

synchronization seeing different values.

• Sounds simple, right?

11

Spring 2013 EECS150 - Lec10-interfacing Page

Synchronizer Failure & Metastability
• We think of flip-flops having only two

stable states - but all have a third
metastable state halfway between 0
and 1.

• When the setup and hold times of a
flip-flop are not met, the flip-flop
could be put into the metastable state.

• Noise will be amplified and push the
flip-flop one way or other.

• However, in theory, the time to
transition to a legal state is
unbounded.

• Does this really happen?
• The probability is low, but the

number of trials is high!
12

Spring 2013 EECS150 - Lec10-interfacing Page

Synchronizer Failure & Metastability
• If the system uses a synchronizer output while the output is still in

the metastable state ⇒ synchronizer failure.
• Initial versions of several commercial ICs have suffered from

metastability problems - effectively synchronization failure:
– AMD9513 system timing controller
– AMD9519 interrupt controller
– Zilog Z-80 Serial I/O interface
– Intel 8048 microprocessor
– AMD 29000 microprocessor

• To avoid synchronizer failure wait long enough before using a
synchronizer’s output. “Long enough”, according to Wakerly, is so
that the mean time between synchronizer failures is several orders of
magnitude longer than the designer’s expected length of employment!

• In practice all we can do is reduce the probability of failure to a
vanishing small value.

13

Spring 2013 EECS150 - Lec10-interfacing Page

Reliable Synchronizer Design
• The probability that a flip-flop stays in the metastable state

decreases exponentially with time.
• Therefore, any scheme that delays using the signal can be used to

decrease the probability of failure.
• In practice, delaying the signal by a cycle is usually sufficient:

• If the clock period is greater than metastability resolution time
plus FF2 setup time, FF2 gets a synchronized version of
ASYNCIN.

• Multi-cycle synchronizers (using counters or more cascaded flip-
flops) are even better – but often overkill.

14

Spring 2013 EECS150 - Lec10-interfacing Page

Xilinx Virtex5 FIFOs
• Virtex5 BlockRAMS include dedicated circuits for FIFOs (details

in User Guide (ug190)).
• Takes advantage of separate dual ports and independent ports

clocks.

• Often used for crossing clock boundaries.

15

Spring 2013 EECS150 - Lec10-interfacing Page

Purely Asynchronous Circuits
• Many researchers (and a few industrial designers) have proposed

a variety of circuit design methodologies that eliminate the need
for a globally distributed clock.

• They cite a variety of important potential advantages over
synchronous systems.

• To date, these attempts have remained mainly in Universities.

• A few commercial asynchronous chips/systems have been build.

• Sometimes, asynchronous blocks sometimes appear inside
otherwise synchronous systems.
– Asynchronous techniques have long been employed in DRAM and other

memory chips for generation internal control without external clocks.
(Precharge/sense-amplifier timing based on address line changes.

• In GALS (globally asynchronous locally synchronous) systems,
independently synchronous islands communicate asynchronously. 16

Spring 2013 EECS150 – Lec10-interfacing Page

Delay Insensitive (self-timed transfer)

• Request/acknowledge “handshake” signal pair used to coordinate
data transfer.

 4-cycle (“return-to-zero”) signaling
• Note, transfer is insensitive to any delay in sending and receiving.

Hello, here’s some data

Thanks, I got it

You’re welcome

See you later

17

Spring 2013 EECS150 – Lec10-interfacing Page

Delay Insensitive (self-timed transfer)

 2-cycle (“non-return-to-zero”) signaling

• Only two transitions per transfer. Maybe higher performance.
• More complex logic. 4-cycle return to zero can usually be overlapped

with other operations.

18

