EECS150 - Digital Design

Lecture 10 - Interfacing

Feb 21, 2013
John Wawrzynek

Spring 2013 EECS150 - Lec10-interfacing Page 1

Topics

 How do components (modules)
communicate?

- Combining Hardware with Processors next
week.

Spring 2013 EECS150 - Lec10-interfacing Page 2

Synchronous Data Transfer

In synchronous systems, the clock signal is used to coordinate the
movement of data around the system.

Take for example, transferring from module to module:

clock

data receiver

sender

By design, the clock period is sufficiently long to accommodate wire
delay and time to get the data into the receiver.

Assumes:

— sender is ready to send data on each cycle & receiver is ready to
receive data on each cycle

What if the communication is sporadic?

Spring 2013 EECS150 — Lec10-interfacing Page 3

Data Transfer with Control

Sender Receiver
ready
Dout Din
valid

+ After checking to see if the receiver is ready to receive, the
sender asserts the “valid” signal to indicate that the data
lines hold data for transferring

» As with synchronous transfer, the sender assumes that the
transfer happens successfully

* Design constraint: the ready signal needs to be stable early
enough in the cycle to allow the sender to respond with
data and the valid signal before set-up time of receiver.

+ Can we pipeline the control?

Spring 2013 EECS150 — Lec10-interfacing Page 4

First-in-first-out (FIFO) Memory

Used to implement queues.

These find common use in
computers and communication
circuits.

Generally, used to "decouple”

actions of producer and consumer:
stating state

c|bla}—

after write

EECS150 - LecC-interfacing

Producer can perform many writes
without consumer performing any
reads (or vis versa). However,
because of finite buffer size, on
average, need equal number of
reads and writes.

Typical uses:

— interfacing I/O devices.
Example network interface.
Data bursts from network, then
processor bursts to memory
buffer (or reads one word at a
time from interface).
Operations not synchronized.

— Example: Audio output.
Processor produces output
samples in bursts (during
process swap-in time). Audio
DAC clocks it out at constant
sample rate.

Page 5

FIFO Interfaces

after read
dic|bl—
Spring 2013
—| Din RST CLK
—/ EMPTY
— RE
Doutr

After write or read operation, FULL
and EMPTY indicate status of buffer.

Used by external logic to control own

reading from or writing to the buffer.

FIFO resets to EMPTY state.

HALF FULL (or other indicator of
partial fullness) is optional.

Spring 2013

EECS150 - LecC-interfacing

Address pointers are used internally
to keep next write position and next
read position into a dual-port
memory.

write ptr—

<—read ptr

If pointers equal after write = FULL:

write ptr— <— read ptr

If pointers equal after read = EMPTY:

write ptr— <— read ptr

Page 6

Decoupled Communication

Sender FIEO Receiver

full empty

Dout Din

WE RE

» Allow sender and receiver to transfer data independently
* Assumes, on average, equal number of sends and receives

* FIFO buffer must be large enough to accommodate
instantaneous difference in send and receive rate

Spring 2013 EECS150 — Lec10-interfacing Page 7

Communicating Across Clock Boundaries

» Many synchronous systems need to interface to
asynchronous input signals:

- Consider a computer system running at some clock
frequency, say 16Hz with:

* Interrupts from I/O devices, keystrokes, etc.

+ Data transfers from devices with their own clocks
- Ethernet has its own 100MHz clock
- PCI bus transfers, 66 MHz standard clock.

- These signals could have no known timing relationship with
the system clock of the CPU.

Spring 2013 EECS150 - Lec10-interfacing Page 8

“Svnchronizer” Circuit

For a single asynchronous input, we use a simple flip-flop to bring the
external input signal into the timing domain of the system clock:

(a) synchronizer
ASYNCIN D SYNCIN
(asynchronous input) > CLK Synchronous
system
CLOCK
(system clock)

(b)
CLOCK

ASYNCIN

) |
SYNCIN | If ‘\ / ‘ ‘ ﬁ‘_

The D flip-flop samples the asynchronous input at each cycle and produces
a synchronous output that meets the setup time of the next stage.

Spring 2013 EECS150 - Lec10-interfacing Page 9

“Svnchronizer” Circuit

It is essential for asynchronous inputs to be synchronized at only one

synchronizers

p'ClCC. o]_SYne

D
CLK
ASYNCIN —
(asynchronous input) Synchronous
d . | 5 olSYNe2 systom

CLK

CLOCK
(system clock)

ASYNCIN] _/ _/ __
SYNC1 _L '

SYNC2

Two flip-flops may not receive the clock and input signals at precisely the
same time (clock and data skew).

When the asynchronous changes near the clock edge, one flip-flop may
sample input as 1 and the other as O.

Spring 2013 EECS150 - Lec10-interfacing Page 10

“Synchronizer” Circuit
Single point of synchronization is even more important when input
goes to a combinational logic block (ex. FSM)

The CL block can accidentally hide the fact that the signal is
synchronized at multiple points.

The CL magnifies the chance of the multiple points of
synchronization seeing different values.

: state memory
synchronizer

D1

ASYNCIN 5 SYNCIN D Q Ql

(asynchronous input) > CLK Combinational —> CLK

excitation logic
<] D

E D Q Q2

—1> CLK

CLOCK P
(system clock)
Sounds simple, right?
Spring 2013 EECS150 - Lec10-interfacing Page 11

Svnchronizer Failure & Metastability

metastable

We think of flip-flops having only two
stable states - but all have a third
metastable state halfway between O
and 1.

When the setup and hold times of a

stable stable

flip-flop are not met, the flip-flop L DCV““ Q

could be put into the metastable state.

Noise will be amplified and push the v Vo

flip-flop one way or other. DC oL

However, in theory, the time to v, } ,— stk

transition to a legal state is ~Via2

unbounded. — Metastable Transter function:
. Voutl o nv}ul)

Does this really happen? Vouz = Vi)

The probability is low, but -~ stable

number of trials is high! -

=V
Vlul ‘oull

Spring 2013 EECS150 - LeC 1 e iauiny rayes 12

Svnchronizer Failure & Metastability

If the system uses a synchronizer output while the output is still in
the metastable state = synchronizer failure.

Initial versions of several commercial ICs have suffered from
metastability problems - effectively synchronization failure:

To avoid synchronizer failure wait long enough before using a

AMD9513 system timing controller
AMD9519 interrupt controller

Zilog Z-80 Serial I/0 interface

Intel 8048 microprocessor
AMD 29000 microprocessor

synchronizer's output. “Long enough”, according to Wakerly, is so
that the mean time between synchronizer failures is several orders of
magnitude longer than the designer’s expected length of employment!

In practice all we can do is reduce the probability of failure to a

vanishing small value.
Spring 2013

EECS150 - LecC-interfacing

Reliable Synchronizer Design

Page 13

The probability that a flip-flop stays in the metastable state
decreases exponentially with time.

Therefore, any scheme that delays using the signal can be used to
decrease the probability of failure.

In practice, delaying the signal by a cycle is usually sufficient:

(asynchronous input)

synchronizer

N\

ASYNCIN D Q

META

5 ¢

SYNCIN
Q

> CLK

FF1
CLOCK

i

(system clock)

Synchronous
system

If the clock period is greater than metastability resolution time
plus FF2 setup time, FF2 gets a synchronized version of
ASYNCIN.

Multi-cycle synchronizers (using counters or more cascaded flip-

flops) are even better - but often overkill.

Spring 2013

EECS150 - LecC-interfacing

Page 14

Xilinx Virtex5 FIFOs

Virtexb BlockRAMS include dedicated circuits for FIFOs (details
in User Guide (ug190)).

Takes advantage of separate dual ports and independent ports
clocks.

| |
}
WRCOUNT -] | waddr | |20 |—~ RDCOUNT

Write Block Read
Pointer RAM Pointer

|

|

|

|

|

| T 3 g T

2

: 8 \3 \3
|

|

|

|

|

DO/DOP

RDCLK
RDEN

Status Flag
Logic

|
|
|
|
|
|
|
|
-]
|
|
Hy3ay =+
Hy3gm =~

1IN4LSONTY
ALJWILSOWTY =1

Often used for crossing clock boundaries.

Spring 2013 EECS150 - Lec10-interfacing Page 15

Purely Asynchronous Circuits

Many researchers (and a few industrial designers) have proposed

a variety of circuit design methodologies that eliminate the need
for a globally distributed clock.

They cite a variety of important potential advantages over
synchronous systems.

To date, these attempts have remained mainly in Universities.
A few commercial asynchronous chips/systems have been build.
Sometimes, asynchronous blocks sometimes appear inside
otherwise synchronous systems.

- Asynchronous techniques have long been employed in DRAM and other
memory chips for generation internal control without external clocks.
(Precharge/sense-amplifier timing based on address line changes.

In GALS (globally asynchronous locally synchronous) systems,
igdepsndently synchronous jslands cqmmunicate asynchronously. Page 18

Delay Insensitive (self-timed transfer)

request

data

sender receiver

acknowledge

* Request/acknowledge “handshake” signal pair used to coordinate
data transfer.

data || A

Hello, here’s some data You’re welcome

request /. \ /

acknowledge / \ /

Thanks, | got it See you later
4-cycle (“return-to-zero”) signaling
* Note, transfer is insensitive to any delay in sending and receiving.

Spring 2013 EECS150 — Lec10-interfacing Page 17

Delay Insensitive (self-timed transfer)

request

data

sender receiver

acknowledge

2-cycle (“non-return-to-zero”) signaling

data Xm W
request J \—

acknowledge / \
* Only two transitions per transfer. Maybe higher performance.

* More complex logic. 4-cycle return to zero can usually be overlapped
with other operations.

Spring 2013 EECS150 — Lec10-interfacing Page 18

