EECS150 - Digital Design

<u>Lecture 8 - Multipliers (part 1):</u> <u>Design Example</u>

Feb 14, 2012 John Wawrzynek

 Spring 2013
 EECS150 - Lec08-mult1
 Page 1

Multiplication

$$a_1b_0+a_0b_1 a_0b_0 \leftarrow Product$$

Many different circuits exist for multiplication. Each one has a different balance between speed (performance) and amount of logic (cost).

Spring 2013 EECS150 - Lec08-mult1 Page 2

Array Multiplier

Single cycle multiply: Generates all n partial products simultaneously.

Bit-Serial Multiplier

• Example, Bit-serial multiplier (n² cycles, one bit of result per n cycles):

Control Algorithm:

 Spring 2013
 EECS150 - Lec08-mult1
 Page 4

Controller using Counters

State Transition Diagram:

 Assume presence of two binary counters. An "i" counter for the outer loop and "j" counter for inner loop.

TC is asserted when the counter reaches it maximum count value. **CE** is "count enable". The counter increments its value on the rising edge of the clock if CE is asserted.

 Spring 2013
 EECS150 - Lec08-mult1
 Page 5

Controller using Counters

 Controller circuit implementation:

Outputs:

 $CE_i = q_2$

$$CE_j = q_1$$

 $RST_i = q_0$
 $RST_j = q_2$
 $shiftA = q_1$
 $shiftB = q_2$
 $shiftLOW = q_2$
 $shiftHI = q_1 + q_2$
 $reset = q_2$
 $selectSUM = q_1$

 Spring 2013
 EECS150 - Lec08-mult1
 Page 6