
Spring 2013 EECS150 - Lec06-sim Page

EECS150 - Digital Design
Lecture 6 - Logic Simulation

Feb 7, 2013

John Wawrzynek

1

Spring 2013 EECS150 - Lec06-sim Page

Encoder Example

always @(x)
begin : encode
if (x == 4'b0001) y = 2'b00;
else if (x == 4'b0010) y = 2'b01;
else if (x == 4'b0100) y = 2'b10;
else if (x == 4'b1000) y = 2'b11;
else y = 2'bxx;
end

2

What is y if x == 4‘b1111?

Spring 2013 EECS150 - Lec06-sim Page

Encoder Example (cont.)

always @(x)
begin : encode
case (x)
4’b0001: y = 2'b00;
4’b0010: y = 2'b01;
4'b0100: y = 2'b10;
4'b1000: y = 2'b11;
default: y = 2'bxx;
endcase
end

3

What is y if x == 4‘b1111?

Spring 2013 EECS150 - Lec06-sim Page

Encoder Example (cont.)
If you can guarantee that only one 1 appears in the input,
then simpler logic can be generated:

always @(x)
begin : encode
if (x[0]) y = 2'b00;
else if (x[1]) y = 2'b01;
else if (x[2]) y = 2'b10;
else if (x[3]) y = 2'b11;
else y = 2'bxx;
end

4

If the input applied has more than one 1, then this version
functions as a “priority encoder”. The least significant 1 gets
priority (the more significant 1’s are ignored). Again the
circuit will be simplified when possible.

Spring 2013 EECS150 - Lec06-sim Page

EECS150 Design Methodology

HDL
Specification

Hierarchically define
structure and/or
behavior of circuit.

Simulation

Functional verification.

Synthesis

Maps specification to
resources of implementation

platform (FPGA for us).

5

Let’s look at the other branch.

Spring 2013 EECS150 - Lec06-sim Page

Design Verification

• Industrial design teams spend a large percentage of the design
time on design verification:
– Removing functional bugs, messaging the design to meet performance,

cost, and power constraints.

• Particularly important for IC design, less so for FPGAs.

• A variety of tools and strategies are employed.
– Simulation: software that interprets the design description and mimics

signal behavior and timing (and power consumption).

• Simulation provides better controllability and observability over real
hardware. Saves on wasted development time and money.

– Emulation: hardware platform (usually FPGAs) are used to mimic
behavior of another system. Fast simulation.

– Static Analysis: tools examines circuit structure and reports on
expected performance, power, or compares alternative design
representations looking for differences.

6

Spring 2013 EECS150 - Lec06-sim Page

Simulation
Verilog/VHDL simulators use 4 signals values:
 0, 1, X (unknown), Z (undriven)
Simulation engine algorithm typically “discrete event simulation”

7

ModelSim:
waveform
viewer, GUI.

Scheduler

Gate

Models

Network Connections

(fanouts)

executes
looks

at

schedules

new event
remove current

events

time-ordered

event list

Gate

Outputs

updates
ti
 tj
 tk

•••

tn

all the events
for time tj

Spring 2013 EECS150 - Lec06-sim Page

Discrete Event Simulation Engine
• A time-ordered list of events is maintained

Event: a value-change scheduled to occur at a given time
All events for a given time are kept together

• The scheduler removes events for a given time ...
... propagates values, executes models, and creates new events ...

8

Slide from Thomas. The Verilog Hardware Description Language,
By Thomas and Moorby, Kluwer Academic Publishers

Spring 2013 EECS150 - Lec06-sim Page

Simulation Testing Strategies
• Unit Testing: Large systems are often too complex to test all at

once, so an bottom-up hierarchical approach. Sub-modules are
tested in isolation.

• Combinational Logic blocks: when practical, exhaustive testing.
Otherwise a combination of random and directed tests.

• Finite state machines: test every possible transition and output.

• Processors: use software to expose bugs.

• In all cases, the simulated output values are checked against the
expected values. Expected values are derived through a variety
of means:
– HDL behavior model running along side the design under test

– precomputed inputs and outputs (vectors)

– co-simulation. Ex: C-language model runs along side ModelSim

9

Spring 2013 EECS150 - Lec06-sim Page

Testbench

 module testmux;
 reg a, b, s;
 wire f;
 reg expected;

 mux2 myMux (.select(s), .in0(a), .in1(b), .out(f));

 initial
 begin
 s=0; a=0; b=1; expected=0;
 #10 a=1; b=0; expected=1;
 #10 s=1; a=0; b=1; expected=1;
 end
 initial
 $monitor(
 "select=%b in0=%b in1=%b out=%b, expected out=%b time=%d",
 s, a, b, f, expected, $time);
 endmodule // testmux

Top-level modules written specifically to test other modules.

10

Usually never synthesized to circuits.
Therefore free to use “simulation only”
language constructs.

A variety of other “system functions exist for
displaying output and controlling the simulation. Most simulators also include a

way to view waveforms of a
set of signals.

Instantiation of DUT
(device under test).

Generally no ports.

Initial block similar to “always” block
without a trigger. It triggers once
automatically at the beginning of
simulation. (Also supported on FPGAs).

“#n” used to advance time in
simulation. Delays some action by
a number of simulation time units.

Assignments used to
set inputs. Note multiple initial blocks.

$monitor triggers whenever
any of its inputs change.
Sends output to console.

Spring 2013 EECS150 - Lec06-sim Page

Mux4 Testbench

11

module testmux4;
 reg [5:0] count = 6’b000000;
 reg a, b, c, d, expected;
 reg [1:0] S;
 wire f;
 mux4 myMux (.select(S), .in0(a), .in1(b), .in2(c), .in3(d), .out(f));
 initial
 begin
 repeat(64)
 begin
 {S, d, c, b, a} = count[5:0];
 case (S)
 2’b00: expected = a;
 2’b01: expected = b;
 2’b10: expected = c;
 2’b11: expected = d;
 endcase // case(S)
 #8 $strobe("select=%b in0=%b in1=%b in2=%b in3=%b out=%b,

expected=%b time=%d", S, a, b, c, d, f, expected, $time);
 #2 count = count + 1’b1;
 end
 $stop;
 end
endmodule

Alternative to $strobe in this case,

#8 if (f != expected) $display(“Mismatch: ...);

Wait a bit, then bump count.

Declaration and initialization all at once.
Generally not available in synthesis.

DUT instantiation

Enumerate all possible input patterns.

Apply pattern to DUT

Behavioral model of mux4

$strobe displays data at a selected time. That
time is just before simulation time is
advanced (after all other events).

Delay to allow mux outputs to stabilize.
Here we assume mux delay < 2ns.

Spring 2013 EECS150 - Lec06-sim Page

module testFSM;
 reg in;
 wire out;
 reg clk=0, rst;
 reg expect;
 FSM1 myFSM (.out(out), .in(in), .clk(clk), .rst(rst));
 always #5 clk = ˜clk;
 initial
 begin
 rst=1;
 #10 in=0; rst=0; expect=0;

 #10 in=1; rst=0; expect=0;
 #10 in=0; rst=0; expect=0;
 #10 in=1; rst=0; expect=0;
 #10 in=1; rst=0; expect=1;
 #10 in=1; rst=0; expect=1;
 #10 in=0; rst=0; expect=0;
 #10 $stop;
 end
 always
 begin
 #4 $strobe($time," in=%b, rst=%b, expect=%b out=%b", in, rst, expect, out);
 #6 ;
 end
endmodule

FSM Testbench Example

12




















DUT instantiation

100MHz clk signal

self-loop
start in IDLE

transition to S0
transition to IDLE
transition to S0
transition to S1
self-loop
transition to IDLE

Note: Input changes are forced to
occur on negative edge of clock.

Strobe output occurs 1ns
before rising edge of clock.

Debug is easier if you have access to state value also.
Either 1) bring out to ports, or 2) use waveform viewer.

Test all arcs.

Spring 2013 EECS150 - Lec06-sim Page

Final Words (for now) on Simulation

Testing is not always fun, but you should view it as part
of the design process. Untested potentially buggy
designs are a dime-a-dozen. Verified designs have real
value.

Devising a test strategy is an integral part of the the
design process. It shows that you have your head
around the design. It should not be an afterthought.

13

