EECS150 - Digital Design

Lecture 4 - Register & Flip-flops

January 31, 2013

John Wawrzynek

Electrical Engineering and Computer Sciences
University of California, Berkeley

Spring 2013

EECS150 lec04-seq_logic

Page 1

Only Two Types of Circuits Exist

* Combinational Logic Blocks [CL)

e State Elements [registers)

clock 1]

input

" e

option feedback

i output clock

Address
Input Data
Write Control
Output Data
Spring 2013

EECS150 lec04-seq_logic

output

* State elements are
mixed in with CL
blocks to control
the flow of data.

* Sometimes used in
large groups by
themselves for
"long-term"” data
storage.

Page 2

State Elements: circuits that store info

* Examples: registers, Input
memories n

* Register: Under the control — N reqister
of the “load" signal, the load > cg1ste

?ISTCP captures the input n
ue and stores it v
mdefmufely output

often replace by clock signal (clk)

The value stored by the register appears on the output
(after a small delay).

Until the next load, changes on the data input are ignored
(unlike CL, where input changes change output).

These get used for short term storage (ex: register file),

and to help move data around the processor.
Spring 2013 EECS150 lec04-seq_logic Page 3

Reqister Details...\What's inside?

Y\

%n ! qn

* ninstances of a "Flip-Flop”
* Flip-flop name because the output flips and flops
between and 0,1
D is "data”, Q is "output”
- Also called "d-type Flip-Flop"

Spring 2013 EECS150 lec04-seq_logic Page 4

Flip-flop Timing
+ Edge-triggered d-type flip-flop
- This one is "positive edge-triggered” j
* "On the rising edge of the clock, the input d is

sampled and transferred to the output. At dll
other times, the input d is ignored.”

+ Example waveforms:
| !

Spring 2013 i | EECS150 lecO4-seq_logic | Page 5

Uses for State Elements

1) As a place to store values for some indeterminate
amount of time:

- Register files (like $1-$31 on the MIPS)
- Memory (caches, and main memory)
2) Help control the flow of information between
combinational logic blocks.

- State elements are used to hold up the
movement of information at the inputs to
combinational logic blocks and allow for orderly
passage.

Spring 2013 EECS150 lec04-seq_logic Page 6

Accumulator Circuit Example

Assume X is a vector of N integers, presented to the input
of our accumulator circuit one at a time (one per clock

cycle), so that after N clock cycles, S hold the sum of all N
numbers.

S=0; Repeat N times
S=S5+X

We need something like this: « But not quite.

X, ——f « Need to use the clock signal
S < to hold up the feedback to
match up with the input
~ .
signal.
Spring 2013 EECS150 lec04-seq_logic Page 7

Accumulator Circuit

Put register, with clock signal
< controlling its load, in feedback
path.

On each clock cycle the register
prevents the new value from
reaching the input to the adder
prematurely. (The new value just
waits at the input of the register).

resd———'_ve_ lex LoD/ Lk,

Timing:
o L LU L
S m] %o SXO+7<. IMXMXL *XM«“XZ:I_

S S N R G

Spring 2013 EECS150 lec04-seq_logic Page 8

Clk . - . -
d'q Flip-Flop Timing Details

| 1 | |

K _._._>' e va?u‘f Aate mug* be, stHc
-— W this pert
s e satop Hime

"hold" tiwme

. |
I -

A, T «— L\Kv'\‘o’%{" cha\j

Three important times associated with flip-flops:
setup time
hold time
clock-to-g delay.

Spring 2013 EECS150 lec04-seq_logic Page 9

Accumulator Revisited

* Note:

- Resef signal
(synchronous)
- Timing of X signal is
not known without
investigating the
circuit that supplies X.
Here we assume it
comes just after S, ;.

Observe transient

m&qﬂm behGVior' Of Si'

Spring 2013 EECS150 lec04-seq_logic Page 10

Pipelining to improve performance (1/2]

yod Extra Register are often added to help
i r&%\s.\,&r e speed up the clock rate.
{ < inpots Timing...

| 1

mpots T O T[T [(r2)
] *

i Sk | ‘
ey Q £ E (0) (+1)
— R _JI A
E — oddekift prp. Ay

thj ax LML

-
ragsder —

Ri-y Ri - o G

Note: delay of 1 clock cycle from input to output.
Clock period limited by propagation delay of adder/shifter.

Spring 2013 EECS150 lec04-seq_logic Page 11

Pipelining to improve performance (2/2]

° Insertion of register allows higher clock

i i frequency.
regd register _ ° More outputs per second.

e wputs Timing...
L+] e LU
B
g [k oputs W[
- - SL_\
| smger | “ L0 @ G) (1)
4 = EL

U N o (‘ N N 3
s [Si)
<€ Ri- , \
R, (VB | Wy |
K- | ‘ Umi (L42y

Spring 2013 EECS150 lec04-seq_logic Page 12

Level-sensitive Latch Inside Flip-flop

Positive Level-sensitive latch: cLk

D
(|7 Q

When CLK is high, latch is transparent, when clk is low, latch
retains previous value.

Positive Edge-triggered flip-flop
built from two level-sensitive
latches:

—» D Q D Q >
C C

e

clk

Spring 2013 EEQ Page 13

Flip-flops on VirtexS FPGA

cout Reset Type cout
TSyne [P
1
—
D6 [O— A6 B 114
=275 o, g T e | =B @T[} [
D4 O A4 06/ T i e TFF D4 1 1 O,
ggD—:a 05, X a oa 03 5
= z
x> D S Rev
[il | wag
— I
g [5o N ==
C5 [DO—{As Cl >
= H B © w T A
=S - | o o . F
g F fl fl
c1 [DO—{A1 CE O H -
g — dk w Four Thip-Tiops per @
[|
ra— A i = 17,280 slices in
B6 [O—{ A6 7
e |n o T—' [’
[3 T H
B3 [D—{A3 05/ T
22 an .
81 O
e ‘ Fes e eme o = s
B2 O
- ==t [—
v e D il
A5 [O—AS E
A3 [D—A3 05| 1 Q BX [
=af ‘
=== [ex 8 " A
= T : il D+ 3
£ A5 COHH 1
3K . . o =g T i
Other flip-flops in the chip input = 1
- Al

output cells, and in the form of

lEP
registers in the DSP slices and !
memoryblock interfaces. & 3

Virtex5 Slice Flip-flops

LUT D Output OFF . . .
e . 4 flip-flops / slice (corresponding
—l S?éﬁ%gﬂ to the 4 6-LUTs)
I .
= Each takes input from LUT output
LUT C Output _CFF . . .
j] SThor o| e OF primary slice input.
D 5iNITo
ox > R %22[‘6‘3&*
|| == — Edge-triggered FF vs. level-sensitive latch.
SRDLUTBO » oo Clock-enable input (can be set to 1 to
o BrF Lot disable) (shared).
x> ’ I Smon ol e Positive versus negative clock-edge.
’ 1712 cINm
os O—— u = Shtn Synchronous vs. asynchronous reset.
o D) s e SRHIGH/SRLOW select reset (SR) set.
[o REV forces opposite state.
LUT A Output oFF INITO/INITI used for global reset (not
OLATCH ol aa .
= | o, S shown - usually just after power-on and
” s e configuration).
I
Lo s 0s orray > 100 lec04-seq_logic Page 15
- - “ - - - ’,
Virtex5 Flip-flops “Primitives
' Logic Table
FDRSE . . Inputs Output
. e D Flip-Flop with Synchronous RS CEDC O
Reset and Set and Clock Enable * - - - ©°
. 0 0 0 - - No Change
Provided by the CAD 0o 1111
tools. This maps to 00 10710
single slice flip-flop.
. m . Negative-Clock Edge, Synchronous
a Reset and Set, and Clock Enable
-|=' Negative-Edge Clock, Clock ol “* | Clock Enable and

Enable, and Asynchronous
Preset and Clear

* Asynchronous Preset
and Clear

CLR

Spring 2013 EECS150 lecO4-seq_logic ’ Page 16

State Elements in Verilog

Always blocks are the only way to specify the "behavior” of
state elements. Synthesis tools will furn state element
behaviors into state element instances.

D-flip-flop with synchronous set and reset example:

module dff(q, d, clk, set, rst);
input d, clk, set, rst;

output q;
reg q; , keyword
. “always @ (posedge clk)” is key
always @ (posedge:clk) to flip-flop generation.
if (rst) . o |
q <= 1'b0; . _|q set
else if (set) This gives priority to q—
q <= 1'bl; . reset over set and clk —> rst
else set over d.
q<=d; |
endmodule On FPGAs, maps to native flip-flop.

Sering 2013 How would you add an CE (clock enable) input? Pae17

Finite State Machines

State Transition Diagram Implementation Circuit Diagram

rst J in
Y
clk —p> state register

in=0

in=0 _ |
7 combinational
in=1 logic
! out i
Holds a symbol to CL functions to determine output

keep track of which value and next state based on input

bubble the FSM is in. and current state.
What does this one do? out =f(in, current state)

Did you know that every SDS is a FSM? ~ nextstate =i(in, current state)

Spring 2013 EECS150 - LecOB-CAD1 Page 18

Finite State Machines

input clk, rst; .
input in; Must use reset to force

output out; to initial state.

reset not always shown in STD ------
// Defined state encoding:
parameter IDLE = 2'b00;-.
parameter SO = 2'b01;
parameter S1 = 2'bl0; --

reg out; .- out not a register, but assigned in always block

* Constants local
_.-~ to this module.

__________________________ Combinational logic

signals for transition.
THE register to hold the “state” of the FSM.

// always block for state register
always @ (posedge clk)

if (rst) state <= IDLE;

else state <= next_ state;

A separate always block should be used for combination logic part of FSM. Next

state and output generation. (Always blocks in a design work in parallel.)
Spring 2013 EECS150 - LecOB-CAD1 Page 19

FSMs (cont.) =0

// always block for combinational logic portion

always @ (state or in) P
in=0

case (state)

// For each state def output and next

IDLE : begin ' in=1
out = 1'b0;
if (in == 1'bl) next_state = S0;
else next state = IDLE; N .
_ \ in=1
end \
] : begin '
out = 1'b0; Each state becomes
if (in == 1'bl) next state = s1; 2 caseclause.
else next state = IDLE; ’
end . For each state define:
s1 : begin ________ -
OUt = 17Dl st oo AU Output value(s)
fif"'ii‘ﬁ":':'"f"ﬁl')' “next_state’="SI; - State transition

out = 1'b0; - Use “default” to cover unassigned state.

end Usually unconditionally transition to reset state.

endcass_en 2013 EECS150 - LecOB-CAD1 Page 2
1 - -
endmo8U1& ee age 20

Example - Parallel to Serial Converter

! module ParToSer(ld, X, out, clk);
input [3:0] X;
input 1d, clk;
output out;

Specifies the reg [3:0] Q;
muxing with wire [3:0] NS;
“rotation”

forces Q register (flip-flops) to
be rewritten every cycle

______ Q<=NS;
connect output -___ P mmm e
"""--- 1assign out = Q[0];!
Spring 2013 eecs15¢ endmodule T T T 21

Parameterized VVersion

Parameters give us a way to generalize our designs. A module
becomes a "generator” for different variations. Enables
design/module reuse. Can simplify testing.

___________________________ module ParToSer(1ld, X, out, CLK);
' parameter N = 4;i/input [N-1:0] X;

‘Declare a parameter with ~ input 1d, clk;

default value. output out;
£ Replace all occurrences
Note: this is not a port. reg out, of “3” with “N-1".
Acts like a “synthesis- reg [N-1:0] Q;
time” constant. wire [N-1:0] NS;
ParToSer #(.N(8)) assign NS =
ps8 (...); (1d) ? X : {Q[0], Q[N-1:11};
ParToSer #(.N(64)) always @ (posedge clk)
P564(...),' Q<=NS,'
Overwrite parameter N at
instantiation. assign out = Q[0

Spring 2013 EECS15(endmodule

