
Spring 2013 EECS150 lec04-seq_logic Page

EECS150 - Digital Design
Lecture 4 - Register & Flip-flops

January 31, 2013

John Wawrzynek
Electrical Engineering and Computer Sciences

University of California, Berkeley

http://www-inst.eecs.berkeley.edu/~cs150

1

Spring 2013 EECS150 lec04-seq_logic Page

Only Two Types of Circuits Exist
• Combinational Logic Blocks (CL)

• State Elements (registers)

• State elements are
mixed in with CL
blocks to control
the flow of data.

2

Register file
or

Memory Block

Address
Input Data

Output Data
Write Control

clock
• Sometimes used in

large groups by
themselves for
“long-term” data
storage.

Spring 2013 EECS150 lec04-seq_logic Page

State Elements: circuits that store info

• The value stored by the register appears on the output
(after a small delay).

• Until the next load, changes on the data input are ignored
(unlike CL, where input changes change output).

• These get used for short term storage (ex: register file),
and to help move data around the processor.

• Examples: registers,
memories

• Register: Under the control
of the “load” signal, the
register captures the input
value and stores it
indefinitely.

register

output

input

load

n

n

often replace by clock signal (clk)

3

Spring 2013 EECS150 lec04-seq_logic Page

Register Details…What’s inside?

• n instances of a “Flip-Flop”
• Flip-flop name because the output flips and flops

between and 0,1
• D is “data”, Q is “output”
• Also called “d-type Flip-Flop”

4

Spring 2013 EECS150 lec04-seq_logic Page

Flip-flop Timing
• Edge-triggered d-type flip-flop

– This one is “positive edge-triggered”
• “On the rising edge of the clock, the input d is

sampled and transferred to the output. At all
other times, the input d is ignored.”

• Example waveforms:

5

Spring 2013 EECS150 lec04-seq_logic Page

Uses for State Elements

1) As a place to store values for some indeterminate
amount of time:

– Register files (like $1-$31 on the MIPS)
– Memory (caches, and main memory)

2) Help control the flow of information between
combinational logic blocks.

– State elements are used to hold up the
movement of information at the inputs to
combinational logic blocks and allow for orderly
passage.

6

Spring 2013 EECS150 lec04-seq_logic Page

Accumulator Circuit Example

• We need something like this:

Assume X is a vector of N integers, presented to the input
of our accumulator circuit one at a time (one per clock
cycle), so that after N clock cycles, S hold the sum of all N
numbers.

 S=0; Repeat N times
 S = S + X;

• But not quite.
• Need to use the clock signal

to hold up the feedback to
match up with the input
signal.

Xi

7

Spring 2013 EECS150 lec04-seq_logic Page

Accumulator Circuit
• Put register, with clock signal

controlling its load, in feedback
path.

• On each clock cycle the register
prevents the new value from
reaching the input to the adder
prematurely. (The new value just
waits at the input of the register).

8

Timing:

Spring 2013 EECS150 lec04-seq_logic Page

Flip-Flop Timing Details

Three important times associated with flip-flops:
setup time

hold time

clock-to-q delay.

9

FF

clk

d q

Spring 2013 EECS150 lec04-seq_logic Page

Accumulator Revisited

10

• Note:
– Reset signal

(synchronous)
– Timing of X signal is

not known without
investigating the
circuit that supplies X.
Here we assume it
comes just after Si-1.

– Observe transient
behavior of Si.

Spring 2013 EECS150 lec04-seq_logic Page

Pipelining to improve performance (1/2)

Timing…

Extra Register are often added to help
speed up the clock rate.

Note: delay of 1 clock cycle from input to output.
Clock period limited by propagation delay of adder/shifter.

11

Spring 2013 EECS150 lec04-seq_logic Page

Pipelining to improve performance (2/2)

Timing…

° Insertion of register allows higher clock
frequency.

° More outputs per second.

12

Spring 2013 EECS150 lec04-seq_logic Page

Level-sensitive Latch Inside Flip-flop

Positive Level-sensitive latch:

Positive Edge-triggered flip-flop
built from two level-sensitive
latches:

13

When CLK is high, latch is transparent, when clk is low, latch
retains previous value.

Spring 2013 EECS150 lec04-seq_logic Page

Flip-flops on Virtex5 FPGA

14

Virtex-5 FPGA User Guide www.xilinx.com 173
UG190 (v4.2) May 9, 2008

CLB Overview
R

Figure 5-3: Diagram of SLICEM

A6
DI2

COUT

D

DX

C

CX

B

BX

A

AX

O6

DI1
MC31

O5

UG190_5_03_041006

A5
A4
A3
A2
A1

D6

DI
DMUX

D

DQ

C

CQ

CMUX

B

BQ

BMUX

A

AQ

AMUX

Reset Type

DX

D5
D4
D3
D2
D1

WA1-WA6
WA7
WA8

DPRAM64/32
SPRAM64/32
SRL32
SRL16
LUT
RAM
ROM

DPRAM64/32
SPRAM64/32
SRL32
SRL16
LUT
RAM
ROM

DPRAM64/32
SPRAM64/32
SRL32
SRL16
LUT
RAM
ROM

DPRAM64/32
SPRAM64/32
SRL32
SRL16
LUT
RAM
ROM

D

FF
LATCH
INIT1
INIT0
SRHIGH
SRLOW

SR REV

CE
CK

D

FF
LATCH
INIT1
INIT0
SRHIGH
SRLOW

SR REV

CE
CK

D

FF
LATCH
INIT1
INIT0
SRHIGH
SRLOW

SR REV

CE
CK

D

FF
LATCH
INIT1
INIT0
SRHIGH
SRLOW

SR REV

Q

CE
CK

CLK
WSGEN

CIN

0/1

WE

Sync

Async

A6
DI2

O6

DI1

MC31

O5

A5
A4
A3
A2
A1

C6

CI

CX

C5
C4
C3
C2
C1

A6
DI2

O6

DI1

MC31

O5

A5
A4
A3
A2
A1

B6

BI

BX

B5
B4
B3
B2
B1

A6
DI2

O6

DI1

MC31

O5

A5
A4
A3
A2
A1

A6

AI

AX
SR
CE

CLK

WE

A5
A4
A3
A2
A1

Q

Q

Q

WA1-WA6
WA7
WA8

WA1-WA6
WA7
WA8

WA1-WA6
WA7
WA8

174 www.xilinx.com Virtex-5 FPGA User Guide
UG190 (v4.2) May 9, 2008

Chapter 5: Configurable Logic Blocks (CLBs)
R

Each CLB can contain zero or one SLICEM. Every other CLB column contains a SLICEMs.
In addition, the two CLB columns to the left of the DSP48E columns both contain a SLICEL
and a SLICEM.

Figure 5-4: Diagram of SLICEL

A6
LUT
ROM

COUT

D

DX

C

CX

B

BX

A

AX

O6
O5

UG190_5_04_032606

A5
A4
A3
A2
A1

D6

DMUX

D

DQ

C

CQ

CMUX

B

BQ

BMUX

A

AQ

AMUX

DX

D5
D4
D3
D2
D1

D

FF
LATCH
INIT1
INIT0
SRHIGH
SRLOW

SR REV

CE
CK

D

FF
LATCH
INIT1
INIT0
SRHIGH
SRLOW

SR REV

CE
CK

D

FF
LATCH
INIT1
INIT0
SRHIGH
SRLOW

SR REV

CE
CK

D

FF
LATCH
INIT1
INIT0
SRHIGH
SRLOW

SR REV

Q

CE
CK

CIN

0/1

A6
LUT
ROM

O6
O5

A5
A4
A3
A2
A1

C6

CX

C5
C4
C3
C2
C1

A6
LUT
ROM

O6
O5

A5
A4
A3
A2
A1

B6

BX

B5
B4
B3
B2
B1

A6
LUT
ROM

O6
O5

A5
A4
A3
A2
A1

A6

AX
SR
CE

CLK

A5
A4
A3
A2
A1

Q

Q

Q

Reset Type

Sync

Async

SLICEMSLICEL

37

Other flip-flops in the chip input/
output cells, and in the form of
registers in the DSP slices and
memory block interfaces.

Four flip-flops per
17,280 slices in

an LX110T.

Spring 2013 EECS150 lec04-seq_logic Page

Virtex5 Slice Flip-flops

15

4 flip-flops / slice (corresponding
to the 4 6-LUTs)

Each takes input from LUT output
or primary slice input.

Edge-triggered FF vs. level-sensitive latch.
Clock-enable input (can be set to 1 to
disable) (shared).
Positive versus negative clock-edge.
Synchronous vs. asynchronous reset.
SRHIGH/SRLOW select reset (SR) set.
REV forces opposite state.
INIT0/INIT1 used for global reset (not
shown - usually just after power-on and
configuration).

Spring 2013 EECS150 lec04-seq_logic Page

Virtex5 Flip-flops “Primitives”

16

Clock Enable and
Asynchronous Preset
and Clear

Negative-Edge Clock, Clock
Enable, and Asynchronous
Preset and Clear

D Flip-Flop with Synchronous
Reset and Set and Clock Enable

D Flip-Flop with Synchronous Reset
and Set and Clock Enable

Negative-Clock Edge, Synchronous
Reset and Set, and Clock Enable

Logic Table
Inputs Output
R S CE D C Q
1 - - - ↑ 0
0 1 - - ↑ 1
0 0 0 - - No Change
0 0 1 1 ↑ 1
0 0 1 0 ↑ 0

Provided by the CAD
tools. This maps to
single slice flip-flop.

Spring 2013 EECS150 - Lec06-CAD1 Page

State Elements in Verilog

17

Always blocks are the only way to specify the “behavior” of
state elements. Synthesis tools will turn state element

behaviors into state element instances.

module dff(q, d, clk, set, rst);
 input d, clk, set, rst;
 output q;
 reg q;

 always @(posedge clk)
 if (rst)
 q <= 1’b0;
 else if (set)
 q <= 1’b1;
 else
 q <= d;
endmodule

D-flip-flop with synchronous set and reset example:

How would you add an CE (clock enable) input?

keyword

“always @ (posedge clk)” is key
to flip-flop generation.

This gives priority to
reset over set and

set over d.

On FPGAs, maps to native flip-flop.

d s
q

rclk

set

rst

Spring 2013 EECS150 - Lec06-CAD1 Page

Finite State Machines

18






















State Transition Diagram














Implementation Circuit Diagram

Holds a symbol to
keep track of which

bubble the FSM is in.

CL functions to determine output
value and next state based on input

and current state.
out = f(in, current state)

next state = f(in, current state)
What does this one do?

Did you know that every SDS is a FSM?

Spring 2013 EECS150 - Lec06-CAD1 Page

Finite State Machines
module FSM1(clk, rst, in, out);
input clk, rst;
input in;
output out;

// Defined state encoding:
parameter IDLE = 2'b00;
parameter S0 = 2'b01;
parameter S1 = 2'b10;
reg out;
reg [1:0] state, next_state;

// always block for state register
always @(posedge clk)
 if (rst) state <= IDLE;
 else state <= next_state;

19




















Must use reset to force
to initial state.

reset not always shown in STD

out not a register, but assigned in always block

THE register to hold the “state” of the FSM.

Combinational logic
signals for transition.

Constants local
to this module.

A separate always block should be used for combination logic part of FSM. Next
state and output generation. (Always blocks in a design work in parallel.)

Spring 2013 EECS150 - Lec06-CAD1 Page

FSMs (cont.)
// always block for combinational logic portion
always @(state or in)
case (state)
// For each state def output and next
 IDLE : begin
 out = 1’b0;
 if (in == 1’b1) next_state = S0;
 else next_state = IDLE;
 end
 S0 : begin
 out = 1’b0;
 if (in == 1’b1) next_state = S1;
 else next_state = IDLE;
 end
 S1 : begin
 out = 1’b1;
 if (in == 1’b1) next_state = S1;
 else next_state = IDLE;

 end
 default: begin
 next_state = IDLE;
 out = 1’b0;
 end
endcase
endmodule 20






















For each state define:

Each state becomes
a case clause.

Output value(s)
State transition

Use “default” to cover unassigned state.
Usually unconditionally transition to reset state.

Spring 2013 EECS150 - Lec06-CAD1 Page

Example - Parallel to Serial Converter

module ParToSer(ld, X, out, clk);
 input [3:0] X;
 input ld, clk;
 output out;

 reg [3:0] Q;
 wire [3:0] NS;

 assign NS =
(ld) ? X : {Q[0], Q[3:1]};

 always @ (posedge clk)
 Q <= NS;

 assign out = Q[0];
endmodule 21

Specifies the
muxing with
“rotation”

forces Q register (flip-flops) to
be rewritten every cycle

connect output

ld

out
out

Spring 2013 EECS150 - Lec06-CAD1 Page

Parameterized Version

22

module ParToSer(ld, X, out, CLK);
 input [3:0] X;
 input ld, clk;
 output out;
 reg out;
 reg [3:0] Q;
 wire [3:0] NS;

 assign NS =
(ld) ? X : {Q[0], Q[3:1]};

 always @ (posedge clk)
 Q <= NS;

 assign out = Q[0];
endmodule

module ParToSer(ld, X, out, CLK);
 input [N-1:0] X;
 input ld, clk;
 output out;
 reg out;
 reg [N-1:0] Q;
 wire [N-1:0] NS;

 assign NS =
(ld) ? X : {Q[0], Q[N-1:1]};

 always @ (posedge clk)
 Q <= NS;

 assign out = Q[0];
endmodule

Replace all occurrences
of “3” with “N-1”.

parameter N = 4;
Declare a parameter with

default value.
Note: this is not a port.
Acts like a “synthesis-

time” constant.

ParToSer #(.N(8))
 ps8 (...);

ParToSer #(.N(64))
ps64 (...);

Overwrite parameter N at
instantiation.

Parameters give us a way to generalize our designs. A module
becomes a “generator” for different variations. Enables
design/module reuse. Can simplify testing.

