
Spring 2013 EECS150 lec01-intro Page

EECS150 - Digital Design
Lecture 1 - Introduction

January 22, 2013

John Wawrzynek
Electrical Engineering and Computer Sciences

University of California, Berkeley

http://www-inst.eecs.berkeley.edu/~cs150

1

Spring 2013 EECS150 lec01-intro Page

Teaching Staff
Professor John Wawrzynek
(Warznek)
631 Soda Hall
johnw@cs.berkeley.edu
Office Hours: Tu 1-2pm, & by appointment.

All TA office hours held in 125 Cory. Check website for days and times.
2

AustinMichael

Shaoyi Cheng: Vincent Lee:

Spring 2013 EECS150 lec01-intro Page

Electronics all around us

3

Consumer
Products

Communications
Infrastructure

Automotive

Automotive

Aerospace and
Military

Spring 2013 EECS150 lec01-intro Page

Course Content
Components and Design Techniques for Digital Systems

more specifically
Synchronous Digital Hardware Systems

– Example digital representation: music waveform

– A series of numbers is used to represent the waveform,
rather than a voltage or current, as in analog systems.

• Synchronous: “Clocked” - all changes in the system are controlled
by a global clock and happen at the same time (not asynchronous)

• Digital: All inputs/outputs and internal values (signals) take on
discrete values (not analog).

4

Spring 2013 EECS150 lec01-intro Page

Course Content - Design Layers

Not a course on transistor physics and transistor
circuits. Although, we will look at these to better
understand the primitive elements for digital circuits.

High-level Organization : Hardware Architectures
System Building Blocks : Arithmetic units, controllers

Circuit Elements : Memories, logic blocks
Transistor-level circuit implementations

Circuit primitives : Transistors, wires

5

Not a course on computer architecture or the
architecture of other systems. Although we will look at
these as examples.

Spring 2013 EECS150 lec01-intro Page

Course Content

IC processing

Transistor Physics

Devices

Circuits

EE 40

CS 61C

Gates

FlipFlops

HDL

Machine Organization

Instruction Set Arch

Programming Languages

Asm / Machine Lang
Deep Digital Design Experience

Fundamentals of Boolean Logic

Synchronous Circuits

Finite State Machines

Timing & Clocking

Device Technology & Implications

Controller Design

Arithmetic Units

Encoding, Framing

Testing, Debugging

Hardware Architecture

Hardware Design Language (HDL)

Design Flow (CAD)

6

Spring 2013 EECS150 lec01-intro Page

Course Evolution

• Final project circa 1980:
– Example project: pong game with buttons for paddle and

LEDs for output.
– Few 10’s of logic gates

– Gates hand-wired together on “bread-board” (protoboard).

– No computer-aided design tools

– Debugged with oscilloscope and logic analyzer

7

Spring 2013 EECS150 lec01-intro Page

Course Evolution

• Final project circa 1995:
– Example project: MIDI music synthesizer
– Few 1000’s of logic gates

– Gates wired together internally on field programmable gate array
(FPGA) development board with some external components.

– Circuit designed “by-hand”, computer-aided design tools to help map the
design to the hardware.

– Debugged with circuit simulation, oscilloscope and logic analyzer

8

Spring 2013 EECS150 lec01-intro Page

Moore’s Law – 2x stuff per 1-2 yr

9

Spring 2013 EECS150 lec01-intro Page

Course Evolution

• Final project circa 2000-2008:
– Example project: eTV - streaming

video broadcast over Ethernet,
student project decodes and
displays video

– Few 10,000’s of logic gates

– Gates wired together internally on FPGA
development board and communicate
with standard external components.

– Circuit designed with logic-synthesis
tools, computer-aided design tools to
help map the design to the hardware.

– Debugged with circuit simulation, logic
analyzer, and in-system debugging tools.

10

Calinx Board

Spring 2013 EECS150 lec01-intro Page

Course Evolution

• Beginning 2009:
– Xilinx XUPV5

development board (a.k.a
ML505)

– Could enable very aggressive
final projects.

– But, modest use of resources
this semester.

– Project debugging with
simulation tools and with in-
system hardware debugging
tools.

11

• LX110T FPGA: ~1M logic
gates.

– Interfaces: Audio in/out, digital video,
ethernet, on-board DRAM, PCIe,
USB, ...

Spring 2013 EECS150 lec01-intro Page

Final Project: Spring 2012

12

• Executes most commonly used MIPS instructions.
• Pipelined (high performance) implementation.
• Serial console interface for shell interaction, debugging, data-transfer.
• Instruction and data caches
• Video interface for display with 2-D vector graphics acceleration.
• Supported by a C language compiler.































Spring 2013 EECS150 lec01-intro Page

Final Project: Spring 2013 (part 1)
• You choose!

• Required to use the Xilinx
FPGA board, but free to add
more hardware interfaces if
necessary.

13

• Encouraged to use existing interfaces (video, audio, network,
etc.), but free to add more.

• We provide design blocks: frame buffer, simple CPU, memory
interface, etc.

• Ideally, your project is structured by adding accelerator
hardware to simple processor

• lets you start from software solution and migrate intensive parts to
hardware, helps in debugging, demonstration

Spring 2013 EECS150 lec01-intro Page

Final Project: Spring 2013 (part 2)

• Avoid tasks that are best solved in software on processors
– Functions go into hardware for higher performance or energy

efficiency

• Examples:
– graphics acceleration, video processing, computational biology

acceleration (i.e. DNA sequencing), RF and radio processing, music
synthesizer, ..., your idea here!

• Start thinking NOW about what you want to do for your
project
– Preliminary proposal due in 2 weeks!

– We will help you refine your idea, develop a schedule with milestones,
development strategy, and backup position

– Experience shows that lots of time is spent refining the functional
specification and figuring out the technical approach

• Groups of 2 people - start meeting potential partners now.
14

Spring 2013 EECS150 lec01-intro Page

Administrivia

15

Spring 2013 EECS150 lec01-intro Page

Enrollment
• If you are on the waiting list and have taken 61c

or equivalent, you will be added.
• If you are enrolled and plan to take the course

you must attend your lab section this week and
next.

• Lab sections this week (meet TAs, pick up accounts,
simple “warm-up” lab exercise)

• No discussion sections this week.

16

Spring 2013 EECS150 lec01-intro Page

Attendance
• Attend regular lectures and ask questions, offer comments,

etc.

• Attend your lab section. You must stick with the same lab
section all semester.
– Lab exercises will be done individually; project with a partner.
– We will put together a lab section exchange in a few weeks to help

you move to a different section.

• Attend any discussion section. You may attend any discussion
section that you want regardless of which one you are enrolled
in.

• The entire teaching staff hold regular office hours (see class
webpage). Take advantage of this opportunity! Come early
(and often). Don’t wait until the night before an assignment
is due!

17

Spring 2013 EECS150 lec01-intro Page

Course Materials

• Class notes, homework & lab assignments,
solutions, and other documentation will be
available on the class webpage linked to the
calendar:

 http://www-inst.eecs.berkeley.edu/~cs150
– Check the class webpage and newsgroup often!
– Updated posts will occur.

Textbook: Harris & Harris
Publisher: Morgan Kaufmann

18

piazza For online Q/A.
http://www.piazzza.com/

More info later.

Spring 2013 EECS150 lec01-intro Page

Course Grading
• Comprehensive Exam held during

Finals week: Tuesday May 7
11:30-2:30.

• For those with EE120 conflict,
alternative exam at 8:30AM.

19

Final
Exam
25%

Project
30%

HW
20%

Midterm
Exam
20%

labs
5%

• Project critical part of the course -
graded on timeliness, completeness
and optimality. Lots more on this later.

• Evening midterm exam, Wed March
20, 6-9pm.

• Weekly homework based on reading
and lectures.
• out before the end of each week,

due before Th lecture of following
week.

• Lab exercises for weeks 1-6, followed
by project checkpoints and final
checkoff.

• Labs due at the beginning of your next
lab session.

• Checkpoints TBD.

Spring 2013 EECS150 lec01-intro Page

Tips on How to Get a Good Grade
The lecture material is not the most challenging part of the course.

• You should be able to understand everything as we go along.

• Do not fall behind in lecture and tell yourself you “will figure it out later from the
notes or book”.

• Notes will be online before the lecture (usually the night before). Look at them
before class. Do assigned reading (only the required sections).

• Ask questions in class and stay involved in the class - that will help you
understand. Come to office hours to check your understanding or to ask
qestions.

• Complete all the homework problems - even the difficult ones.

• The exams will test your depth of knowledge. You need to understand the
material well enough to apply it in new situations.

You need to do well on the project to get a good course grade.
• Take the labs very seriously. They are an integral part of the course.

• Choose your partner carefully. Your best friend may not be the best choice!

• Most important (this comes from 30+ years of hardware design experience):

• Be well organized and neat with homework, labs, project.

• In lab, add complexity a little bit at a time - always have a working design.
20

Spring 2013 EECS150 lec01-intro Page

Cheating

• We have posted the details of my cheating policy on the
class web site. Please read it and ask questions.

• If you turn in someone else's work as if it were your own,
you are guilty of cheating. This includes homework sets,
answers on exams, verilog code, block diagrams, etc.

• Also, if you knowingly aid in cheating, you are guilty.
• We have software that automatically compares your

submitted work to others.
• However, it is okay to discuss with others lab exercises

and the project. Okay to work together on homework.
But everyone must turn in their own work.

• If we catch you cheating, I will give you an F on the
assignment. If it is a midterm exam, final exam, or final
project, I will give you an F in the class. In either case,
will be reported to the office of student conduct.

21

Spring 2013 EECS150 lec01-intro Page

Lectures

What are they good for?

22

Spring 2013 EECS150 lec01-intro Page

A few basic concepts

23

Spring 2013 EECS150 lec01-intro Page

Example Digital Systems
• General Purpose Desktop/Server Digital Computer

– Often designed to maximize performance. "Optimized for speed"

- Usually designed to minimize cost.
“Optimized for low cost”

- Of course, low cost comes at the expense of
speed.

• Handheld Calculator

24

Spring 2013 EECS150 lec01-intro Page

Example Digital Systems
• Digital Watch

– Low power operation comes at the expense of:
• lower speed
• higher cost

Designed to minimize power.
Single battery must last for years.

25

Spring 2013 EECS150 lec01-intro Page

Basic Design Tradeoffs

• You can improve on one at the expense of worsening one
or both of the others.

• These tradeoffs exist at every level in the system design -
every sub-piece and component.

• Design Specification -
– Functional Description.

– Performance, cost, power constraints.

• As a designer you must make the tradeoffs necessary to
achieve the function within the constraints.

26

Spring 2013 EECS150 lec01-intro Page

Design Space & Optimality

27

Performance

Cost
low-performance at low-cost

high-performance at high-cost

“Pareto Optimal” Frontier

(# of components)

(tasks/sec)

Spring 2013 EECS150 lec01-intro Page

Hierarchy & Design Representation

28

Spring 2013 EECS150 lec01-intro Page

Hierarchy in Designs

• Top-Down Design
– Starts at the top (root) and works down by successive refinement.

• Bottom-up Design
– Starts at the leaves & puts pieces together to build up the design.

• Which is better?
– In practice both are needed & used.

• Need top-down divide and conquer to handle the complexity.
• Need bottom-up because in a well designed system, the structure

is influence by what primitives are available.

29

• Helps control complexity -
– by hiding details and reducing

the total number of things to
handle at any time.

• Modulalizes the design -
– divide and conquer
– simplifies implementation and

debugging

Spring 2013 EECS150 lec01-intro Page

Digital Design: What’s it all about?
Given a functional description and performance, cost, & power constraints,

come up with an implementation using a set of primitives.

• How do we learn how to do this?

1. Learn about the primitives and how to use them.

2. Learn about design representations.

3. Learn formal methods and tools to manipulate the representations.

4. Look at design examples.

5. Use trial and error - CAD tools and prototyping. Practice!
• Digital design is in some ways more an art than a science. The

creative spirit is critical in combining primitive elements & other
components in new ways to achieve a desired function.

• However, unlike art, we have objective measures of a design:

 Performance Cost Power
30

