
University of California at Berkeley
College of Engineering

Department of Electrical Engineering and Computer Science

EECS150, Spring 2013

Homework Assignment 4: High-level Design, Multiplier, Pipelining and Parallelism
Due Feburary 26th, 2pm

1. The diagram below shows a single cycle MIPS and 5 stage MIPS pipeline. Assume FetchInstruction
takes 250ps, Decode/ReadReg takes 150ps, Execute/ALU takes 200ps, MemoryRead/Write
takes 250ps and WriteReg takes 100ps, and also assume no performance overhead is introduced
when the pipelining registers are inserted.

Spring 2012 EECS150 - Lec07-MIPS Page 

Single-Cycle vs. Pipelined Performance

47
(a) We have a program of 2000 instructions running on the pipelined MIPS processor. The

MIPS processor is designed such that it runs without stalls. After the pipeline is filled, one
instruction is completed each cycle. What is the total time required to run this program in
the pipelined processor? How long would it take if you run the program on the single-cycle
processor?

(b) A student redesigned the ALU, now Execute/ALU only takes 150ps. Repeat part 1a.

2. Shown below is a bit-serial multiplier.

1



University of California at Berkeley

College of Engineering

Department of Electrical Engineering and Computer Science

EECS150, Spring 2011

Homework Assignment 12: Multipliers and High-Level Design

Due April 28th
, 2pm

1. Consider the bit-serial multiplier given in lecture 23, slide 5.

To better understand this circuit, trace (write down the contents of registers at every cycle) the
multiplication of 4’d5 by 4’b9 through a 4-bit bit-serial multiplier.

Now propose how this multiplier can be extended to handle signed 2’s complement multiplication.

2. The circuit shown below is used to multiply the 6-bit number X by a 6-bit constant value, C. It is
made up of instances of a full-adder cell. The full-adder takes as input 3 1-bit signals and outputs
a 1-bit sum and a 1-bit carry.

What is the value of C?

FA

SumCarry

Full-adder

FAFAFAFAFAFA

FAFAFAFAFAFA

0
x0
x1
x2
x3
x4
x5

p0p1p2p3p4p5p6p7p8p9

0

3. Using nothing but instances of full-adder cells, draw a circuit for adding four 3-bit numbers,
w2w1w0, x2x1x0, y2y1y0, and z2z1z0. First minimize the total delay then the total number of
full-adder cells. Label all inputs and outputs.

1

(a) Tabulate the change of value in each register when 4’d6 is multiplied by 4’d10.

(b) How should the multiplier be changed to handle signed 2’s complement multiplication.
Describe the change in the datapath, and rewrite the control algorithm you have seen in
class.
hint:The two’s complement of an N-bit number can be computed as

X =
n−2∑
i=0

xi2i − xn−12n−1

3. The dataflow graph below shows the computation needed to generate one output K. M1, M2
and M3 are memory reads each of which can produce one new output 1ns after every clock edge.
Addition and subtraction both take 5ns and multiplication takes 10ns. Register setup time and
clock to q time are both 0.5ns.

M1M1 M2M2

-­‐-­‐

xx

xx

++
M3M3

Const  
Input

k

2



(a) Without rearranging operators in the graph, we want to have a circuit which keeps producing
new K from the data in the memory. How would you insert registers to maximize the
throughput? How fast is your clock? How many new K would be produced every seconds?

(b) Is the implementation in the previous part the best we can do? If yes, explain why. If not,
draw a better implementation, and how many new K can this implementation produce every
second?

4. You are given 9 bit adders and 9 bit multipliers.

(a) Implement a 18-bit multiplier. You can use multiple 9 bit adders and 9 bit multipliers, try to
reduce the delay of the 18-bit multiplier. What is the critical path in your design?

(b) Given one 18-bit multiplier and one 9-bit adder, implement a 36 bit multiplier. You can add
registers and muxes when necessary. Show the datapath and design the control FSM, state
clearly what happens in each state, in terms of the control signals in your datapath.

5. Consider the design of a special processor connected to a dual-ported memory, shown below. In
the memory, an array of 8-bit integers is stored, starting at address 0. When started, the processor
begins at location 0 and moves through memory forming the sum of all the integers up to that
point, storing the sum in each memory location as it goes. The process continues for the entire
array. An input signal call START is used to start the process, and an input called ENDADDR is
used to specify the address of the final element in the array.

Write the register transfer language description of the processor operation and draw the design of
the processor datapath.

• Use only the following circuit elements:

(a) binary adder(s) of any width

(b) register(s) with reset and load-enable,

(c) equal-comparator(s), and the memory show below. The memory has asynchronous read and
synchronous write operations.

• In your design, minimize the processor cycle time and the number of cycles in the innerloop.

• Remember to use a comma, “,”, to separate RTL operations that occur on the same clock cycle,
and a “;” to seperate operations on different cycles.

3



Write the register transfer language description of the processor operation and draw the design of
the processor datapath.

• Use only the following circuit elements:

– binary adder(s) of any width,
– register(s) with reset and load-enable,
– equal-comparator(s),
– and the memory show below. The memory has asynchronous read and synchronous

write operations.

• In your design, minimize the processor cycle time and the number of cycles in the inner-
loop.

• Remember to use a comma, “,”, to separate RTL operations that occur on the same clock
cycle, and the “;” to seperate operations on different cycles.

DataIn

readAddress

DataOut

writeAddress

8

8

8

8

WriteEnable

4

4


