
Solution

EECS150 FA04 Mid I Page 1 of 14

EECS150: Components and Design Techniques
for Digital Systems

University of California
Dept. of Electrical Engineering and Computer Sciences

Mid Term 1 – version A Fall 2004

Last name: ________Solution__________ First name_______________________
Student ID: _________________________ Login: ____________________

Lab meeting time: ________________ TA's name: ____________________
(Sorry to ask this next question, but with 100 students packed closely together there may be a
wide range of behavior.)
Student to my left is ________________________ ___________________
Student to my right is ________________________ ____________________

No notes. No calculators! This booklet contains 14 numbered pages. Please, no extra stray
pieces of paper. The exam contains 6 substantive questions. Browse through it before you start.
You have 1.5 hours, so relax, work thoughtfully and give clear answers. Good luck!

I certify that my answers to this exam are my own work. If I am taking this exam early, I
certify that I shall not discuss the exam questions, the exam answers, or the content of the
exam with anyone until after the scheduled exam time. If I am taking this exam in
scheduled time, I certify that I have not discussed the exam with anyone who took it early.

Signature: ______________________________________

Problem 1 [15]
Problem 2 [10]
Problem 3 [10]
Problem 4 [15]
Problem 5 [20]
Problem 6 [30]

Total [100]

Solution

EECS150 FA04 Mid I Page 2 of 14

Problem 1. [15]

1.a. Circle the gate-level circuits below that implement a Boolean AND function?

Circuits are in another order for B test

1.b. Show that a 2-to-1 MUX is universal, i.e. that any Boolean expression can be
implemented with a collection of 2-to-1 multiplexers.

You could implement AND, OR, NOT, or just NAND or NOR

1.c. Write a Verilog module that implements the following combinational logic.

module (A, B, C, out);
 input A, B, C;
 output out;

 wire x;

 and (x, A, B);
 nor (out, x, C);

endmodule

A

B

C
out

1

0
A

B

0

1

0

0

1

NAND

module (A, B, C, out);
 input A, B, C;
 output out;

 reg out;

always @(A or B or C)
 out = ~(A & B)|C);

endmodule

module (A, B, C, out);
 input A, B, C;
 output out;

 assign C = ~(A & B)|C);

endmodule

Solution

EECS150 FA04 Mid I Page 3 of 14

1.d. Write a Verilog module that implements a D flip-flop with reset.

module (D, Q, Clock, Reset);
 input D, Clock, Reset;
 output Q;

 reg Q;

 always @ (posedge Clock) begin
 if (Reset) Q <= 1`b0;
 else Q <= D;
 end

endmodule

Solution

EECS150 FA04 Mid I Page 4 of 14

Problem 2. [10]
 Generate a truth table with appropriate don’t-cares for the circuit shown below. It
has two 2-bit unsigned inputs A = {A1,A0} and B = {B1,B0} and two outputs, EQ, and
GR.
 EQ is 1 if A = = B and 0 otherwise. GR is 1 when A > B and GR is 0 when A <
B. Your solution should be concise and it should allow for an efficient implementation.

A1 A0 B1 B0 EQ GR
0 0 0 0 1 x
 0 1 0 0
 1 x 0 0
0 1 0 0 0 1
 0 1 1 x
 1 x 0 0
1 0 0 x 0 1
 1 0 1 x
 1 1 0 0
1 1 0 x 0 1
 1 0 0 1
 1 1 1 x

GR is inverted for version B

Solution

EECS150 FA04 Mid I Page 5 of 14

Problem 3. [10]
 You are to implement the following Boolean operation over three inputs:

() ()acabout •=

‘a’ and ‘b’ are swapped on B test.

3.a Implement this efficiently using NAND, NOR, and INV gates.
See below…

3.b. How many n-channel and p-channel transistors are used in this gate-level
implementation?

3.c. How much can you reduce this number by implementing the operation directly at the
transistor level? Draw a transistor-level schematic.

Solution

EECS150 FA04 Mid I Page 6 of 14

Question 4: [15] The following is a truth table for a 4-input, 2-output logic function:
Inputs: a, b, c, d, Outputs: x, y

a b c d x y
0 0 0 0 0 0
0 0 0 1 1 1
0 0 1 0 - 1
0 0 1 1 1 0
0 1 0 0 1 1
0 1 0 1 1 1
0 1 1 0 0 1
0 1 1 1 0 -
1 0 0 0 - 0
1 0 0 1 1 1
1 0 1 0 - 1
1 0 1 1 0 0
1 1 0 0 1 1
1 1 0 1 1 1
1 1 1 0 1 -
1 1 1 1 1 0

4.a. Compute minimal sum-of-product (SOP) expressions for x and y using kmaps.

x cd ~c~d ~cd cd c~d
ab 00 01 11 10

~a~b 00 0 1 1 -

~ab 01 1 1 0 0

ab 11 1 1 1 1

a~b 10 - 1 0 -

y cd ~c~d ~cd cd c~d
ab 00 01 11 10

~a~b 00 0 1 0 1

~ab 01 1 1 - 1

ab 11 1 1 0 -

a~b 10 0 1 0 1

dbadccbabx +++=

dccbdcy ++=

Solution

EECS150 FA04 Mid I Page 7 of 14

4.b. In this part, you will implement your logic on a PLA On the diagram below. You
want to minimize the number of AND gates (rows) on the PLA. Mark the utilized
connections on the PLA diagram for computing x and y.
(Note: you may not find use for all the rows or cols on the PLA.)

The key here was to share minterms b~c and ~cd

�� �� �� ��

�� ��

Solution

EECS150 FA04 Mid I Page 8 of 14

Problem 5 [20].
 You are to implement a 3 bit counter with the following (somewhat unusual) state
transition diagram.

 C2C1C0
After reset: 1 0 0
After 1 Clock Cycle: 1 1 0
After 2 Clock Cycle: 1 1 1
After 3 Clock Cycle: 0 1 1
After 4 Clock Cycle: 1 0 1
After 5 Clock Cycle: 0 1 0
After 6 Clock Cycle: 0 0 1
After 7 Clock Cycle: 1 0 0 <-- Sequence repeats
After 8 Clock Cycle: 1 1 0
 .

.

.

5.a. Draw the schematic diagram for this 3-bit counter. You may only use 1-bit flip flops
and primitive gates. Make sure to implement the “Reset” input, as your flip-flops do not
have a built in reset input.

Solution

EECS150 FA04 Mid I Page 9 of 14

CS NS

C2C1C0 N2N1N0
000 XXX
001 100
010 001
011 101
100 110
101 010
110 111
111 011

N2 = C0 xor C2
N1 = C2
N0 = C1

�����

�� �� ��

Solution

EECS150 FA04 Mid I Page 10 of 14

5.b. Shown below is an example CLB from an FPGA filled in to implement a NAND
gate. Notice that not only is the 3-LUT filled in, but the control bit for the MUX is set.

 In this problem you must implement your counter in the simplified FPGA below.
Fill in the white boxes with either 1 or 0 to indicate both the programming of the 3-LUTs
and the mux control bits. Indicate connected wires with an X as with PLAs.
 In addition to configuring the CLBs you must make sure to route all the signals
you use, including “Reset” and to configure the four I/O pads at the top.
 Each signal which must connect to the outside world must be connected to an I/O
pad. “Reset” is the only input and three bits of the counter “C2C1C0”are the only outputs.
In the white I/O pad box, write in the name of the signal connected to it. Each I/O pad
would be connected to a pin on an FPGA chip.

Solution

EECS150 FA04 Mid I Page 11 of 14

Problem 6 [30]. In this problem you will be working with a new combination lock. You
will design the controller for a lock with 11 buttons labeled ‘0’-‘9’ and “Reset”. To open
the lock, the user must press the correct numbered buttons in sequence. The “Reset”
button should return the lock to a default state at any time.
 The lock must respond with either the “Open” or “Locked” output at all times.
The lock should not output “Open” until one of the combinations has been entered. Once
the lock is opened and outputting “Open” it should continue to do so until “Reset.”
 If at any time the user enters even a single wrong digit the lock should output
“Error” and continue to do so until it is “Reset.”. Whenever the lock is not open it should
assert the “Locked” output. The lock may report both “Error” and “Locked” but never
“Open” and “Locked” or “Open” and “Error.”
 You may assume that the inputs from the buttons are high for only one cycle
when the button is pushed regardless of the clock speed and how long the button was held
down.
 As a twist, the lock must respond with “Open” to any of three different
combinations:

• 0 – 1 – 3
• 0 – 6 – 5 – 3
• 0 – 6 – 9

 Entering any one of the above three combinations should cause the lock to
“Open.”

6.a. Draw the bubble and arc diagram for your Moore machine implementation of the
controller.

I. Label and name all states appropriately
II. Label all arcs with the buttons that will cause that transition

a. You may label arcs with ranges of buttons to save time
III. Label all states with the outputs that should be asserted in that state

a. Outputs are assumed to be unasserted unless otherwise marked

Solution

EECS150 FA04 Mid I Page 12 of 14

6.b. Fill in the current state values for each cycle in the below timing diagram. You
should use the state names from your bubble-and-arc diagram in part (a).

 Note that the gray boxes in the following diagram stand for “Don’t Know/Don’t
Care”

�����

����	

�

�

����

������

�����

������	�

�	�	�
����� 	� 	� 	�
���

Solution

EECS150 FA04 Mid I Page 13 of 14

6.c. Fill in the verilog shell given below with an implementation of your controller.
 Note that we have added a signal called “Input” for your use. It is the OR of all of
the 10 number inputs. That is to say, it will be 1’b1 when ANY of the number buttons
are pressed.

module LockFSM(Numbers, Reset, Clock, Open, Locked, Error);
 input [9:0] Numbers;
 input Reset;
 input Clock;

 output Open, Locked, Error;

 wire Input;

 assign Input = (|Numbers);

 localparam STATE_Reset = 3’b000,
 STATE_S0 = 3’b001,
 STATE_S1 = 3’b010,
 STATE_S2 = 3’b011,
 STATE_Open = 3’b100,
 STATE_Error = 3’b101,
 STATE_X = 3’bxxx;

 reg [2:0] CurrentState, NextState;

 assign Open = (CurrentState == STATE_Open);
 assign Locked = (CurrentState != STATE_Open);
 assign Error = (CurrentState == STATE_Error);

 always @ (posedge Clock) begin
 if (Reset) CurrentState <= STATE_Reset;
 else if (Input) CurrentState <= NextState;
 end

 always @ (*) begin
 NextState = CurrentState;

 case (CurrentState)
 STATE_Reset: begin
 if (Numbers[0]) NextState = STATE_S0;
 else NextState = STATE_Error
 end
 STATE_S0: begin
 if (Numbers[1]) NextState = STATE_S1;
 else if (Numbers[2]) NextState = STATE_S2;
 else NextState = STATE_Error;
 end
 STATE_S1: begin
 if (Numbers[4]) NextState = STATE_Open;
 else NextState = STATE_Error;
 end
 STATE_S2: begin
 if (Numbers[8]) NextState = STATE_Open;
 else (Numbers[9]) NextState = STATE_S1;
 else NextState = STATE_Error;

Solution

EECS150 FA04 Mid I Page 14 of 14

 end
 STATE_Open: NextState = STATE_Open;
 STATE_Error: NextState = STATE_Error;
 default: NextState = STATE_X;
 endcase
 end

endmodule

