EECS150: Components and Design Techniques for Digital Systems

University of California
Dept. of Electrical Engineering and Computer Sciences

David E. Culler
Fall 2007

Homework 1:

1. Katz and Boriello 1.1:
a.
b.

c.

1.2.
a.

b.

1.3. To represent 52 cards requires 6 bits. This gives us a total of 64 values. One obvious encoding is to number the cards from 0 [000000] to 51 [110011] say in increasing order of suit precedence (at least in bridge) - clubs, diamonds, hearts, spades. Unfortunately, this makes the logic for problem 1.4 pretty awful. A more application specific encoding might be to have two bits for the suit and four for the position in the suit - | ss | cccc |. The following table gives one possible encoding of the suit field, ss. The cards could take the values $1-13$ as in the book. $0,14,15$ are unused.

Suit	$\mathrm{S}_{1} \mathrm{~S}_{0}$
Clubs	00
Diamonds	01
Hearts	10
Spades	11

Another natural encoding might be value-centric. The position in the suit might be the most significant part and the suit the least significant. For example, | cccc | ss | using the same definitions of the field above.
1.4 We'll do this using the symbolic fields first.
a. Jack of Diamonds $=\sim \mathrm{S}_{1} * \mathrm{~S}_{0} * \mathrm{C}_{3} * \mathrm{C}_{2} * \sim \mathrm{C}_{1} * \mathrm{C}_{0}$

In this first encoding this would be $\sim \mathrm{I}_{5} * \mathrm{I}_{4} * \mathrm{I}_{3} * \mathrm{I}_{2} * \sim \mathrm{I}_{1} * \mathrm{I}_{0}$
In this second encoding this would be $\quad \mathrm{I}_{5} * \mathrm{I}_{4} * \sim \mathrm{I}_{3} * \mathrm{I}_{2} * \sim \mathrm{I}_{1} * \mathrm{I}_{0}$
b. $\sim \mathrm{C}_{3} * \mathrm{C}_{2} * \mathrm{C}_{1} * \mathrm{C}_{0}$
c. $S_{1} * \sim S_{0}$

1.18.

a.

A	B	C	Out
F	F	F	F
F	F	T	F
F	T	F	F
F	T	T	F
T	F	F	F
T	F	T	F
T	T	F	F
T	T	T	T

b.

A	B	C	Out
F	F	F	F
F	F	T	F
F	T	F	F
F	T	T	T
T	F	F	F
T	F	T	T
T	T	F	T
T	T	T	T

c.

A	B	C	Out
F	F	F	F
F	F	T	T
F	T	F	T
F	T	T	T
T	F	F	T
T	F	T	T
T	T	F	T
T	T	T	T

1.19:
a. $X=A B C$
b. $X=A B+A C+B C$
c. $X=A+B+C$
1.20:

2. Katz and Boriello problems: 2.2,
(a)

(b)

(c)

(d)

(e)
2.4 (but only using NAND gates).
(a)

(b)

3. Draw a gate-level schematic for the following logical expression using the two obvious logic gates: NOR(NAND(A,B),C).

How many transistors are used when this is implemented as a CMOS NAND and NOR gate?
Draw a CMOS transistor level circuit that combines these two and reduces the number of transistors required.
(Correction: you may assume either the true input or its complement, but not both.)

The obvious solution uses 8 transistors, 4 for the NOR and 4 for the NAND. With complemented inputs it reduces to 6 transistors in a 3-input NOR - nor($\sim A, \sim B, C)$. Just like 1.2b, but with A and B complemented.
4. The theorems of Boolean Algebra all have a graphical analog in gate level schematics.

Draw the graphical version of the Associative Law, Distributive Law, and Simplification (K\&B 2.2.2).

Associative

Distributive

Simplification

Give a "bubble pushing proof" of the validity of the following circuit optimization from the canonical Sum of Products form to NAND gates.

State the corresponding rule for Product of Sums form.

